// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019 Fuzhou Rockchip Electronics Co., Ltd. */
#include <linux/delay.h>
#include <linux/iopoll.h>
#include <linux/pm_runtime.h>
#include <linux/rk-camera-module.h>
#include <media/v4l2-common.h>
#include <media/v4l2-event.h>
#include <media/v4l2-fh.h>
#include <media/v4l2-ioctl.h>
#include <media/v4l2-subdev.h>
#include <media/videobuf2-dma-contig.h>
#include "dev.h"
#include "isp_external.h"
#include "regs.h"
static void get_remote_mipi_sensor(struct rkisp_device *dev,
struct v4l2_subdev **sensor_sd, u32 function)
{
struct media_graph graph;
struct media_entity *entity = &dev->isp_sdev.sd.entity;
struct media_device *mdev = entity->graph_obj.mdev;
int ret;
/* Walk the graph to locate sensor nodes. */
mutex_lock(&mdev->graph_mutex);
ret = media_graph_walk_init(&graph, mdev);
if (ret) {
mutex_unlock(&mdev->graph_mutex);
*sensor_sd = NULL;
return;
}
media_graph_walk_start(&graph, entity);
while ((entity = media_graph_walk_next(&graph))) {
if (entity->function == function)
break;
}
mutex_unlock(&mdev->graph_mutex);
media_graph_walk_cleanup(&graph);
if (entity)
*sensor_sd = media_entity_to_v4l2_subdev(entity);
else
*sensor_sd = NULL;
}
static struct v4l2_subdev *get_remote_subdev(struct v4l2_subdev *sd)
{
struct media_pad *local, *remote;
struct v4l2_subdev *remote_sd = NULL;
local = &sd->entity.pads[CSI_SINK];
if (!local)
goto end;
remote = media_entity_remote_pad(local);
if (!remote)
goto end;
remote_sd = media_entity_to_v4l2_subdev(remote->entity);
end:
return remote_sd;
}
static int rkisp_csi_link_setup(struct media_entity *entity,
const struct media_pad *local,
const struct media_pad *remote,
u32 flags)
{
struct v4l2_subdev *sd = media_entity_to_v4l2_subdev(entity);
struct rkisp_csi_device *csi;
struct rkisp_stream *stream = NULL;
int ret = 0;
u8 id;
if (!sd)
return -ENODEV;
csi = v4l2_get_subdevdata(sd);
if (local->flags & MEDIA_PAD_FL_SOURCE) {
id = local->index - 1;
if (id && id < RKISP_STREAM_DMATX3)
stream = &csi->ispdev->cap_dev.stream[id + 1];
if (flags & MEDIA_LNK_FL_ENABLED) {
if (csi->sink[id].linked) {
ret = -EBUSY;
goto out;
}
csi->sink[id].linked = true;
csi->sink[id].index = 1 << id;
} else {
csi->sink[id].linked = false;
csi->sink[id].index = 0;
}
if (stream)
stream->linked = csi->sink[id].linked;
}
return 0;
out:
v4l2_err(sd, "pad%d is already linked\n", local->index);
return ret;
}
static int rkisp_csi_g_mbus_config(struct v4l2_subdev *sd,
