Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2020 Rockchip Electronics Co., Ltd. */

#include <linux/delay.h>
#include <linux/pm_runtime.h>
#include <media/v4l2-common.h>
#include <media/v4l2-event.h>
#include <media/v4l2-fh.h>
#include <media/v4l2-ioctl.h>
#include <media/v4l2-subdev.h>
#include <media/videobuf2-dma-contig.h>
#include <media/videobuf2-dma-sg.h>
#include "dev.h"
#include "regs.h"

#define CIF_ISP_REQ_BUFS_MIN			0

static int mi_frame_end(struct rkisp_stream *stream);
static void rkisp_buf_queue(struct vb2_buffer *vb);
static int rkisp_create_dummy_buf(struct rkisp_stream *stream);

static const struct capture_fmt mp_fmts[] = {
	/* yuv422 */
	{
		.fourcc = V4L2_PIX_FMT_YUYV,
		.fmt_type = FMT_YUV,
		.bpp = { 16 },
		.cplanes = 1,
		.mplanes = 1,
		.uv_swap = 0,
		.write_format = MI_CTRL_MP_WRITE_YUVINT,
	}, {
		.fourcc = V4L2_PIX_FMT_YUV422P,
		.fmt_type = FMT_YUV,
		.bpp = { 8, 4, 4 },
		.cplanes = 3,
		.mplanes = 1,
		.uv_swap = 0,
		.write_format = MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
	}, {
		.fourcc = V4L2_PIX_FMT_NV16,
		.fmt_type = FMT_YUV,
		.bpp = { 8, 16 },
		.cplanes = 2,
		.mplanes = 1,
		.uv_swap = 0,
		.write_format = MI_CTRL_MP_WRITE_YUV_SPLA,
	}, {
		.fourcc = V4L2_PIX_FMT_NV61,
		.fmt_type = FMT_YUV,
		.bpp = { 8, 16 },
		.cplanes = 2,
		.mplanes = 1,
		.uv_swap = 1,
		.write_format = MI_CTRL_MP_WRITE_YUV_SPLA,
	}, {
		.fourcc = V4L2_PIX_FMT_YUV422M,
		.fmt_type = FMT_YUV,
		.bpp = { 8, 8, 8 },
		.cplanes = 3,
		.mplanes = 3,
		.uv_swap = 0,
		.write_format = MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
	},
	/* yuv420 */
	{
		.fourcc = V4L2_PIX_FMT_NV21,
		.fmt_type = FMT_YUV,
		.bpp = { 8, 16 },
		.cplanes = 2,
		.mplanes = 1,
		.uv_swap = 1,
		.write_format = MI_CTRL_MP_WRITE_YUV_SPLA,
	}, {
		.fourcc = V4L2_PIX_FMT_NV12,
		.fmt_type = FMT_YUV,
		.bpp = { 8, 16 },
		.cplanes = 2,
		.mplanes = 1,
		.uv_swap = 0,
		.write_format = MI_CTRL_MP_WRITE_YUV_SPLA,
	}, {
		.fourcc = V4L2_PIX_FMT_NV21M,
		.fmt_type = FMT_YUV,
		.bpp = { 8, 16 },
		.cplanes = 2,
		.mplanes = 2,
		.uv_swap = 1,
		.write_format = MI_CTRL_MP_WRITE_YUV_SPLA,
	}, {
		.fourcc = V4L2_PIX_FMT_NV12M,
		.fmt_type = FMT_YUV,
		.bpp = { 8, 16 },
		.cplanes = 2,
		.mplanes = 2,
		.uv_swap = 0,
		.write_format = MI_CTRL_MP_WRITE_YUV_SPLA,
	}, {
		.fourcc = V4L2_PIX_FMT_YUV420,
		.fmt_type = FMT_YUV,
		.bpp = { 8, 8, 8 },
		.cplanes = 3,
		.mplanes = 1,
		.uv_swap = 0,
		.write_format = MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
	},
	/* yuv444 */
	{
		.fourcc = V4L2_PIX_FMT_YUV444M,
		.fmt_type = FMT_YUV,
		.bpp = { 8, 8, 8 },
		.cplanes = 3,
		.mplanes = 3,
		.uv_swap = 0,
		.write_format = MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
	},
	/* raw */
	{
		.fourcc = V4L2_PIX_FMT_SRGGB8,
		.fmt_type = FMT_BAYER,
		.bpp = { 8 },
		.mplanes = 1,
		.write_format = MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
	}, {
		.fourcc = V4L2_PIX_FMT_SGRBG8,
		.fmt_type = FMT_BAYER,
		.bpp = { 8 },
		.mplanes = 1,
		.write_format = MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
	}, {
		.fourcc = V4L2_PIX_FMT_SGBRG8,
		.fmt_type = FMT_BAYER,
		.bpp = { 8 },
		.mplanes = 1,
		.write_format = MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
	}, {
		.fourcc = V4L2_PIX_FMT_SBGGR8,
		.fmt_type = FMT_BAYER,
		.bpp = { 8 },
		.mplanes = 1,
		.write_format = MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
	}, {
		.fourcc = V4L2_PIX_FMT_SRGGB10,
		.fmt_type = FMT_BAYER,
		.bpp = { 10 },
		.mplanes = 1,
		.write_format = MI_CTRL_MP_WRITE_RAW12,
	}, {
		.fourcc = V4L2_PIX_FMT_SGRBG10,
		.fmt_type = FMT_BAYER,
		.bpp = { 10 },
		.mplanes = 1,
		.write_format = MI_CTRL_MP_WRITE_RAW12,
	}, {
		.fourcc = V4L2_PIX_FMT_SGBRG10,
		.fmt_type = FMT_BAYER,
		.bpp = { 10 },
		.mplanes = 1,
		.write_format = MI_CTRL_MP_WRITE_RAW12,
	}, {
		.fourcc = V4L2_PIX_FMT_SBGGR10,
		.fmt_type = FMT_BAYER,
		.bpp = { 10 },
		.mplanes = 1,
		.write_format = MI_CTRL_MP_WRITE_RAW12,
	}, {
		.fourcc = V4L2_PIX_FMT_SRGGB12,
		.fmt_type = FMT_BAYER,
		.bpp = { 12 },
		.mplanes = 1,
		.write_format = MI_CTRL_MP_WRITE_RAW12,
	}, {
		.fourcc = V4L2_PIX_FMT_SGRBG12,
		.fmt_type = FMT_BAYER,
		.bpp = { 12 },
		.mplanes = 1,
		.write_format = MI_CTRL_MP_WRITE_RAW12,
	}, {
		.fourcc = V4L2_PIX_FMT_SGBRG12,
		.fmt_type = FMT_BAYER,
		.bpp = { 12 },
		.mplanes = 1,
		.write_format = MI_CTRL_MP_WRITE_RAW12,
	}, {
		.fourcc = V4L2_PIX_FMT_SBGGR12,
		.fmt_type = FMT_BAYER,
		.bpp = { 12 },
		.mplanes = 1,
		.write_format = MI_CTRL_MP_WRITE_RAW12,
	},
};

