^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) // SPDX-License-Identifier: GPL-2.0+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) // ir-imon-decoder.c - handle iMon protocol
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) //
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) // Copyright (C) 2018 by Sean Young <sean@mess.org>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) #include "rc-core-priv.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) #define IMON_UNIT 416 /* us */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) #define IMON_BITS 30
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) #define IMON_CHKBITS (BIT(30) | BIT(25) | BIT(24) | BIT(22) | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) BIT(21) | BIT(20) | BIT(19) | BIT(18) | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) BIT(17) | BIT(16) | BIT(14) | BIT(13) | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) BIT(12) | BIT(11) | BIT(10) | BIT(9))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) * This protocol has 30 bits. The format is one IMON_UNIT header pulse,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) * followed by 30 bits. Each bit is one IMON_UNIT check field, and then
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) * one IMON_UNIT field with the actual bit (1=space, 0=pulse).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) * The check field is always space for some bits, for others it is pulse if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) * both the preceding and current bit are zero, else space. IMON_CHKBITS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) * defines which bits are of type check.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) * There is no way to distinguish an incomplete message from one where
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) * the lower bits are all set, iow. the last pulse is for the lowest
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) * bit which is 0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) enum imon_state {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) STATE_INACTIVE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) STATE_BIT_CHK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) STATE_BIT_START,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) STATE_FINISHED,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) STATE_ERROR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) static void ir_imon_decode_scancode(struct rc_dev *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) struct imon_dec *imon = &dev->raw->imon;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) /* Keyboard/Mouse toggle */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) if (imon->bits == 0x299115b7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) imon->stick_keyboard = !imon->stick_keyboard;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) if ((imon->bits & 0xfc0000ff) == 0x680000b7) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) int rel_x, rel_y;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) u8 buf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) buf = imon->bits >> 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) rel_x = (buf & 0x08) | (buf & 0x10) >> 2 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) (buf & 0x20) >> 4 | (buf & 0x40) >> 6;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) if (imon->bits & 0x02000000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) rel_x |= ~0x0f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) buf = imon->bits >> 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) rel_y = (buf & 0x08) | (buf & 0x10) >> 2 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) (buf & 0x20) >> 4 | (buf & 0x40) >> 6;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) if (imon->bits & 0x01000000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) rel_y |= ~0x0f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) if (rel_x && rel_y && imon->stick_keyboard) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) if (abs(rel_y) > abs(rel_x))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) imon->bits = rel_y > 0 ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) 0x289515b7 : /* KEY_DOWN */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) 0x2aa515b7; /* KEY_UP */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) imon->bits = rel_x > 0 ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) 0x2ba515b7 : /* KEY_RIGHT */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) 0x29a515b7; /* KEY_LEFT */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) if (!imon->stick_keyboard) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) input_report_rel(dev->input_dev, REL_X, rel_x);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) input_report_rel(dev->input_dev, REL_Y, rel_y);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) input_report_key(dev->input_dev, BTN_LEFT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) (imon->bits & 0x00010000) != 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) input_report_key(dev->input_dev, BTN_RIGHT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) (imon->bits & 0x00040000) != 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) rc_keydown(dev, RC_PROTO_IMON, imon->bits, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) * ir_imon_decode() - Decode one iMON pulse or space
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) * @dev: the struct rc_dev descriptor of the device
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) * @ev: the struct ir_raw_event descriptor of the pulse/space
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) * This function returns -EINVAL if the pulse violates the state machine
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) static int ir_imon_decode(struct rc_dev *dev, struct ir_raw_event ev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) struct imon_dec *data = &dev->raw->imon;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) if (!is_timing_event(ev)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) if (ev.reset)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) data->state = STATE_INACTIVE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) dev_dbg(&dev->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) "iMON decode started at state %d bitno %d (%uus %s)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) data->state, data->count, ev.duration, TO_STR(ev.pulse));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) * Since iMON protocol is a series of bits, if at any point
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) * we encounter an error, make sure that any remaining bits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) * aren't parsed as a scancode made up of less bits.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) * Note that if the stick is held, then the remote repeats
