Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0-only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * SpanDSP - a series of DSP components for telephony
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  * echo.c - A line echo canceller.  This code is being developed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  *          against and partially complies with G168.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  * Written by Steve Underwood <steveu@coppice.org>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  *         and David Rowe <david_at_rowetel_dot_com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11)  * Copyright (C) 2001, 2003 Steve Underwood, 2007 David Rowe
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13)  * Based on a bit from here, a bit from there, eye of toad, ear of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14)  * bat, 15 years of failed attempts by David and a few fried brain
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15)  * cells.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17)  * All rights reserved.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) /*! \file */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) /* Implementation Notes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23)    David Rowe
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24)    April 2007
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26)    This code started life as Steve's NLMS algorithm with a tap
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27)    rotation algorithm to handle divergence during double talk.  I
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28)    added a Geigel Double Talk Detector (DTD) [2] and performed some
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29)    G168 tests.  However I had trouble meeting the G168 requirements,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30)    especially for double talk - there were always cases where my DTD
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31)    failed, for example where near end speech was under the 6dB
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32)    threshold required for declaring double talk.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34)    So I tried a two path algorithm [1], which has so far given better
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35)    results.  The original tap rotation/Geigel algorithm is available
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36)    in SVN http://svn.rowetel.com/software/oslec/tags/before_16bit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37)    It's probably possible to make it work if some one wants to put some
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38)    serious work into it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40)    At present no special treatment is provided for tones, which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41)    generally cause NLMS algorithms to diverge.  Initial runs of a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42)    subset of the G168 tests for tones (e.g ./echo_test 6) show the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43)    current algorithm is passing OK, which is kind of surprising.  The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44)    full set of tests needs to be performed to confirm this result.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46)    One other interesting change is that I have managed to get the NLMS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47)    code to work with 16 bit coefficients, rather than the original 32
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48)    bit coefficents.  This reduces the MIPs and storage required.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49)    I evaulated the 16 bit port using g168_tests.sh and listening tests
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50)    on 4 real-world samples.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52)    I also attempted the implementation of a block based NLMS update
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53)    [2] but although this passes g168_tests.sh it didn't converge well
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54)    on the real-world samples.  I have no idea why, perhaps a scaling
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55)    problem.  The block based code is also available in SVN
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56)    http://svn.rowetel.com/software/oslec/tags/before_16bit.  If this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57)    code can be debugged, it will lead to further reduction in MIPS, as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58)    the block update code maps nicely onto DSP instruction sets (it's a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59)    dot product) compared to the current sample-by-sample update.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61)    Steve also has some nice notes on echo cancellers in echo.h
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63)    References:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65)    [1] Ochiai, Areseki, and Ogihara, "Echo Canceller with Two Echo
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66)        Path Models", IEEE Transactions on communications, COM-25,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67)        No. 6, June
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68)        1977.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69)        https://www.rowetel.com/images/echo/dual_path_paper.pdf
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71)    [2] The classic, very useful paper that tells you how to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72)        actually build a real world echo canceller:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 	 Messerschmitt, Hedberg, Cole, Haoui, Winship, "Digital Voice
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 	 Echo Canceller with a TMS320020,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 	 https://www.rowetel.com/images/echo/spra129.pdf
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77)    [3] I have written a series of blog posts on this work, here is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78)        Part 1: http://www.rowetel.com/blog/?p=18
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80)    [4] The source code http://svn.rowetel.com/software/oslec/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82)    [5] A nice reference on LMS filters:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 	 https://en.wikipedia.org/wiki/Least_mean_squares_filter
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85)    Credits:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87)    Thanks to Steve Underwood, Jean-Marc Valin, and Ramakrishnan