static const struct capture_fmt sp_fmts[] = {
	/* yuv422 */
	{
		.fourcc = V4L2_PIX_FMT_YUYV,
		.fmt_type = FMT_YUV,
		.bpp = { 16 },
		.cplanes = 1,
		.mplanes = 1,
		.uv_swap = 0,
		.write_format = MI_CTRL_SP_WRITE_INT,
		.output_format = MI_CTRL_SP_OUTPUT_YUV422,
	}, {
		.fourcc = V4L2_PIX_FMT_YUV422P,
		.fmt_type = FMT_YUV,
		.bpp = { 8, 8, 8 },
		.cplanes = 3,
		.mplanes = 1,
		.uv_swap = 0,
		.write_format = MI_CTRL_SP_WRITE_PLA,
		.output_format = MI_CTRL_SP_OUTPUT_YUV422,
	}, {
		.fourcc = V4L2_PIX_FMT_NV16,
		.fmt_type = FMT_YUV,
		.bpp = { 8, 16 },
		.cplanes = 2,
		.mplanes = 1,
		.uv_swap = 0,
		.write_format = MI_CTRL_SP_WRITE_SPLA,
		.output_format = MI_CTRL_SP_OUTPUT_YUV422,
	}, {
		.fourcc = V4L2_PIX_FMT_NV61,
		.fmt_type = FMT_YUV,
		.bpp = { 8, 16 },
		.cplanes = 2,
		.mplanes = 1,
		.uv_swap = 1,
		.write_format = MI_CTRL_SP_WRITE_SPLA,
		.output_format = MI_CTRL_SP_OUTPUT_YUV422,
	}, {
		.fourcc = V4L2_PIX_FMT_YUV422M,
		.fmt_type = FMT_YUV,
		.bpp = { 8, 8, 8 },
		.cplanes = 3,
		.mplanes = 3,
		.uv_swap = 0,
		.write_format = MI_CTRL_SP_WRITE_PLA,
		.output_format = MI_CTRL_SP_OUTPUT_YUV422,
	},
	/* yuv420 */
	{
		.fourcc = V4L2_PIX_FMT_NV21,
		.fmt_type = FMT_YUV,
		.bpp = { 8, 16 },
		.cplanes = 2,
		.mplanes = 1,
		.uv_swap = 1,
		.write_format = MI_CTRL_SP_WRITE_SPLA,
		.output_format = MI_CTRL_SP_OUTPUT_YUV420,
	}, {
		.fourcc = V4L2_PIX_FMT_NV12,
		.fmt_type = FMT_YUV,
		.bpp = { 8, 16 },
		.cplanes = 2,
		.mplanes = 1,
		.uv_swap = 0,
		.write_format = MI_CTRL_SP_WRITE_SPLA,
		.output_format = MI_CTRL_SP_OUTPUT_YUV420,
	}, {
		.fourcc = V4L2_PIX_FMT_NV21M,
		.fmt_type = FMT_YUV,
		.bpp = { 8, 16 },
		.cplanes = 2,
		.mplanes = 2,
		.uv_swap = 1,
		.write_format = MI_CTRL_SP_WRITE_SPLA,
		.output_format = MI_CTRL_SP_OUTPUT_YUV420,
	}, {
		.fourcc = V4L2_PIX_FMT_NV12M,
		.fmt_type = FMT_YUV,
		.bpp = { 8, 16 },
		.cplanes = 2,
		.mplanes = 2,
		.uv_swap = 0,
		.write_format = MI_CTRL_SP_WRITE_SPLA,
		.output_format = MI_CTRL_SP_OUTPUT_YUV420,
	}, {
		.fourcc = V4L2_PIX_FMT_YUV420,
		.fmt_type = FMT_YUV,
		.bpp = { 8, 8, 8 },
		.cplanes = 3,
		.mplanes = 1,
		.uv_swap = 0,
		.write_format = MI_CTRL_SP_WRITE_PLA,
		.output_format = MI_CTRL_SP_OUTPUT_YUV420,
	},
	/* yuv444 */
	{
		.fourcc = V4L2_PIX_FMT_YUV444M,
		.fmt_type = FMT_YUV,
		.bpp = { 8, 8, 8 },
		.cplanes = 3,
		.mplanes = 3,
		.uv_swap = 0,
		.write_format = MI_CTRL_SP_WRITE_PLA,
		.output_format = MI_CTRL_SP_OUTPUT_YUV444,
	},
	/* yuv400 */
	{
		.fourcc = V4L2_PIX_FMT_GREY,
		.fmt_type = FMT_YUV,
		.bpp = { 8 },
		.cplanes = 1,
		.mplanes = 1,
		.uv_swap = 0,
		.write_format = MI_CTRL_SP_WRITE_PLA,
		.output_format = MI_CTRL_SP_OUTPUT_YUV400,
	},
	/* rgb */
	{
		.fourcc = V4L2_PIX_FMT_XBGR32,
		.fmt_type = FMT_RGB,
		.bpp = { 32 },
		.mplanes = 1,
		.write_format = MI_CTRL_SP_WRITE_PLA,
		.output_format = MI_CTRL_SP_OUTPUT_RGB888,
	}, {
		.fourcc = V4L2_PIX_FMT_RGB565,
		.fmt_type = FMT_RGB,
		.bpp = { 16 },
		.mplanes = 1,
		.write_format = MI_CTRL_SP_WRITE_PLA,
		.output_format = MI_CTRL_SP_OUTPUT_RGB565,
	}
};

