Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) // ir-rcmm-decoder.c - A decoder for the RCMM IR protocol
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3) //
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4) // Copyright (C) 2018 by Patrick Lerda <patrick9876@free.fr>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6) #include "rc-core-priv.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) #define RCMM_UNIT		166  /* microseconds */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) #define RCMM_PREFIX_PULSE	417  /* 166.666666666666*2.5 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) #define RCMM_PULSE_0            278  /* 166.666666666666*(1+2/3) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) #define RCMM_PULSE_1            444  /* 166.666666666666*(2+2/3) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #define RCMM_PULSE_2            611  /* 166.666666666666*(3+2/3) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #define RCMM_PULSE_3            778  /* 166.666666666666*(4+2/3) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) enum rcmm_state {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) 	STATE_INACTIVE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) 	STATE_LOW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) 	STATE_BUMP,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) 	STATE_VALUE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) 	STATE_FINISHED,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) static bool rcmm_mode(const struct rcmm_dec *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) 	return !((0x000c0000 & data->bits) == 0x000c0000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) static int rcmm_miscmode(struct rc_dev *dev, struct rcmm_dec *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) 	switch (data->count) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) 	case 24:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) 		if (dev->enabled_protocols & RC_PROTO_BIT_RCMM24) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) 			rc_keydown(dev, RC_PROTO_RCMM24, data->bits, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) 			data->state = STATE_INACTIVE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) 			return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) 		return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) 	case 12:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) 		if (dev->enabled_protocols & RC_PROTO_BIT_RCMM12) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) 			rc_keydown(dev, RC_PROTO_RCMM12, data->bits, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) 			data->state = STATE_INACTIVE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) 			return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) 		return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) 	return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53)  * ir_rcmm_decode() - Decode one RCMM pulse or space
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54)  * @dev:	the struct rc_dev descriptor of the device
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55)  * @ev:		the struct ir_raw_event descriptor of the pulse/space
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57)  * This function returns -EINVAL if the pulse violates the state machine
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) static int ir_rcmm_decode(struct rc_dev *dev, struct ir_raw_event ev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) 	struct rcmm_dec *data = &dev->raw->rcmm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) 	u32 scancode;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) 	u8 toggle;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 	int value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) 	if (!(dev->enabled_protocols & (RC_PROTO_BIT_RCMM32 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) 					RC_PROTO_BIT_RCMM24 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 					RC_PROTO_BIT_RCMM12)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 	if (!is_timing_event(ev)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) 		if (ev.reset)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 			data->state = STATE_INACTIVE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 	switch (data->state) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 	case STATE_INACTIVE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 		if (!ev.pulse)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 		if (!eq_margin(ev.duration, RCMM_PREFIX_PULSE, RCMM_UNIT))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 		data->state = STATE_LOW;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 		data->count = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 		data->bits  = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 	case STATE_LOW:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 		if (ev.pulse)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 		if (!eq_margin(ev.duration, RCMM_PULSE_0, RCMM_UNIT))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 		data->state = STATE_BUMP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 	case STATE_BUMP:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 		if (!ev.pulse)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 		if (!eq_margin(ev.duration, RCMM_UNIT, RCMM_UNIT / 2))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 		data->state = STATE_VALUE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 	case STATE_VALUE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 		if (ev.pulse)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 		if (eq_margin(ev.duration, RCMM_PULSE_0, RCMM_UNIT / 2))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 			value = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 		else if (eq_margin(ev.duration, RCMM_PULSE_1, RCMM_UNIT / 2))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 			value = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 		else if (eq_margin(ev.duration, RCMM_PULSE_2, RCMM_UNIT / 2))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 			value = 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 		else if (eq_margin(ev.duration, RCMM_PULSE_3, RCMM_UNIT / 2))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 			value = 3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 			value = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 		if (value == -1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 			if (!rcmm_miscmode(dev, data))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 				return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 		data->bits <<= 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 		data->bits |= value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 		data->count += 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 		if (data->count < 32)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 			data->state = STATE_BUMP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 			data->state = STATE_FINISHED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 	case STATE_FINISHED:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 		if (!ev.pulse)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 		if (!eq_margin(ev.duration, RCMM_UNIT, RCMM_UNIT / 2))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 		if (rcmm_mode(data)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 			toggle = !!(0x8000 & data->bits);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 			scancode = data->bits & ~0x8000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 			toggle = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 			scancode = data->bits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 		if (dev->enabled_protocols & RC_PROTO_BIT_RCMM32) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 			rc_keydown(dev, RC_PROTO_RCMM32, scancode, toggle);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 			data->state = STATE_INACTIVE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 			return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 	dev_dbg(&dev->dev, "RC-MM decode failed at count %d state %d (%uus %s)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 		data->count, data->state, ev.duration, TO_STR(ev.pulse));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 	data->state = STATE_INACTIVE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 	return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) static const int rcmmspace[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 	RCMM_PULSE_0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 	RCMM_PULSE_1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 	RCMM_PULSE_2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 	RCMM_PULSE_3,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) static int ir_rcmm_rawencoder(struct ir_raw_event **ev, unsigned int max,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 			      unsigned int n, u32 data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 	ret = ir_raw_gen_pulse_space(ev, &max, RCMM_PREFIX_PULSE, RCMM_PULSE_0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 	for (i = n - 2; i >= 0; i -= 2) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 		const unsigned int space = rcmmspace[(data >> i) & 3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 		ret = ir_raw_gen_pulse_space(ev, &max, RCMM_UNIT, space);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 		if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 			return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 	return ir_raw_gen_pulse_space(ev, &max, RCMM_UNIT, RCMM_PULSE_3 * 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) static int ir_rcmm_encode(enum rc_proto protocol, u32 scancode,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 			  struct ir_raw_event *events, unsigned int max)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 	struct ir_raw_event *e = events;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 	switch (protocol) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 	case RC_PROTO_RCMM32:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 		ret = ir_rcmm_rawencoder(&e, max, 32, scancode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 	case RC_PROTO_RCMM24:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 		ret = ir_rcmm_rawencoder(&e, max, 24, scancode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 	case RC_PROTO_RCMM12:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 		ret = ir_rcmm_rawencoder(&e, max, 12, scancode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 		ret = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 	if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 	return e - events;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) static struct ir_raw_handler rcmm_handler = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) 	.protocols	= RC_PROTO_BIT_RCMM32 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 			  RC_PROTO_BIT_RCMM24 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 			  RC_PROTO_BIT_RCMM12,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 	.decode		= ir_rcmm_decode,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 	.encode         = ir_rcmm_encode,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 	.carrier        = 36000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 	.min_timeout	= RCMM_PULSE_3 + RCMM_UNIT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) static int __init ir_rcmm_decode_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 	ir_raw_handler_register(&rcmm_handler);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 	pr_info("IR RCMM protocol handler initialized\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) static void __exit ir_rcmm_decode_exit(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 	ir_raw_handler_unregister(&rcmm_handler);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) module_init(ir_rcmm_decode_init);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) module_exit(ir_rcmm_decode_exit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) MODULE_LICENSE("GPL");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) MODULE_AUTHOR("Patrick Lerda");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) MODULE_DESCRIPTION("RCMM IR protocol decoder");