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88)    Muthukrishnan for their suggestions and email discussions.  Thanks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89)    also to those people who collected echo samples for me such as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90)    Mark, Pawel, and Pavel.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) #include "echo.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) #define MIN_TX_POWER_FOR_ADAPTION	64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) #define MIN_RX_POWER_FOR_ADAPTION	64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) #define DTD_HANGOVER			600	/* 600 samples, or 75ms     */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) #define DC_LOG2BETA			3	/* log2() of DC filter Beta */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) /* adapting coeffs using the traditional stochastic descent (N)LMS algorithm */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) static inline void lms_adapt_bg(struct oslec_state *ec, int clean, int shift)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 	int offset1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 	int offset2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 	int factor;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 	int exp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 	if (shift > 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 		factor = clean << shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 		factor = clean >> -shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 	/* Update the FIR taps */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 	offset2 = ec->curr_pos;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 	offset1 = ec->taps - offset2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 	for (i = ec->taps - 1; i >= offset1; i--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 		exp = (ec->fir_state_bg.history[i - offset1] * factor);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 		ec->fir_taps16[1][i] += (int16_t) ((exp + (1 << 14)) >> 15);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 	for (; i >= 0; i--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 		exp = (ec->fir_state_bg.history[i + offset2] * factor);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 		ec->fir_taps16[1][i] += (int16_t) ((exp + (1 << 14)) >> 15);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) static inline int top_bit(unsigned int bits)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 	if (bits == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 		return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 		return (int)fls((int32_t) bits) - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) struct oslec_state *oslec_create(int len, int adaption_mode)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 	struct oslec_state *ec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 	const int16_t *history;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 	ec = kzalloc(sizeof(*ec), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 	if (!ec)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 	ec->taps = len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 	ec->log2taps = top_bit(len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 	ec->curr_pos = ec->taps - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 	ec->fir_taps16[0] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 	    kcalloc(ec->taps, sizeof(int16_t), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 	if (!ec->fir_taps16[0])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 		goto error_oom_0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 	ec->fir_taps16[1] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 	    kcalloc(ec->taps, sizeof(int16_t), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 	if (!ec->fir_taps16[1])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 		goto error_oom_1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 	history = fir16_create(&ec->fir_state, ec->fir_taps16[0], ec->taps);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 	if (!history)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 		goto error_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 	history = fir16_create(&ec->fir_state_bg, ec->fir_taps16[1], ec->taps);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 	if (!history)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 		goto error_state_bg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 	for (i = 0; i < 5; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 		ec->xvtx[i] = ec->yvtx[i] = ec->xvrx[i] = ec->yvrx[i] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 	ec->cng_level = 1000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 	oslec_adaption_mode(ec, adaption_mode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 	ec->snapshot = kcalloc(ec->taps, sizeof(int16_t), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 	if (!ec->snapshot)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 		goto error_snap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 	ec->cond_met = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 	ec->pstates = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 	ec->ltxacc = ec->lrxacc = ec->lcleanacc = ec->lclean_bgacc = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 	ec->ltx = ec->lrx = ec->lclean = ec->lclean_bg = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 	ec->tx_1 = ec->tx_2 = ec->rx_1 = ec->rx_2 = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 	ec->lbgn = ec->lbgn_acc = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 	ec->lbgn_upper = 200;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 	ec->lbgn_upper_acc = ec->lbgn_upper << 13;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 	return ec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) error_snap:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 	fir16_free(&ec->fir_state_bg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) error_state_bg:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 	fir16_free(&ec->fir_state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) error_state:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 	kfree(ec->fir_taps16[1]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) error_oom_1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 	kfree(ec->fir_taps16[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) error_oom_0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 	kfree(ec);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 	return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) EXPORT_SYMBOL_GPL(oslec_create);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) void oslec_free(struct oslec_state *ec)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 	fir16_free(&ec->fir_state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 	fir16_free(&ec->fir_state_bg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 	for (i = 0; i < 2; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 		kfree(ec->fir_taps16[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 	kfree(ec->snapshot);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 	kfree(ec);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) EXPORT_SYMBOL_GPL(oslec_free);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) void oslec_adaption_mode(struct oslec_state *ec, int adaption_mode)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 	ec->adaption_mode = adaption_mode;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) EXPORT_SYMBOL_GPL(oslec_adaption_mode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) void oslec_flush(struct oslec_state *ec)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 	ec->ltxacc = ec->lrxacc = ec->lcleanacc = ec->lclean_bgacc = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 	ec->ltx = ec->lrx = ec->lclean = ec->lclean_bg = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 	ec->tx_1 = ec->tx_2 = ec->rx_1 = ec->rx_2 = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 	ec->lbgn = ec->lbgn_acc = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 	ec->lbgn_upper = 200;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 	ec->lbgn_upper_acc = ec->lbgn_upper << 13;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 	ec->nonupdate_dwell = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 	