/* configure dual-crop unit */
static int rkisp_stream_config_dcrop(struct rkisp_stream *stream, bool async)
{
	struct rkisp_device *dev = stream->ispdev;
	struct v4l2_rect *dcrop = &stream->dcrop;
	struct v4l2_rect *input_win;

	/* dual-crop unit get data from isp */
	input_win = rkisp_get_isp_sd_win(&dev->isp_sdev);

	if (dcrop->width == input_win->width &&
	    dcrop->height == input_win->height &&
	    dcrop->left == 0 && dcrop->top == 0) {
		rkisp_disable_dcrop(stream, async);
		v4l2_dbg(1, rkisp_debug, &dev->v4l2_dev,
			 "stream %d crop disabled\n", stream->id);
		return 0;
	}

	rkisp_config_dcrop(stream, dcrop, async);

	v4l2_dbg(1, rkisp_debug, &dev->v4l2_dev,
		 "stream %d crop: %dx%d -> %dx%d\n", stream->id,
		 input_win->width, input_win->height,
		 dcrop->width, dcrop->height);

	return 0;
}

/* configure scale unit */
static int rkisp_stream_config_rsz(struct rkisp_stream *stream, bool async)
{
	struct rkisp_device *dev = stream->ispdev;
	struct v4l2_pix_format_mplane output_fmt = stream->out_fmt;
	struct capture_fmt *output_isp_fmt = &stream->out_isp_fmt;
	struct ispsd_out_fmt *input_isp_fmt =
			rkisp_get_ispsd_out_fmt(&dev->isp_sdev);
	struct v4l2_rect in_y, in_c, out_y, out_c;
	u32 xsubs_in = 1, ysubs_in = 1;
	u32 xsubs_out = 1, ysubs_out = 1;

	if (input_isp_fmt->fmt_type == FMT_BAYER)
		goto disable;

	/* set input and output sizes for scale calculation */
	in_y.width = stream->dcrop.width;
	in_y.height = stream->dcrop.height;
	out_y.width = output_fmt.width;
	out_y.height = output_fmt.height;

	/* The size of Cb,Cr are related to the format */
	if (rkisp_mbus_code_xysubs(input_isp_fmt->mbus_code, &xsubs_in, &ysubs_in)) {
		v4l2_err(&dev->v4l2_dev, "Not xsubs/ysubs found\n");
		return -EINVAL;
	}
	in_c.width = in_y.width / xsubs_in;
	in_c.height = in_y.height / ysubs_in;

	if (output_isp_fmt->fmt_type == FMT_YUV) {
		rkisp_fcc_xysubs(output_isp_fmt->fourcc, &xsubs_out, &ysubs_out);
		out_c.width = out_y.width / xsubs_out;
		out_c.height = out_y.height / ysubs_out;
	} else {
		out_c.width = out_y.width / xsubs_in;
		out_c.height = out_y.height / ysubs_in;
	}

	if (in_c.width == out_c.width && in_c.height == out_c.height)
		goto disable;

	/* set RSZ input and output */
	v4l2_dbg(1, rkisp_debug, &dev->v4l2_dev,
		 "stream %d rsz/scale: %dx%d -> %dx%d\n",
		 stream->id, stream->dcrop.width, stream->dcrop.height,
		 output_fmt.width, output_fmt.height);
	v4l2_dbg(1, rkisp_debug, &dev->v4l2_dev,
		 "chroma scaling %dx%d -> %dx%d\n",
		 in_c.width, in_c.height, out_c.width, out_c.height);

	/* calculate and set scale */
	rkisp_config_rsz(stream, &in_y, &in_c, &out_y, &out_c, async);

	if (rkisp_debug)
		rkisp_dump_rsz_regs(stream);

	return 0;

disable:
	rkisp_disable_rsz(stream, async);

	return 0;
}

/***************************** stream operations*******************************/

/*
 * memory base addresses should be with respect
 * to the burst alignment restriction for AXI.
 */
static u32 calc_burst_len(struct rkisp_stream *stream)
{
	struct rkisp_device *dev = stream->ispdev;
	u32 y_size = stream->out_fmt.plane_fmt[0].bytesperline *
		stream->out_fmt.height;
	u32 cb_size = stream->out_fmt.plane_fmt[1].sizeimage;
	u32 cr_size = stream->out_fmt.plane_fmt[2].sizeimage;
	u32 cb_offs, cr_offs;
	u32 bus, burst;
	int i;

	/* MI128bit and MI64bit */
	bus = 8;
	if (dev->isp_ver == ISP_V12 ||
	    dev->isp_ver == ISP_V13)
		bus = 16;