unsigned int pad_id,
struct v4l2_mbus_config *config)
{
struct v4l2_subdev *remote_sd;
if (!sd)
return -ENODEV;
remote_sd = get_remote_subdev(sd);
return v4l2_subdev_call(remote_sd, pad, get_mbus_config, pad_id, config);
}
static int rkisp_csi_get_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *fmt)
{
struct v4l2_subdev *remote_sd;
if (fmt->pad != CSI_SINK)
fmt->pad -= 1;
if (!sd)
return -ENODEV;
remote_sd = get_remote_subdev(sd);
return v4l2_subdev_call(remote_sd, pad, get_fmt, NULL, fmt);
}
static int rkisp_csi_s_stream(struct v4l2_subdev *sd, int on)
{
struct rkisp_csi_device *csi = v4l2_get_subdevdata(sd);
struct rkisp_device *dev = csi->ispdev;
csi->err_cnt = 0;
csi->irq_cnt = 0;
memset(csi->tx_first, 0, sizeof(csi->tx_first));
if (!IS_HDR_RDBK(dev->hdr.op_mode))
return 0;
if (on)
rkisp_write(dev, CSI2RX_Y_STAT_CTRL, SW_Y_STAT_EN, true);
else
rkisp_write(dev, CSI2RX_Y_STAT_CTRL, 0, true);
return 0;
}
static int rkisp_csi_s_power(struct v4l2_subdev *sd, int on)
{
return 0;
}
static const struct media_entity_operations rkisp_csi_media_ops = {
.link_setup = rkisp_csi_link_setup,
.link_validate = v4l2_subdev_link_validate,
};
static const struct v4l2_subdev_pad_ops rkisp_csi_pad_ops = {
.set_fmt = rkisp_csi_get_set_fmt,
.get_fmt = rkisp_csi_get_set_fmt,
.get_mbus_config = rkisp_csi_g_mbus_config,
};
static const struct v4l2_subdev_video_ops rkisp_csi_video_ops = {
.s_stream = rkisp_csi_s_stream,
};
static const struct v4l2_subdev_core_ops rkisp_csi_core_ops = {
.s_power = rkisp_csi_s_power,
};
static struct v4l2_subdev_ops rkisp_csi_ops = {
.core = &rkisp_csi_core_ops,
.video = &rkisp_csi_video_ops,
.pad = &rkisp_csi_pad_ops,
};
static int csi_config(struct rkisp_csi_device *csi)
{
struct rkisp_device *dev = csi->ispdev;
struct rkisp_sensor_info *sensor = dev->active_sensor;
struct v4l2_subdev *mipi_sensor;
struct v4l2_ctrl *ctrl;
u32 emd_vc, emd_dt, mipi_ctrl;
int lanes, ret, i;
/*
* sensor->mbus is set in isp or d-phy notifier_bound function
*/
switch (sensor->mbus.flags & V4L2_MBUS_CSI2_LANES) {
case V4L2_MBUS_CSI2_4_LANE:
lanes = 4;
break;
case V4L2_MBUS_CSI2_3_LANE:
lanes = 3;
break;
case V4L2_MBUS_CSI2_2_LANE:
lanes = 2;
break;
case V4L2_MBUS_CSI2_1_LANE:
lanes = 1;
break;
default:
return -EINVAL;
}
emd_vc = 0xFF;
emd_dt = 0;
dev->hdr.sensor = NULL;
get_remote_mipi_sensor(dev, &mipi_sensor, MEDIA_ENT_F_CAM_SENSOR);
if (mipi_sensor) {