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) * the scancode with about 12ms between them. So, make sure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) * we have at least 10ms of space after an error. That way,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) * we're at a new scancode.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) if (data->state == STATE_ERROR) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) if (!ev.pulse && ev.duration > MS_TO_US(10))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) data->state = STATE_INACTIVE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) for (;;) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) if (!geq_margin(ev.duration, IMON_UNIT, IMON_UNIT / 2))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) decrease_duration(&ev, IMON_UNIT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) switch (data->state) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) case STATE_INACTIVE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) if (ev.pulse) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) data->state = STATE_BIT_CHK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) data->bits = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) data->count = IMON_BITS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) case STATE_BIT_CHK:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) if (IMON_CHKBITS & BIT(data->count))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) data->last_chk = ev.pulse;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) else if (ev.pulse)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) goto err_out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) data->state = STATE_BIT_START;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) case STATE_BIT_START:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) data->bits <<= 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) if (!ev.pulse)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) data->bits |= 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) if (IMON_CHKBITS & BIT(data->count)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) if (data->last_chk != !(data->bits & 3))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) goto err_out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) if (!data->count--)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) data->state = STATE_FINISHED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) data->state = STATE_BIT_CHK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) case STATE_FINISHED:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) if (ev.pulse)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) goto err_out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) ir_imon_decode_scancode(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) data->state = STATE_INACTIVE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) err_out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) dev_dbg(&dev->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) "iMON decode failed at state %d bitno %d (%uus %s)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) data->state, data->count, ev.duration, TO_STR(ev.pulse));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) data->state = STATE_ERROR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) * ir_imon_encode() - Encode a scancode as a stream of raw events
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) * @protocol: protocol to encode
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) * @scancode: scancode to encode
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) * @events: array of raw ir events to write into
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) * @max: maximum size of @events
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) * Returns: The number of events written.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) * -ENOBUFS if there isn't enough space in the array to fit the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) * encoding. In this case all @max events will have been written.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) static int ir_imon_encode(enum rc_proto protocol, u32 scancode,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) struct ir_raw_event *events, unsigned int max)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) struct ir_raw_event *e = events;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) int i, pulse;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) if (!max--)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) return -ENOBUFS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) init_ir_raw_event_duration(e, 1, IMON_UNIT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) for (i = IMON_BITS; i >= 0; i--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) if (BIT(i) & IMON_CHKBITS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) pulse = !(scancode & (BIT(i) | BIT(i + 1)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) pulse = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) if (pulse == e->pulse) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) e->duration += IMON_UNIT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) if (!max--)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) return -ENOBUFS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) init_ir_raw_event_duration(++e, pulse, IMON_UNIT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) pulse = !(scancode & BIT(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) if (pulse == e->pulse) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) e->duration += IMON_UNIT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) if (!max--)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) return -ENOBUFS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) init_ir_raw_event_duration(++e, pulse, IMON_UNIT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) if (e->pulse)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) e++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) return e - events;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) static int ir_imon_register(struct rc_dev *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) struct imon_dec *imon = &dev->raw->imon;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) imon->stick_keyboard = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) static struct ir_raw_handler imon_handler = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) .protocols = RC_PROTO_BIT_IMON,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) .decode = ir_imon_decode,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) .encode = ir_imon_encode,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) .carrier = 38000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) .raw_register = ir_imon_register,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) .min_timeout = IMON_UNIT * IMON_BITS * 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) static int __init ir_imon_decode_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) ir_raw_handler_register(&imon_handler);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) pr_info("IR iMON protocol handler initialized\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) static void __exit ir_imon_decode_exit(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) ir_raw_handler_unregister(&imon_handler);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) module_init(ir_imon_decode_init);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) module_exit(ir_imon_decode_exit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) MODULE_LICENSE("GPL");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) MODULE_AUTHOR("Sean Young <sean@mess.org>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) MODULE_DESCRIPTION("iMON IR protocol decoder");