	/* y/c base addr: burstN * bus alignment */
	cb_offs = y_size;
	cr_offs = cr_size ? (cb_size + cb_offs) : 0;

	if (!(cb_offs % (bus * 16)) &&
		!(cr_offs % (bus * 16)))
		burst = CIF_MI_CTRL_BURST_LEN_LUM_16 |
			CIF_MI_CTRL_BURST_LEN_CHROM_16;
	else if (!(cb_offs % (bus * 8)) &&
		!(cr_offs % (bus * 8)))
		burst = CIF_MI_CTRL_BURST_LEN_LUM_8 |
			CIF_MI_CTRL_BURST_LEN_CHROM_8;
	else
		burst = CIF_MI_CTRL_BURST_LEN_LUM_4 |
			CIF_MI_CTRL_BURST_LEN_CHROM_4;

	if (cb_offs % (bus * 4) ||
		cr_offs % (bus * 4))
		v4l2_warn(&dev->v4l2_dev,
			"%dx%d fmt:0x%x not support, should be %d aligned\n",
			stream->out_fmt.width,
			stream->out_fmt.height,
			stream->out_fmt.pixelformat,
			(cr_offs == 0) ? bus * 4 : bus * 16);

	stream->burst = burst;
	for (i = 0; i < RKISP_MAX_STREAM; i++)
		if (burst > dev->cap_dev.stream[i].burst)
			burst = dev->cap_dev.stream[i].burst;

	if (stream->interlaced) {
		if (!stream->out_fmt.width % (bus * 16))
			stream->burst = CIF_MI_CTRL_BURST_LEN_LUM_16 |
				CIF_MI_CTRL_BURST_LEN_CHROM_16;
		else if (!stream->out_fmt.width % (bus * 8))
			stream->burst = CIF_MI_CTRL_BURST_LEN_LUM_8 |
				CIF_MI_CTRL_BURST_LEN_CHROM_8;
		else
			stream->burst = CIF_MI_CTRL_BURST_LEN_LUM_4 |
				CIF_MI_CTRL_BURST_LEN_CHROM_4;
		if (stream->out_fmt.width % (bus * 4))
			v4l2_warn(&dev->v4l2_dev,
				"interlaced: width should be %d aligned\n",
				bus * 4);
		burst = min(stream->burst, burst);
		stream->burst = burst;
	}

	return burst;
}

/*
 * configure memory interface for mainpath
 * This should only be called when stream-on
 */
static int mp_config_mi(struct rkisp_stream *stream)
{
	void __iomem *base = stream->ispdev->base_addr;

       /*
	* NOTE: plane_fmt[0].sizeimage is total size of all planes for single
	* memory plane formats, so calculate the size explicitly.
	*/
	mi_set_y_size(stream, stream->out_fmt.plane_fmt[0].bytesperline *
			 stream->out_fmt.height);
	mi_set_cb_size(stream, stream->out_fmt.plane_fmt[1].sizeimage);
	mi_set_cr_size(stream, stream->out_fmt.plane_fmt[2].sizeimage);
	mi_frame_end_int_enable(stream);
	if (stream->out_isp_fmt.uv_swap)
		mp_set_uv_swap(base);

	config_mi_ctrl(stream, calc_burst_len(stream));
	mp_mi_ctrl_set_format(base, stream->out_isp_fmt.write_format);
	mp_mi_ctrl_autoupdate_en(base);

	/* set up first buffer */
	mi_frame_end(stream);
	return 0;
}

static int mbus_code_sp_in_fmt(u32 in_mbus_code, u32 out_fourcc, u32 *format)
{
	switch (in_mbus_code) {
	case MEDIA_BUS_FMT_YUYV8_2X8:
		*format = MI_CTRL_SP_INPUT_YUV422;
		break;
	default:
		return -EINVAL;
	}

	/*
	 * Only SP can support output format of YCbCr4:0:0,
	 * and the input format of SP must be YCbCr4:0:0
	 * when outputting YCbCr4:0:0.
	 * The output format of isp is YCbCr4:2:2,
	 * so the CbCr data is discarded here.
	 */
	if (out_fourcc == V4L2_PIX_FMT_GREY)
		*format = MI_CTRL_SP_INPUT_YUV400;

	return 0;
}

/*
 * configure memory interface for selfpath
 * This should only be called when stream-on
 */
static int sp_config_mi(struct rkisp_stream *stream)
{
	void __iomem *base = stream->ispdev->base_addr;
	struct rkisp_device *dev = stream->ispdev;
	struct capture_fmt *output_isp_fmt = &stream->out_isp_fmt;
	struct ispsd_out_fmt *input_isp_fmt =
			rkisp_get_ispsd_out_fmt(&dev->isp_sdev);
	u32 sp_in_fmt;

	if (mbus_code_sp_in_fmt(input_isp_fmt->mbus_code,
				output_isp_fmt->fourcc, &sp_in_fmt)) {
		v4l2_err(&dev->v4l2_dev, "Can't find the input format\n");
		return -EINVAL;
	}

       /*
	* NOTE: plane_fmt[0].sizeimage is total size of all planes for single
	* memory plane formats, so calculate the size explicitly.
	*/
	mi_set_y_size(stream, stream->out_fmt.plane_fmt[0].bytesperline *
		      stream->out_fmt.height);
	mi_set_cb_size(stream, stream->out_fmt.plane_fmt[1].sizeimage);
	mi_set_cr_size(stream, stream->out_fmt.plane_fmt[2].sizeimage);

	sp_set_y_width(base, stream->out_fmt.width);
	if (stream->interlaced) {
		stream->u.sp.vir_offs =
			stream->out_fmt.plane_fmt[0].bytesperline;
		sp_set_y_height(base, stream->out_fmt.height / 2);
		sp_set_y_line_length(base, stream->u.sp.y_stride * 2);
	} else {
		sp_set_y_height(base, stream->out_fmt.height);
		sp_set_y_line_length(base, stream->u.sp.y_stride);
	}

	mi_frame_end_int_enable(stream);
	if (output_isp_fmt->uv_swap)
		sp_set_uv_swap(base);

	config_mi_ctrl(stream, calc_burst_len(stream));
	sp_mi_ctrl_set_format(base, stream->out_isp_fmt.write_format |
			      sp_in_fmt | output_isp_fmt->output_format);

	sp_mi_ctrl_autoupdate_en(base);