ctrl = v4l2_ctrl_find(mipi_sensor->ctrl_handler,
CIFISP_CID_EMB_VC);
if (ctrl)
emd_vc = v4l2_ctrl_g_ctrl(ctrl);
ctrl = v4l2_ctrl_find(mipi_sensor->ctrl_handler,
CIFISP_CID_EMB_DT);
if (ctrl)
emd_dt = v4l2_ctrl_g_ctrl(ctrl);
dev->hdr.sensor = mipi_sensor;
}
dev->emd_dt = emd_dt;
dev->emd_vc = emd_vc;
dev->emd_data_idx = 0;
if (emd_vc <= CIF_ISP_ADD_DATA_VC_MAX) {
for (i = 0; i < RKISP_EMDDATA_FIFO_MAX; i++) {
ret = kfifo_alloc(&dev->emd_data_fifo[i].mipi_kfifo,
CIFISP_ADD_DATA_FIFO_SIZE,
GFP_ATOMIC);
if (ret) {
v4l2_err(&dev->v4l2_dev,
"kfifo_alloc failed with error %d\n",
ret);
return ret;
}
}
}
if (dev->isp_ver == ISP_V13 ||
dev->isp_ver == ISP_V12) {
/* lanes */
rkisp_write(dev, CIF_ISP_CSI0_CTRL1, lanes - 1, true);
/* linecnt */
rkisp_write(dev, CIF_ISP_CSI0_CTRL2, 0x3FFF, true);
/* Configure Data Type and Virtual Channel */
rkisp_write(dev, CIF_ISP_CSI0_DATA_IDS_1,
csi->mipi_di[0] | csi->mipi_di[1] << 8, true);
/* clear interrupts state */
rkisp_read(dev, CIF_ISP_CSI0_ERR1, true);
rkisp_read(dev, CIF_ISP_CSI0_ERR2, true);
rkisp_read(dev, CIF_ISP_CSI0_ERR3, true);
/* set interrupts mask */
rkisp_write(dev, CIF_ISP_CSI0_MASK1, 0x1FFFFFF0, true);
rkisp_write(dev, CIF_ISP_CSI0_MASK2, 0x03FFFFFF, true);
rkisp_write(dev, CIF_ISP_CSI0_MASK3,
CIF_ISP_CSI0_IMASK_FRAME_END(0x3F) |
CIF_ISP_CSI0_IMASK_RAW0_OUT_V_END |
CIF_ISP_CSI0_IMASK_RAW1_OUT_V_END |
CIF_ISP_CSI0_IMASK_LINECNT, true);
v4l2_dbg(1, rkisp_debug, &dev->v4l2_dev,
"CSI0_CTRL1 0x%08x\n"
"CSI0_IDS 0x%08x\n"
"CSI0_MASK3 0x%08x\n",
rkisp_read(dev, CIF_ISP_CSI0_CTRL1, true),
rkisp_read(dev, CIF_ISP_CSI0_DATA_IDS_1, true),
rkisp_read(dev, CIF_ISP_CSI0_MASK3, true));
} else if (dev->isp_ver == ISP_V20 || dev->isp_ver == ISP_V21) {
bool is_feature_on = dev->hw_dev->is_feature_on;
u64 iq_feature = dev->hw_dev->iq_feature;
struct rkmodule_hdr_cfg hdr_cfg;
u32 val, mask;
dev->hdr.op_mode = HDR_NORMAL;
dev->hdr.esp_mode = HDR_NORMAL_VC;
memset(&hdr_cfg, 0, sizeof(hdr_cfg));
if (rkisp_csi_get_hdr_cfg(dev, &hdr_cfg) == 0) {
dev->hdr.op_mode = hdr_cfg.hdr_mode;
dev->hdr.esp_mode = hdr_cfg.esp.mode;
}
/* normal read back mode */
if (dev->hdr.op_mode == HDR_NORMAL &&
(dev->isp_inp & INP_RAWRD2 || !dev->hw_dev->is_single))
dev->hdr.op_mode = HDR_RDBK_FRAME1;
/* HDR on the fly for isp21 */
if (dev->isp_ver == ISP_V21 && !(dev->isp_inp & INP_RAWRD2))
if (dev->hdr.op_mode == HDR_RDBK_FRAME2)
dev->hdr.op_mode = HDR_LINEX2_DDR;
/* op_mode update by mi_cfg_upd */