fir16_flush(&ec->fir_state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 	fir16_flush(&ec->fir_state_bg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 	ec->fir_state.curr_pos = ec->taps - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 	ec->fir_state_bg.curr_pos = ec->taps - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) 	for (i = 0; i < 2; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 		memset(ec->fir_taps16[i], 0, ec->taps * sizeof(int16_t));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 	ec->curr_pos = ec->taps - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 	ec->pstates = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) EXPORT_SYMBOL_GPL(oslec_flush);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) void oslec_snapshot(struct oslec_state *ec)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 	memcpy(ec->snapshot, ec->fir_taps16[0], ec->taps * sizeof(int16_t));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) EXPORT_SYMBOL_GPL(oslec_snapshot);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) /* Dual Path Echo Canceller */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) int16_t oslec_update(struct oslec_state *ec, int16_t tx, int16_t rx)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 	int32_t echo_value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 	int clean_bg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 	int tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) 	int tmp1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 	 * Input scaling was found be required to prevent problems when tx
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) 	 * starts clipping.  Another possible way to handle this would be the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 	 * filter coefficent scaling.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) 	ec->tx = tx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 	ec->rx = rx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 	tx >>= 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 	rx >>= 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 	 * Filter DC, 3dB point is 160Hz (I think), note 32 bit precision
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 	 * required otherwise values do not track down to 0. Zero at DC, Pole
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 	 * at (1-Beta) on real axis.  Some chip sets (like Si labs) don't
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) 	 * need this, but something like a $10 X100P card does.  Any DC really
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 	 * slows down convergence.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 	 * Note: removes some low frequency from the signal, this reduces the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 	 * speech quality when listening to samples through headphones but may
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 	 * not be obvious through a telephone handset.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 	 * Note that the 3dB frequency in radians is approx Beta, e.g. for Beta
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) 	 * = 2^(-3) = 0.125, 3dB freq is 0.125 rads = 159Hz.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 	if (ec->adaption_mode & ECHO_CAN_USE_RX_HPF) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 		tmp = rx << 15;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 		 * Make sure the gain of the HPF is 1.0. This can still
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 		 * saturate a little under impulse conditions, and it might
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 		 * roll to 32768 and need clipping on sustained peak level
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 		 * signals. However, the scale of such clipping is small, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 		 * the error due to any saturation should not markedly affect
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 		 * the downstream processing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 		tmp -= (tmp >> 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 		ec->rx_1 += -(ec->rx_1 >> DC_LOG2BETA) + tmp - ec->rx_2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) 		 * hard limit filter to prevent clipping.  Note that at this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 		 * stage rx should be limited to +/- 16383 due to right shift
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) 		 * above
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) 		tmp1 = ec->rx_1 >> 15;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) 		if (tmp1 > 16383)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) 			tmp1 = 16383;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) 		if (tmp1 < -16383)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) 			tmp1 = -16383;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) 		rx = tmp1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) 		ec->rx_2 = tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) 	/* Block average of power in the filter states.  Used for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 	   adaption power calculation. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 		int new, old;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 		/* efficient "out with the old and in with the new" algorithm so
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 		   we don't have to recalculate over the whole block of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) 		   samples. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 		new = (int)tx * (int)tx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) 		old = (int)ec->fir_state.history[ec->fir_state.curr_pos] *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 		    (int)ec->fir_state.history[ec->fir_state.curr_pos];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) 		ec->pstates +=
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) 		    ((new - old) + (1 << (ec->log2taps - 1))) >> ec->log2taps;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) 		if (ec->pstates < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) 			ec->pstates = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) 	/* Calculate short term average levels using simple single pole IIRs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) 	ec->ltxacc += abs(tx) - ec->ltx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) 	ec->ltx = (ec->ltxacc + (1 << 4)) >> 5;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 	ec->lrxacc += abs(rx) - ec->lrx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) 	ec->lrx = (ec->lrxacc + (1 << 4)) >> 5;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) 	/* Foreground filter */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) 	ec->fir_state.coeffs = ec->fir_taps16[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) 	echo_value = fir16(&ec->fir_state, tx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) 	ec->clean = rx - echo_value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) 	ec->lcleanacc += abs(ec->clean) - ec->lclean;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 	ec->lclean = (ec->lcleanacc + (1 << 4)) >> 5;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) 	/* Background filter */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) 	echo_value = fir16(&ec->fir_state_bg, tx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) 	clean_bg = rx - echo_value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 	ec->lclean_bgacc += abs(clean_bg) - ec->lclean_bg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) 	ec->lclean_bg = (ec->lclean_bgacc + (1 << 4)) >> 5;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) 	/* Background Filter adaption */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) 	/* Almost always adap bg filter, just simple DT and energy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 	   detection to minimise adaption in cases of strong double talk.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) 	   However this is not critical for the dual path algorithm.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) 	ec->factor = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) 	ec->shift = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) 	if (!ec->nonupdate_dwell) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) 		int p, logp, shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) 		/* Determine:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) 		   f = Beta * clean_bg_rx/P ------ (1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) 		   where P is the total power in the filter states.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) 		   The Boffins have shown that if we obey (1) we converge