	/* set up first buffer */
	mi_frame_end(stream);
	return 0;
}

static void mp_enable_mi(struct rkisp_stream *stream)
{
	void __iomem *base = stream->ispdev->base_addr;
	struct capture_fmt *isp_fmt = &stream->out_isp_fmt;

	mi_ctrl_mp_disable(base);
	if (isp_fmt->fmt_type == FMT_BAYER)
		mi_ctrl_mpraw_enable(base);
	else if (isp_fmt->fmt_type == FMT_YUV)
		mi_ctrl_mpyuv_enable(base);
}

static void sp_enable_mi(struct rkisp_stream *stream)
{
	void __iomem *base = stream->ispdev->base_addr;

	mi_ctrl_spyuv_enable(base);
}

static void mp_disable_mi(struct rkisp_stream *stream)
{
	struct rkisp_device *dev = stream->ispdev;
	void __iomem *base = dev->base_addr;

	mi_ctrl_mp_disable(base);
}

static void sp_disable_mi(struct rkisp_stream *stream)
{
	void __iomem *base = stream->ispdev->base_addr;

	mi_ctrl_spyuv_disable(base);
}

/* Update buffer info to memory interface, it's called in interrupt */
static void update_mi(struct rkisp_stream *stream)
{
	struct rkisp_dummy_buffer *dummy_buf = &stream->ispdev->hw_dev->dummy_buf;
	void __iomem *base = stream->ispdev->base_addr;

	/* The dummy space allocated by dma_alloc_coherent is used, we can
	 * throw data to it if there is no available buffer.
	 */
	if (stream->next_buf) {
		mi_set_y_addr(stream,
			stream->next_buf->buff_addr[RKISP_PLANE_Y]);
		mi_set_cb_addr(stream,
			stream->next_buf->buff_addr[RKISP_PLANE_CB]);
		mi_set_cr_addr(stream,
			stream->next_buf->buff_addr[RKISP_PLANE_CR]);
	} else if (dummy_buf->mem_priv) {
		mi_set_y_addr(stream, dummy_buf->dma_addr);
		mi_set_cb_addr(stream, dummy_buf->dma_addr);
		mi_set_cr_addr(stream, dummy_buf->dma_addr);
	}

	mi_set_y_offset(stream, 0);
	mi_set_cb_offset(stream, 0);
	mi_set_cr_offset(stream, 0);
	v4l2_dbg(2, rkisp_debug, &stream->ispdev->v4l2_dev,
		 "%s stream:%d Y:0x%x CB:0x%x CR:0x%x\n",
		 __func__, stream->id,
		 readl(base + stream->config->mi.y_base_ad_init),
		 readl(base + stream->config->mi.cb_base_ad_init),
		 readl(base + stream->config->mi.cr_base_ad_init));
}

static void mp_stop_mi(struct rkisp_stream *stream)
{
	if (!stream->streaming)
		return;
	mi_frame_end_int_clear(stream);
	stream->ops->disable_mi(stream);
}

static void sp_stop_mi(struct rkisp_stream *stream)
{
	if (!stream->streaming)
		return;
	mi_frame_end_int_clear(stream);
	stream->ops->disable_mi(stream);
}

static struct streams_ops rkisp_mp_streams_ops = {
	.config_mi = mp_config_mi,
	.enable_mi = mp_enable_mi,
	.disable_mi = mp_disable_mi,
	.stop_mi = mp_stop_mi,
	.set_data_path = stream_data_path,
	.is_stream_stopped = mp_is_stream_stopped,
	.update_mi = update_mi,
	.frame_end = mi_frame_end,
};

static struct streams_ops rkisp_sp_streams_ops = {
	.config_mi = sp_config_mi,
	.enable_mi = sp_enable_mi,
	.disable_mi = sp_disable_mi,
	.stop_mi = sp_stop_mi,
	.set_data_path = stream_data_path,
	.is_stream_stopped = sp_is_stream_stopped,
	.update_mi = update_mi,
	.frame_end = mi_frame_end,
};

/*
 * This function is called when a frame end come. The next frame
 * is processing and we should set up buffer for next-next frame,
 * otherwise it will overflow.
 */
static int mi_frame_end(struct rkisp_stream *stream)
{
	struct rkisp_device *dev = stream->ispdev;
	struct capture_fmt *isp_fmt = &stream->out_isp_fmt;
	bool interlaced = stream->interlaced;
	unsigned long lock_flags = 0;
	int i = 0;

	if (stream->curr_buf &&
	    (!interlaced ||
	     (stream->u.sp.field_rec == RKISP_FIELD_ODD &&
	      stream->u.sp.field == RKISP_FIELD_EVEN))) {
		u64 ns = ktime_get_ns();

		/* Dequeue a filled buffer */
		for (i = 0; i < isp_fmt->mplanes; i++) {
			u32 payload_size = stream->out_fmt.plane_fmt[i].sizeimage;

			vb2_set_plane_payload(&stream->curr_buf->vb.vb2_buf, i, payload_size);
		}
		stream->curr_buf->vb.sequence = atomic_read(&dev->isp_sdev.frm_sync_seq) - 1;
		stream->curr_buf->vb.vb2_buf.timestamp = ns;
		rkisp_stream_buf_done(stream, stream->curr_buf);
		stream->curr_buf = NULL;
	}

	if (!interlaced ||
		(stream->curr_buf == stream->next_buf &&
		stream->u.sp.field == RKISP_FIELD_ODD)) {
		/* Next frame is writing to it
		 * Interlaced: odd field next buffer address
		 */
		stream->curr_buf = stream->next_buf;
		stream->next_buf = NULL;

		/* Set up an empty buffer for the next-next frame */
		spin_lock_irqsave(&stream->vbq_lock, lock_flags);
		if (!list_empty(&stream->buf_queue)) {
			stream->next_buf =
				list_first_entry(&stream->buf_queue,
						 struct rkisp_buffer,
						 queue);
			list_del(&stream->next_buf->queue);
		}
		spin_unlock_irqrestore(&stream->vbq_lock, lock_flags);
	} else if (stream->u.sp.field_rec == RKISP_FIELD_ODD &&
		stream->u.sp.field == RKISP_FIELD_EVEN) {
		/* Interlaced: event field next buffer address */
		if (stream->next_buf) {
			stream->next_buf->buff_addr[RKISP_PLANE_Y] +=
				stream->u.sp.vir_offs;
			stream->next_buf->buff_addr[RKISP_PLANE_CB] +=
				stream->u.sp.vir_offs;
			stream->next_buf->buff_addr[RKISP_PLANE_CR] +=
				stream->u.sp.vir_offs;
		}
		stream->curr_buf = stream->next_buf;
	}