if (!dev->hw_dev->is_mi_update)
rkisp_write(dev, CSI2RX_CTRL0,
SW_IBUF_OP_MODE(dev->hdr.op_mode) |
SW_HDR_ESP_MODE(dev->hdr.esp_mode), true);
rkisp_write(dev, CSI2RX_CTRL1, lanes - 1, true);
rkisp_write(dev, CSI2RX_CTRL2, 0x3FFF, true);
val = SW_CSI_ID1(csi->mipi_di[1]) |
SW_CSI_ID2(csi->mipi_di[2]) |
SW_CSI_ID3(csi->mipi_di[3]);
mask = SW_CSI_ID1(0xff) | SW_CSI_ID2(0xff) | SW_CSI_ID3(0xff);
/* CSI_ID0 is for dmarx when read back mode */
if (dev->hw_dev->is_single) {
val |= SW_CSI_ID0(csi->mipi_di[0]);
rkisp_write(dev, CSI2RX_DATA_IDS_1, val, true);
} else {
rkisp_set_bits(dev, CSI2RX_DATA_IDS_1, mask, val, true);
for (i = 0; i < dev->hw_dev->dev_num; i++) {
if (dev->hw_dev->isp[i] &&
!dev->hw_dev->isp[i]->is_hw_link)
continue;
rkisp_set_bits(dev->hw_dev->isp[i],
CSI2RX_DATA_IDS_1, mask, val, false);
}
}
val = SW_CSI_ID4(csi->mipi_di[4]);
rkisp_write(dev, CSI2RX_DATA_IDS_2, val, true);
/* clear interrupts state */
rkisp_read(dev, CSI2RX_ERR_PHY, true);
/* set interrupts mask */
val = PHY_ERR_SOTHS | PHY_ERR_SOTSYNCHS |
PHY_ERR_EOTSYNCHS | PHY_ERR_ESC | PHY_ERR_CTL;
rkisp_write(dev, CSI2RX_MASK_PHY, val, true);
val = PACKET_ERR_F_BNDRY_MATCG | PACKET_ERR_F_SEQ |
PACKET_ERR_FRAME_DATA | PACKET_ERR_ECC_1BIT |
PACKET_ERR_ECC_2BIT | PACKET_ERR_CHECKSUM;
rkisp_write(dev, CSI2RX_MASK_PACKET, val, true);
val = AFIFO0_OVERFLOW | AFIFO1X_OVERFLOW |
LAFIFO1X_OVERFLOW | AFIFO2X_OVERFLOW |
IBUFX3_OVERFLOW | IBUF3R_OVERFLOW |
Y_STAT_AFIFOX3_OVERFLOW;
rkisp_write(dev, CSI2RX_MASK_OVERFLOW, val, true);
val = RAW0_WR_FRAME | RAW1_WR_FRAME | RAW2_WR_FRAME |
RAW_WR_SIZE_ERR | MIPI_LINECNT |
RAW_RD_SIZE_ERR | RAW0_Y_STATE |
RAW1_Y_STATE | RAW2_Y_STATE;
if (dev->isp_ver == ISP_V20)
val |= MIPI_DROP_FRM;
else
val |= ISP21_MIPI_DROP_FRM;
rkisp_write(dev, CSI2RX_MASK_STAT, val, true);
/* hdr merge */
switch (dev->hdr.op_mode) {
case HDR_RDBK_FRAME2:
case HDR_FRAMEX2_DDR:
case HDR_LINEX2_DDR:
case HDR_LINEX2_NO_DDR:
val = SW_HDRMGE_EN |
SW_HDRMGE_MODE_FRAMEX2;
break;
case HDR_RDBK_FRAME3:
case HDR_FRAMEX3_DDR:
case HDR_LINEX3_DDR:
val = SW_HDRMGE_EN |
SW_HDRMGE_MODE_FRAMEX3;
break;
default:
val = 0;
}
if (is_feature_on) {
if ((ISP2X_MODULE_HDRMGE & ~iq_feature) && (val & SW_HDRMGE_EN)) {
v4l2_err(&dev->v4l2_dev, "hdrmge is not supported\n");
return -EINVAL;
}
}
rkisp_write(dev, ISP_HDRMGE_BASE, val, false);
v4l2_dbg(1, rkisp_debug, &dev->v4l2_dev,
"CSI2RX_IDS 0x%08x 0x%08x\n",
rkisp_read(dev, CSI2RX_DATA_IDS_1, true),