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) 		   quickly and avoid instability.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 		   The correct factor f must be in Q30, as this is the fixed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) 		   point format required by the lms_adapt_bg() function,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 		   therefore the scaled version of (1) is:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) 		   (2^30) * f  = (2^30) * Beta * clean_bg_rx/P
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) 		   factor      = (2^30) * Beta * clean_bg_rx/P     ----- (2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) 		   We have chosen Beta = 0.25 by experiment, so:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) 		   factor      = (2^30) * (2^-2) * clean_bg_rx/P
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) 		   (30 - 2 - log2(P))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) 		   factor      = clean_bg_rx 2                     ----- (3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) 		   To avoid a divide we approximate log2(P) as top_bit(P),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) 		   which returns the position of the highest non-zero bit in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) 		   P.  This approximation introduces an error as large as a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) 		   factor of 2, but the algorithm seems to handle it OK.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) 		   Come to think of it a divide may not be a big deal on a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) 		   modern DSP, so its probably worth checking out the cycles
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) 		   for a divide versus a top_bit() implementation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) 		p = MIN_TX_POWER_FOR_ADAPTION + ec->pstates;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) 		logp = top_bit(p) + ec->log2taps;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) 		shift = 30 - 2 - logp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) 		ec->shift = shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) 		lms_adapt_bg(ec, clean_bg, shift);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) 	/* very simple DTD to make sure we dont try and adapt with strong
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) 	   near end speech */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) 	ec->adapt = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) 	if ((ec->lrx > MIN_RX_POWER_FOR_ADAPTION) && (ec->lrx > ec->ltx))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) 		ec->nonupdate_dwell = DTD_HANGOVER;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) 	if (ec->nonupdate_dwell)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) 		ec->nonupdate_dwell--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) 	/* Transfer logic */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) 	/* These conditions are from the dual path paper [1], I messed with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) 	   them a bit to improve performance. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) 	if ((ec->adaption_mode & ECHO_CAN_USE_ADAPTION) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) 	    (ec->nonupdate_dwell == 0) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) 	    /* (ec->Lclean_bg < 0.875*ec->Lclean) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) 	    (8 * ec->lclean_bg < 7 * ec->lclean) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) 	    /* (ec->Lclean_bg < 0.125*ec->Ltx) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) 	    (8 * ec->lclean_bg < ec->ltx)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) 		if (ec->cond_met == 6) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) 			 * BG filter has had better results for 6 consecutive
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) 			 * samples
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) 			ec->adapt = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) 			memcpy(ec->fir_taps16[0], ec->fir_taps16[1],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) 			       ec->taps * sizeof(int16_t));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) 		} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) 			ec->cond_met++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) 	} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) 		ec->cond_met = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) 	/* Non-Linear Processing */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) 	ec->clean_nlp = ec->clean;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) 	if (ec->adaption_mode & ECHO_CAN_USE_NLP) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) 		 * Non-linear processor - a fancy way to say "zap small
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) 		 * signals, to avoid residual echo due to (uLaw/ALaw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) 		 * non-linearity in the channel.".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) 		if ((16 * ec->lclean < ec->ltx)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) 			 * Our e/c has improved echo by at least 24 dB (each
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) 			 * factor of 2 is 6dB, so 2*2*2*2=16 is the same as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) 			 * 6+6+6+6=24dB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) 			if (ec->adaption_mode & ECHO_CAN_USE_CNG) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) 				ec->cng_level = ec->lbgn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) 				/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) 				 * Very elementary comfort noise generation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) 				 * Just random numbers rolled off very vaguely
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) 				 * Hoth-like.  DR: This noise doesn't sound
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) 				 * quite right to me - I suspect there are some
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) 				 * overflow issues in the filtering as it's too
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) 				 * "crackly".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) 				 * TODO: debug this, maybe just play noise at