	stream->ops->update_mi(stream);

	if (interlaced)
		stream->u.sp.field_rec = stream->u.sp.field;

	return 0;
}

/***************************** vb2 operations*******************************/

/*
 * Set flags and wait, it should stop in interrupt.
 * If it didn't, stop it by force.
 */
static void rkisp_stream_stop(struct rkisp_stream *stream)
{
	struct rkisp_device *dev = stream->ispdev;
	struct v4l2_device *v4l2_dev = &dev->v4l2_dev;
	int ret = 0;

	stream->stopping = true;
	stream->ops->stop_mi(stream);
	if ((dev->isp_state & ISP_START) &&
	    dev->isp_inp != INP_DMARX_ISP &&
	    !dev->hw_dev->is_shutdown) {
		ret = wait_event_timeout(stream->done,
					 !stream->streaming,
					 msecs_to_jiffies(1000));
		if (!ret)
			v4l2_warn(v4l2_dev, "%s id:%d timeout\n",
				  __func__, stream->id);
	}

	stream->stopping = false;
	stream->streaming = false;

	if (stream->id == RKISP_STREAM_MP ||
	    stream->id == RKISP_STREAM_SP) {
		rkisp_disable_dcrop(stream, true);
		rkisp_disable_rsz(stream, true);
	}

	stream->burst =
		CIF_MI_CTRL_BURST_LEN_LUM_16 |
		CIF_MI_CTRL_BURST_LEN_CHROM_16;
	stream->interlaced = false;
}

/*
 * Most of registers inside rockchip isp1 have shadow register since
 * they must be not changed during processing a frame.
 * Usually, each sub-module updates its shadow register after
 * processing the last pixel of a frame.
 */
static int rkisp_start(struct rkisp_stream *stream)
{
	int ret;

	if (stream->ops->set_data_path)
		stream->ops->set_data_path(stream);
	ret = stream->ops->config_mi(stream);
	if (ret)
		return ret;

	stream->ops->enable_mi(stream);
	stream->streaming = true;

	return 0;
}

static int rkisp_queue_setup(struct vb2_queue *queue,
			      unsigned int *num_buffers,
			      unsigned int *num_planes,
			      unsigned int sizes[],
			      struct device *alloc_ctxs[])
{
	struct rkisp_stream *stream = queue->drv_priv;
	struct rkisp_device *dev = stream->ispdev;
	const struct v4l2_pix_format_mplane *pixm = NULL;
	const struct capture_fmt *isp_fmt = NULL;
	u32 i;

	pixm = &stream->out_fmt;
	isp_fmt = &stream->out_isp_fmt;
	*num_planes = isp_fmt->mplanes;

	for (i = 0; i < isp_fmt->mplanes; i++) {
		const struct v4l2_plane_pix_format *plane_fmt;

		plane_fmt = &pixm->plane_fmt[i];
		/* height to align with 16 when allocating memory
		 * so that Rockchip encoder can use DMA buffer directly
		 */
		sizes[i] = (isp_fmt->fmt_type == FMT_YUV) ?
			plane_fmt->sizeimage / pixm->height *
			ALIGN(pixm->height, 16) :
			plane_fmt->sizeimage;
	}

	rkisp_chk_tb_over(dev);
	v4l2_dbg(1, rkisp_debug, &dev->v4l2_dev, "%s count %d, size %d\n",
		 v4l2_type_names[queue->type], *num_buffers, sizes[0]);

	return rkisp_create_dummy_buf(stream);
}

/*
 * The vb2_buffer are stored in rkisp_buffer, in order to unify
 * mplane buffer and none-mplane buffer.
 */
static void rkisp_buf_queue(struct vb2_buffer *vb)
{
	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
	struct rkisp_buffer *ispbuf = to_rkisp_buffer(vbuf);
	struct vb2_queue *queue = vb->vb2_queue;
	struct rkisp_stream *stream = queue->drv_priv;
	unsigned long lock_flags = 0;
	struct v4l2_pix_format_mplane *pixm = &stream->out_fmt;
	struct capture_fmt *isp_fmt = &stream->out_isp_fmt;
	struct sg_table *sgt;
	int i;

	memset(ispbuf->buff_addr, 0, sizeof(ispbuf->buff_addr));
	for (i = 0; i < isp_fmt->mplanes; i++) {
		vb2_plane_vaddr(vb, i);
		if (stream->ispdev->hw_dev->is_dma_sg_ops) {
			sgt = vb2_dma_sg_plane_desc(vb, i);
			ispbuf->buff_addr[i] = sg_dma_address(sgt->sgl);
		} else {
			ispbuf->buff_addr[i] = vb2_dma_contig_plane_dma_addr(vb, i);
		}
	}
	/*
	 * NOTE: plane_fmt[0].sizeimage is total size of all planes for single
	 * memory plane formats, so calculate the size explicitly.
	 */
	if (isp_fmt->mplanes == 1) {
		for (i = 0; i < isp_fmt->cplanes - 1; i++) {
			ispbuf->buff_addr[i + 1] = (i == 0) ?
				ispbuf->buff_addr[i] +
				pixm->plane_fmt[i].bytesperline *
				pixm->height :
				ispbuf->buff_addr[i] +
				pixm->plane_fmt[i].sizeimage;
		}
	}

	v4l2_dbg(2, rkisp_debug, &stream->ispdev->v4l2_dev,
		 "stream:%d queue buf:0x%x\n",
		 stream->id, ispbuf->buff_addr[0]);

	spin_lock_irqsave(&stream->vbq_lock, lock_flags);
	list_add_tail(&ispbuf->queue, &stream->buf_queue);
	spin_unlock_irqrestore(&stream->vbq_lock, lock_flags);
}

static int rkisp_create_dummy_buf(struct rkisp_stream *stream)
{
	return rkisp_alloc_common_dummy_buf(stream->ispdev);
}