rkisp_read(dev, CSI2RX_DATA_IDS_2, true));
} else {
mipi_ctrl = CIF_MIPI_CTRL_NUM_LANES(lanes - 1) |
CIF_MIPI_CTRL_SHUTDOWNLANES(0xf) |
CIF_MIPI_CTRL_ERR_SOT_SYNC_HS_SKIP |
CIF_MIPI_CTRL_CLOCKLANE_ENA;
rkisp_write(dev, CIF_MIPI_CTRL, mipi_ctrl, true);
/* Configure Data Type and Virtual Channel */
rkisp_write(dev, CIF_MIPI_IMG_DATA_SEL,
csi->mipi_di[0], true);
rkisp_write(dev, CIF_MIPI_ADD_DATA_SEL_1,
CIF_MIPI_DATA_SEL_DT(emd_dt) |
CIF_MIPI_DATA_SEL_VC(emd_vc), true);
rkisp_write(dev, CIF_MIPI_ADD_DATA_SEL_2,
CIF_MIPI_DATA_SEL_DT(emd_dt) |
CIF_MIPI_DATA_SEL_VC(emd_vc), true);
rkisp_write(dev, CIF_MIPI_ADD_DATA_SEL_3,
CIF_MIPI_DATA_SEL_DT(emd_dt) |
CIF_MIPI_DATA_SEL_VC(emd_vc), true);
rkisp_write(dev, CIF_MIPI_ADD_DATA_SEL_4,
CIF_MIPI_DATA_SEL_DT(emd_dt) |
CIF_MIPI_DATA_SEL_VC(emd_vc), true);
/* Clear MIPI interrupts */
rkisp_write(dev, CIF_MIPI_ICR, ~0, true);
/*
* Disable CIF_MIPI_ERR_DPHY interrupt here temporary for
* isp bus may be dead when switch isp.
*/
rkisp_write(dev, CIF_MIPI_IMSC,
CIF_MIPI_FRAME_END | CIF_MIPI_ERR_CSI |
CIF_MIPI_ERR_DPHY | CIF_MIPI_SYNC_FIFO_OVFLW(0x0F) |
CIF_MIPI_ADD_DATA_OVFLW, true);
v4l2_dbg(1, rkisp_debug, &dev->v4l2_dev,
"\n MIPI_CTRL 0x%08x\n"
" MIPI_IMG_DATA_SEL 0x%08x\n"
" MIPI_STATUS 0x%08x\n"
" MIPI_IMSC 0x%08x\n",
rkisp_read(dev, CIF_MIPI_CTRL, true),
rkisp_read(dev, CIF_MIPI_IMG_DATA_SEL, true),
rkisp_read(dev, CIF_MIPI_STATUS, true),
rkisp_read(dev, CIF_MIPI_IMSC, true));
}
return 0;
}
int rkisp_expander_config(struct rkisp_device *dev,
struct rkmodule_hdr_cfg *cfg, bool on)
{
struct rkmodule_hdr_cfg hdr_cfg;
u32 i, val, num, d0, d1, drop_bit = 0;
if (dev->isp_ver != ISP_V32)
return 0;
if (!on) {
rkisp_write(dev, ISP32_EXPD_CTRL, 0, false);
return 0;
}
if (!cfg) {
if (rkisp_csi_get_hdr_cfg(dev, &hdr_cfg) != 0)
goto err;
cfg = &hdr_cfg;
}
if (cfg->hdr_mode != HDR_COMPR)
return 0;
/* compressed data max 12bit and src data max 20bit */
if (cfg->compr.bit > 20)
drop_bit = cfg->compr.bit - 20;
dev->hdr.compr_bit = cfg->compr.bit - drop_bit;
num = cfg->compr.segment;
for (i = 0; i < num; i++) {
val = cfg->compr.slope_k[i];
rkisp_write(dev, ISP32_EXPD_K0 + i * 4, val, false);
}
d0 = 0;
d1 = cfg->compr.data_compr[0];
val = ISP32_EXPD_DATA(d0, d1 > 0xfff ? 0xfff : d1);
rkisp_write(dev, ISP32_EXPD_X00_01, val, false);
d1 = cfg->compr.data_src_shitf[0];
val = ISP32_EXPD_DATA(d0, drop_bit ? d1 >> drop_bit : d1);
rkisp_write(dev, ISP32_EXPD_Y00_01, val, false);