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) 				 * high level or look at spectrum.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) 				 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) 				ec->cng_rndnum =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) 				    1664525U * ec->cng_rndnum + 1013904223U;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) 				ec->cng_filter =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) 				    ((ec->cng_rndnum & 0xFFFF) - 32768 +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) 				     5 * ec->cng_filter) >> 3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) 				ec->clean_nlp =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) 				    (ec->cng_filter * ec->cng_level * 8) >> 14;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) 			} else if (ec->adaption_mode & ECHO_CAN_USE_CLIP) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) 				/* This sounds much better than CNG */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) 				if (ec->clean_nlp > ec->lbgn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) 					ec->clean_nlp = ec->lbgn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) 				if (ec->clean_nlp < -ec->lbgn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) 					ec->clean_nlp = -ec->lbgn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) 			} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) 				/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) 				 * just mute the residual, doesn't sound very
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) 				 * good, used mainly in G168 tests
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) 				 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) 				ec->clean_nlp = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) 			 * Background noise estimator.  I tried a few
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) 			 * algorithms here without much luck.  This very simple
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) 			 * one seems to work best, we just average the level
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) 			 * using a slow (1 sec time const) filter if the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) 			 * current level is less than a (experimentally
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) 			 * derived) constant.  This means we dont include high
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) 			 * level signals like near end speech.  When combined
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) 			 * with CNG or especially CLIP seems to work OK.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) 			if (ec->lclean < 40) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) 				ec->lbgn_acc += abs(ec->clean) - ec->lbgn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) 				ec->lbgn = (ec->lbgn_acc + (1 << 11)) >> 12;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) 	/* Roll around the taps buffer */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) 	if (ec->curr_pos <= 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) 		ec->curr_pos = ec->taps;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) 	ec->curr_pos--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) 	if (ec->adaption_mode & ECHO_CAN_DISABLE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) 		ec->clean_nlp = rx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) 	/* Output scaled back up again to match input scaling */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) 	return (int16_t) ec->clean_nlp << 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) EXPORT_SYMBOL_GPL(oslec_update);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) /* This function is separated from the echo canceller is it is usually called
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533)    as part of the tx process.  See rx HP (DC blocking) filter above, it's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534)    the same design.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536)    Some soft phones send speech signals with a lot of low frequency
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537)    energy, e.g. down to 20Hz.  This can make the hybrid non-linear
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538)    which causes the echo canceller to fall over.  This filter can help
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539)    by removing any low frequency before it gets to the tx port of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540)    hybrid.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542)    It can also help by removing and DC in the tx signal.  DC is bad
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543)    for LMS algorithms.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545)    This is one of the classic DC removal filters, adjusted to provide
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546)    sufficient bass rolloff to meet the above requirement to protect hybrids
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547)    from things that upset them. The difference between successive samples
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548)    produces a lousy HPF, and then a suitably placed pole flattens things out.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549)    The final result is a nicely rolled off bass end. The filtering is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550)    implemented with extended fractional precision, which noise shapes things,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551)    giving very clean DC removal.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) int16_t oslec_hpf_tx(struct oslec_state *ec, int16_t tx)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) 	int tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) 	int tmp1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) 	if (ec->adaption_mode & ECHO_CAN_USE_TX_HPF) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) 		tmp = tx << 15;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) 		 * Make sure the gain of the HPF is 1.0. The first can still
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) 		 * saturate a little under impulse conditions, and it might
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) 		 * roll to 32768 and need clipping on sustained peak level
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) 		 * signals. However, the scale of such clipping is small, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) 		 * the error due to any saturation should not markedly affect
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) 		 * the downstream processing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) 		tmp -= (tmp >> 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) 		ec->tx_1 += -(ec->tx_1 >> DC_LOG2BETA) + tmp - ec->tx_2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) 		tmp1 = ec->tx_1 >> 15;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) 		if (tmp1 > 32767)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) 			tmp1 = 32767;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) 		if (tmp1 < -32767)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) 			tmp1 = -32767;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) 		tx = tmp1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) 		ec->tx_2 = tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) 	return tx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) EXPORT_SYMBOL_GPL(oslec_hpf_tx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) MODULE_LICENSE("GPL");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) MODULE_AUTHOR("David Rowe");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) MODULE_DESCRIPTION("Open Source Line Echo Canceller");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) MODULE_VERSION("0.3.0");