static void rkisp_destroy_dummy_buf(struct rkisp_stream *stream)
{
	struct rkisp_device *dev = stream->ispdev;

	rkisp_free_common_dummy_buf(dev);
}

static void destroy_buf_queue(struct rkisp_stream *stream,
			      enum vb2_buffer_state state)
{
	unsigned long lock_flags = 0;
	struct rkisp_buffer *buf;

	spin_lock_irqsave(&stream->vbq_lock, lock_flags);
	if (stream->curr_buf) {
		list_add_tail(&stream->curr_buf->queue, &stream->buf_queue);
		if (stream->curr_buf == stream->next_buf)
			stream->next_buf = NULL;
		stream->curr_buf = NULL;
	}
	if (stream->next_buf) {
		list_add_tail(&stream->next_buf->queue, &stream->buf_queue);
		stream->next_buf = NULL;
	}
	while (!list_empty(&stream->buf_queue)) {
		buf = list_first_entry(&stream->buf_queue,
			struct rkisp_buffer, queue);
		list_del(&buf->queue);
		vb2_buffer_done(&buf->vb.vb2_buf, state);
	}
	spin_unlock_irqrestore(&stream->vbq_lock, lock_flags);
}

static void rkisp_stop_streaming(struct vb2_queue *queue)
{
	struct rkisp_stream *stream = queue->drv_priv;
	struct rkisp_vdev_node *node = &stream->vnode;
	struct rkisp_device *dev = stream->ispdev;
	struct v4l2_device *v4l2_dev = &dev->v4l2_dev;
	int ret;

	v4l2_dbg(1, rkisp_debug, &dev->v4l2_dev,
		 "%s %d\n", __func__, stream->id);

	if (!stream->streaming)
		return;

	rkisp_stream_stop(stream);
	media_pipeline_stop(&node->vdev.entity);
	ret = dev->pipe.set_stream(&dev->pipe, false);
	if (ret < 0)
		v4l2_err(v4l2_dev,
			 "pipeline stream-off failed:%d\n", ret);

	/* release buffers */
	destroy_buf_queue(stream, VB2_BUF_STATE_ERROR);

	ret = dev->pipe.close(&dev->pipe);
	if (ret < 0)
		v4l2_err(v4l2_dev, "pipeline close failed error:%d\n", ret);
	rkisp_destroy_dummy_buf(stream);
	atomic_dec(&dev->cap_dev.refcnt);
	tasklet_disable(&stream->buf_done_tasklet);
}

static int rkisp_stream_start(struct rkisp_stream *stream)
{
	struct v4l2_device *v4l2_dev = &stream->ispdev->v4l2_dev;
	struct rkisp_device *dev = stream->ispdev;
	struct rkisp_stream *other = &dev->cap_dev.stream[stream->id ^ 1];
	bool async = false;
	int ret;

	if (other->streaming)
		async = true;

	ret = rkisp_stream_config_rsz(stream, async);
	if (ret < 0) {
		v4l2_err(v4l2_dev, "config rsz failed with error %d\n", ret);
		return ret;
	}

	/*
	 * can't be async now, otherwise the latter started stream fails to
	 * produce mi interrupt.
	 */
	ret = rkisp_stream_config_dcrop(stream, false);
	if (ret < 0) {
		v4l2_err(v4l2_dev, "config dcrop failed with error %d\n", ret);
		return ret;
	}

	return rkisp_start(stream);
}

static int
rkisp_start_streaming(struct vb2_queue *queue, unsigned int count)
{
	struct rkisp_stream *stream = queue->drv_priv;
	struct rkisp_vdev_node *node = &stream->vnode;
	struct rkisp_device *dev = stream->ispdev;
	struct v4l2_device *v4l2_dev = &dev->v4l2_dev;
	int ret = -1;

	v4l2_dbg(1, rkisp_debug, &dev->v4l2_dev,
		 "%s %d\n", __func__, stream->id);

	if (WARN_ON(stream->streaming))
		return -EBUSY;

	atomic_inc(&dev->cap_dev.refcnt);
	if (!dev->isp_inp || !stream->linked) {
		v4l2_err(v4l2_dev, "check video link or isp input\n");
		goto buffer_done;
	}

	if (atomic_read(&dev->cap_dev.refcnt) == 1 &&
	    (dev->isp_inp & INP_CSI || dev->isp_inp & INP_DVP)) {
		/* update sensor info when first streaming */
		ret = rkisp_update_sensor_info(dev);
		if (ret < 0) {
			v4l2_err(v4l2_dev,
				 "update sensor info failed %d\n",
				 ret);
			goto buffer_done;
		}
	}

	if (dev->active_sensor &&
		dev->active_sensor->fmt[0].format.field ==
		V4L2_FIELD_INTERLACED) {
		if (stream->id != RKISP_STREAM_SP) {
			v4l2_err(v4l2_dev,
				"only selfpath support interlaced\n");
			ret = -EINVAL;
			goto buffer_done;
		}
		stream->interlaced = true;
		stream->u.sp.field = RKISP_FIELD_INVAL;
		stream->u.sp.field_rec = RKISP_FIELD_INVAL;
	}

	/* enable clocks/power-domains */
	ret = dev->pipe.open(&dev->pipe, &node->vdev.entity, true);
	if (ret < 0) {
		v4l2_err(v4l2_dev, "open cif pipeline failed %d\n", ret);
		goto destroy_dummy_buf;
	}

	/* configure stream hardware to start */
	ret = rkisp_stream_start(stream);
	if (ret < 0) {
		v4l2_err(v4l2_dev, "start streaming failed\n");
		goto close_pipe;
	}