for (i = 1; i < num - 1; i += 2) {
d0 = cfg->compr.data_compr[i];
d1 = cfg->compr.data_compr[i + 1];
val = ISP32_EXPD_DATA(d0 > 0xfff ? 0xfff : d0,
d1 > 0xfff ? 0xfff : d1);
rkisp_write(dev, ISP32_EXPD_X00_01 + (i + 1) * 2, val, false);
d0 = cfg->compr.data_src_shitf[i];
d1 = cfg->compr.data_src_shitf[i + 1];
if (drop_bit) {
d0 = d0 >> drop_bit;
d1 = d1 >> drop_bit;
}
val = ISP32_EXPD_DATA(d0, d1);
rkisp_write(dev, ISP32_EXPD_Y00_01 + (i + 1) * 2, val, false);
}
/* the last valid point */
val = cfg->compr.data_compr[i];
val = val > 0xfff ? 0xfff : val;
d0 = ISP32_EXPD_DATA(val, val);
val = cfg->compr.data_src_shitf[i];
val = drop_bit ? val >> drop_bit : val;
d1 = ISP32_EXPD_DATA(val, val);
num = HDR_COMPR_SEGMENT_16;
for (; i < num - 1; i += 2) {
rkisp_write(dev, ISP32_EXPD_X00_01 + (i + 1) * 2, d0, false);
rkisp_write(dev, ISP32_EXPD_Y00_01 + (i + 1) * 2, d1, false);
}
rkisp_write(dev, ISP32_EXPD_Y16, val, false);
switch (cfg->compr.segment) {
case HDR_COMPR_SEGMENT_12:
num = 1;
break;
case HDR_COMPR_SEGMENT_16:
num = 2;
break;
default:
num = 0;
}
val = ISP32_EXPD_EN |
ISP32_EXPD_MODE(num) |
ISP32_EXPD_K_SHIFT(cfg->compr.k_shift);
rkisp_write(dev, ISP32_EXPD_CTRL, val, false);
return 0;
err:
return -EINVAL;
}
int rkisp_csi_get_hdr_cfg(struct rkisp_device *dev, void *arg)
{
struct rkmodule_hdr_cfg *cfg = arg;
struct v4l2_subdev *sd = NULL;
u32 type;
if (dev->isp_inp & INP_CSI) {
type = MEDIA_ENT_F_CAM_SENSOR;
} else if (dev->isp_inp & INP_CIF) {
type = MEDIA_ENT_F_PROC_VIDEO_COMPOSER;
} else {
switch (dev->isp_inp & 0x7) {
case INP_RAWRD2 | INP_RAWRD0:
cfg->hdr_mode = HDR_RDBK_FRAME2;
break;
case INP_RAWRD2 | INP_RAWRD1 | INP_RAWRD0:
cfg->hdr_mode = HDR_RDBK_FRAME3;
break;
default: //INP_RAWRD2
cfg->hdr_mode = HDR_RDBK_FRAME1;
}
return 0;
}
get_remote_mipi_sensor(dev, &sd, type);
if (!sd) {
v4l2_err(&dev->v4l2_dev, "%s don't find subdev\n", __func__);
return -EINVAL;
}
return v4l2_subdev_call(sd, core, ioctl, RKMODULE_GET_HDR_CFG, cfg);
}
int rkisp_csi_config_patch(struct rkisp_device *dev)
{
int val = 0, ret = 0;
struct v4l2_subdev *mipi_sensor;
bool is_feature_on = dev->hw_dev->is_feature_on;
u64 iq_feature = dev->hw_dev->iq_feature;
if (dev->isp_inp & INP_CSI) {
dev->hw_dev->mipi_dev_id = dev->dev_id;
ret = csi_config(&dev->csi_dev);
} else {
struct rkmodule_hdr_cfg hdr_cfg;
memset(&hdr_cfg, 0, sizeof(hdr_cfg));
ret = rkisp_csi_get_hdr_cfg(dev, &hdr_cfg);
if (dev->isp_inp & INP_CIF) {
struct rkisp_vicap_mode mode;
int buf_cnt;
memset(&mode, 0, sizeof(mode));
mode.name = dev->name;
get_remote_mipi_sensor(dev, &mipi_sensor, MEDIA_ENT_F_PROC_VIDEO_COMPOSER);
if (!mipi_sensor)
return -EINVAL;
dev->hdr.op_mode = HDR_NORMAL;
dev->hdr.esp_mode = HDR_NORMAL_VC;
if (!ret) {
dev->hdr.op_mode = hdr_cfg.hdr_mode;
dev->hdr.esp_mode = hdr_cfg.esp.mode;
rkisp_expander_config(dev, &hdr_cfg, true);
}
/* normal read back mode default */
if (dev->hdr.op_mode == HDR_NORMAL || dev->hdr.op_mode == HDR_COMPR)
dev->hdr.op_mode = HDR_RDBK_FRAME1;
if (dev->isp_inp == INP_CIF && dev->isp_ver > ISP_V21)
mode.rdbk_mode = dev->is_rdbk_auto ? RKISP_VICAP_RDBK_AUTO : RKISP_VICAP_ONLINE;
else
mode.rdbk_mode = RKISP_VICAP_RDBK_AIQ;
v4l2_subdev_call(mipi_sensor, core, ioctl, RKISP_VICAP_CMD_MODE, &mode);
dev->vicap_in = mode.input;
/* vicap direct to isp */
if ((dev->isp_ver == ISP_V30 || dev->isp_ver == ISP_V32) &&
!mode.rdbk_mode) {
switch (dev->hdr.op_mode) {
case HDR_RDBK_FRAME3:
dev->hdr.op_mode = HDR_LINEX3_DDR;
break;
case HDR_RDBK_FRAME2:
dev->hdr.op_mode = HDR_LINEX2_DDR;
break;
default:
dev->hdr.op_mode = HDR_NORMAL;
}
if (dev->hdr.op_mode != HDR_NORMAL) {
buf_cnt = 1;
v4l2_subdev_call(mipi_sensor, core, ioctl,
RKISP_VICAP_CMD_INIT_BUF, &buf_cnt);
}
} else if (mode.rdbk_mode == RKISP_VICAP_RDBK_AUTO) {
buf_cnt = RKISP_VICAP_BUF_CNT;
v4l2_subdev_call(mipi_sensor, core, ioctl,
RKISP_VICAP_CMD_INIT_BUF, &buf_cnt);
}
} else {
dev->hdr.op_mode = hdr_cfg.hdr_mode;
}
if (!dev->hw_dev->is_mi_update)
rkisp_unite_write(dev, CSI2RX_CTRL0,
SW_IBUF_OP_MODE(dev->hdr.op_mode),
true, dev->hw_dev->is_unite);
/* hdr merge */
switch (dev->hdr.op_mode) {
case HDR_RDBK_FRAME2:
case HDR_FRAMEX2_DDR:
case HDR_LINEX2_DDR:
case HDR_LINEX2_NO_DDR:
val = SW_HDRMGE_EN | SW_HDRMGE_MODE_FRAMEX2;
break;
case HDR_RDBK_FRAME3:
case HDR_FRAMEX3_DDR:
case HDR_LINEX3_DDR:
val = SW_HDRMGE_EN | SW_HDRMGE_MODE_FRAMEX3;
break;
default:
val = 0;
}
if (is_feature_on) {
if ((ISP2X_MODULE_HDRMGE & ~iq_feature) && (val & SW_HDRMGE_EN)) {
v4l2_err(&dev->v4l2_dev, "hdrmge is not supported\n");
return -EINVAL;
}
}
rkisp_unite_write(dev, ISP_HDRMGE_BASE, val, false, dev->hw_dev->is_unite);
val = RAW_RD_SIZE_ERR;
if (!IS_HDR_RDBK(dev->hdr.op_mode))
val |= ISP21_MIPI_DROP_FRM;
rkisp_unite_set_bits(dev, CSI2RX_MASK_STAT, 0, val, true, dev->hw_dev->is_unite);
}
if (IS_HDR_RDBK(dev->hdr.op_mode))
rkisp_unite_set_bits(dev, CTRL_SWS_CFG, 0, SW_MPIP_DROP_FRM_DIS,