	/* start sub-devices */
	ret = dev->pipe.set_stream(&dev->pipe, true);
	if (ret < 0)
		goto stop_stream;

	ret = media_pipeline_start(&node->vdev.entity, &dev->pipe.pipe);
	if (ret < 0) {
		v4l2_err(&dev->v4l2_dev,
			 "start pipeline failed %d\n", ret);
		goto pipe_stream_off;
	}
	tasklet_enable(&stream->buf_done_tasklet);
	return 0;

pipe_stream_off:
	dev->pipe.set_stream(&dev->pipe, false);
stop_stream:
	rkisp_stream_stop(stream);
close_pipe:
	dev->pipe.close(&dev->pipe);
destroy_dummy_buf:
	rkisp_destroy_dummy_buf(stream);
buffer_done:
	destroy_buf_queue(stream, VB2_BUF_STATE_QUEUED);
	atomic_dec(&dev->cap_dev.refcnt);
	stream->streaming = false;
	return ret;
}

static struct vb2_ops rkisp_vb2_ops = {
	.queue_setup = rkisp_queue_setup,
	.buf_queue = rkisp_buf_queue,
	.wait_prepare = vb2_ops_wait_prepare,
	.wait_finish = vb2_ops_wait_finish,
	.stop_streaming = rkisp_stop_streaming,
	.start_streaming = rkisp_start_streaming,
};

static int rkisp_init_vb2_queue(struct vb2_queue *q,
				struct rkisp_stream *stream,
				enum v4l2_buf_type buf_type)
{
	q->type = buf_type;
	q->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
	q->drv_priv = stream;
	q->ops = &rkisp_vb2_ops;
	q->mem_ops = stream->ispdev->hw_dev->mem_ops;
	q->buf_struct_size = sizeof(struct rkisp_buffer);
	q->min_buffers_needed = CIF_ISP_REQ_BUFS_MIN;
	q->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
	q->lock = &stream->ispdev->apilock;
	q->dev = stream->ispdev->hw_dev->dev;
	q->allow_cache_hints = 1;
	if (stream->ispdev->hw_dev->is_dma_contig)
		q->dma_attrs = DMA_ATTR_FORCE_CONTIGUOUS;
	q->gfp_flags = GFP_DMA32;
	return vb2_queue_init(q);
}

static int rkisp_stream_init(struct rkisp_device *dev, u32 id)
{
	struct rkisp_capture_device *cap_dev = &dev->cap_dev;
	struct rkisp_stream *stream;
	struct video_device *vdev;
	struct rkisp_vdev_node *node;
	int ret = 0;

	stream = &cap_dev->stream[id];
	stream->id = id;
	stream->ispdev = dev;
	vdev = &stream->vnode.vdev;

	INIT_LIST_HEAD(&stream->buf_queue);
	init_waitqueue_head(&stream->done);
	spin_lock_init(&stream->vbq_lock);

	stream->linked = true;
	switch (id) {
	case RKISP_STREAM_SP:
		strlcpy(vdev->name, SP_VDEV_NAME,
			sizeof(vdev->name));
		stream->ops = &rkisp_sp_streams_ops;
		stream->config = &rkisp_sp_stream_config;
		stream->config->fmts = sp_fmts;
		stream->config->fmt_size = ARRAY_SIZE(sp_fmts);
		break;
	default:
		strlcpy(vdev->name, MP_VDEV_NAME,
			sizeof(vdev->name));
		stream->ops = &rkisp_mp_streams_ops;
		stream->config = &rkisp_mp_stream_config;
		stream->config->fmts = mp_fmts;
		stream->config->fmt_size = ARRAY_SIZE(mp_fmts);
	}

	node = vdev_to_node(vdev);
	rkisp_init_vb2_queue(&node->buf_queue, stream,
			     V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE);
	ret = rkisp_register_stream_vdev(stream);
	if (ret < 0)
		return ret;

	stream->streaming = false;
	stream->interlaced = false;
	stream->burst =
		CIF_MI_CTRL_BURST_LEN_LUM_16 |
		CIF_MI_CTRL_BURST_LEN_CHROM_16;
	atomic_set(&stream->sequence, 0);
	return 0;
}

int rkisp_register_stream_v1x(struct rkisp_device *dev)
{
	struct rkisp_capture_device *cap_dev = &dev->cap_dev;
	int ret;

	ret = rkisp_stream_init(dev, RKISP_STREAM_MP);
	if (ret < 0)
		goto err;
	if (dev->isp_ver != ISP_V10_1) {
		ret = rkisp_stream_init(dev, RKISP_STREAM_SP);
		if (ret < 0)
			goto err_free_mp;
	}

	return 0;
err_free_mp:
	rkisp_unregister_stream_vdev(&cap_dev->stream[RKISP_STREAM_MP]);
err:
	return ret;
}

void rkisp_unregister_stream_v1x(struct rkisp_device *dev)
{
	struct rkisp_capture_device *cap_dev = &dev->cap_dev;
	struct rkisp_stream *stream;

	stream = &cap_dev->stream[RKISP_STREAM_MP];
	rkisp_unregister_stream_vdev(stream);
	if (dev->isp_ver != ISP_V10_1) {
		stream = &cap_dev->stream[RKISP_STREAM_SP];
		rkisp_unregister_stream_vdev(stream);
	}
}

void rkisp_mi_v1x_isr(u32 mis_val, struct rkisp_device *dev)
{
	unsigned int i;

	v4l2_dbg(3, rkisp_debug, &dev->v4l2_dev,
		 "mi isr:0x%x\n", mis_val);

	if (mis_val & CIF_MI_DMA_READY)
		rkisp_dmarx_isr(mis_val, dev);

	for (i = 0; i < RKISP_MAX_STREAM; ++i) {
		struct rkisp_stream *stream = &dev->cap_dev.stream[i];

		if (!(mis_val & CIF_MI_FRAME(stream)))
			continue;

		mi_frame_end_int_clear(stream);

		if (stream->stopping) {
			/*
			 * Make sure stream is actually stopped, whose state
			 * can be read from the shadow register, before
			 * wake_up() thread which would immediately free all
			 * frame buffers. stop_mi() takes effect at the next
			 * frame end that sync the configurations to shadow
			 * regs.
			 */
			if (stream->ops->is_stream_stopped(stream)) {
				stream->stopping = false;
				stream->streaming = false;
				wake_up(&stream->done);
			}
		} else {
			mi_frame_end(stream);
		}
	}
}