true, dev->hw_dev->is_unite);
if (dev->isp_ver == ISP_V30 || dev->isp_ver == ISP_V32)
rkisp_unite_set_bits(dev, CTRL_SWS_CFG, 0, ISP3X_SW_ACK_FRM_PRO_DIS,
true, dev->hw_dev->is_unite);
dev->rdbk_cnt = -1;
dev->rdbk_cnt_x1 = -1;
dev->rdbk_cnt_x2 = -1;
dev->rdbk_cnt_x3 = -1;
dev->rd_mode = dev->hdr.op_mode;
return ret;
}
void rkisp_csi_sof(struct rkisp_device *dev, u8 id)
{
/* to get long frame vc_start */
switch (dev->hdr.op_mode) {
case HDR_RDBK_FRAME1:
if (id != HDR_DMA2)
return;
break;
case HDR_RDBK_FRAME2:
case HDR_FRAMEX2_DDR:
case HDR_LINEX2_DDR:
if (id != HDR_DMA0)
return;
break;
case HDR_RDBK_FRAME3:
case HDR_FRAMEX3_DDR:
case HDR_LINEX3_DDR:
if (id != HDR_DMA1)
return;
break;
default:
return;
}
rkisp_isp_queue_event_sof(&dev->isp_sdev);
}
int rkisp_register_csi_subdev(struct rkisp_device *dev,
struct v4l2_device *v4l2_dev)
{
struct rkisp_csi_device *csi_dev = &dev->csi_dev;
struct v4l2_subdev *sd;
int ret;
memset(csi_dev, 0, sizeof(*csi_dev));
csi_dev->ispdev = dev;
sd = &csi_dev->sd;
v4l2_subdev_init(sd, &rkisp_csi_ops);
sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
sd->entity.ops = &rkisp_csi_media_ops;
sd->entity.function = MEDIA_ENT_F_V4L2_SUBDEV_UNKNOWN;
snprintf(sd->name, sizeof(sd->name), CSI_DEV_NAME);
csi_dev->pads[CSI_SINK].flags =
MEDIA_PAD_FL_SINK | MEDIA_PAD_FL_MUST_CONNECT;
csi_dev->pads[CSI_SRC_CH0].flags =
MEDIA_PAD_FL_SOURCE | MEDIA_PAD_FL_MUST_CONNECT;
csi_dev->max_pad = CSI_SRC_CH0 + 1;
if (dev->isp_ver == ISP_V20 || dev->isp_ver == ISP_V21) {
csi_dev->max_pad = CSI_PAD_MAX;
csi_dev->pads[CSI_SRC_CH1].flags = MEDIA_PAD_FL_SOURCE;
csi_dev->pads[CSI_SRC_CH2].flags = MEDIA_PAD_FL_SOURCE;
csi_dev->pads[CSI_SRC_CH3].flags = MEDIA_PAD_FL_SOURCE;
csi_dev->pads[CSI_SRC_CH4].flags = MEDIA_PAD_FL_SOURCE;
} else if (dev->isp_ver == ISP_V30 || dev->isp_ver == ISP_V32) {
return 0;
}
ret = media_entity_pads_init(&sd->entity, csi_dev->max_pad,
csi_dev->pads);
if (ret < 0)
return ret;
sd->owner = THIS_MODULE;
v4l2_set_subdevdata(sd, csi_dev);
sd->grp_id = GRP_ID_CSI;
ret = v4l2_device_register_subdev(v4l2_dev, sd);
if (ret < 0) {
v4l2_err(v4l2_dev, "Failed to register csi subdev\n");
goto free_media;
}
return 0;
free_media:
media_entity_cleanup(&sd->entity);
return ret;
}
void rkisp_unregister_csi_subdev(struct rkisp_device *dev)
{
struct v4l2_subdev *sd = &dev->csi_dev.sd;
v4l2_device_unregister_subdev(sd);
media_entity_cleanup(&sd->entity);
}