Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
// SPDX-License-Identifier: GPL-2.0-only
/*
* drivers/media/i2c/smiapp/smiapp-core.c
*
* Generic driver for SMIA/SMIA++ compliant camera modules
*
* Copyright (C) 2010--2012 Nokia Corporation
* Contact: Sakari Ailus <sakari.ailus@iki.fi>
*
* Based on smiapp driver by Vimarsh Zutshi
* Based on jt8ev1.c by Vimarsh Zutshi
* Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com>
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/gpio.h>
#include <linux/gpio/consumer.h>
#include <linux/module.h>
#include <linux/pm_runtime.h>
#include <linux/property.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <linux/smiapp.h>
#include <linux/v4l2-mediabus.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-device.h>
#include "smiapp.h"
#define SMIAPP_ALIGN_DIM(dim, flags) \
<------>((flags) & V4L2_SEL_FLAG_GE \
<------> ? ALIGN((dim), 2) \
<------> : (dim) & ~1)
/*
* smiapp_module_idents - supported camera modules
*/
static const struct smiapp_module_ident smiapp_module_idents[] = {
<------>SMIAPP_IDENT_L(0x01, 0x022b, -1, "vs6555"),
<------>SMIAPP_IDENT_L(0x01, 0x022e, -1, "vw6558"),
<------>SMIAPP_IDENT_L(0x07, 0x7698, -1, "ovm7698"),
<------>SMIAPP_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"),
<------>SMIAPP_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"),
<------>SMIAPP_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk),
<------>SMIAPP_IDENT_L(0x0c, 0x213e, -1, "et8en2"),
<------>SMIAPP_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"),
<------>SMIAPP_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk),
<------>SMIAPP_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk),
<------>SMIAPP_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk),
};
/*
*
* Dynamic Capability Identification
*
*/
static u32 smiapp_get_limit(struct smiapp_sensor *sensor,
<------><------><------><------> unsigned int limit)
{
<------>if (WARN_ON(limit >= SMIAPP_LIMIT_LAST))
<------><------>return 1;
<------>return sensor->limits[limit];
}
#define SMIA_LIM(sensor, limit) \
<------>smiapp_get_limit(sensor, SMIAPP_LIMIT_##limit)
static int smiapp_read_all_smia_limits(struct smiapp_sensor *sensor)
{
<------>struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
<------>unsigned int i;
<------>int rval;
<------>for (i = 0; i < SMIAPP_LIMIT_LAST; i++) {
<------><------>u32 val;
<------><------>rval = smiapp_read(
<------><------><------>sensor, smiapp_reg_limits[i].addr, &val);
<------><------>if (rval)
<------><------><------>return rval;
<------><------>sensor->limits[i] = val;
<------><------>dev_dbg(&client->dev, "0x%8.8x \"%s\" = %u, 0x%x\n",
<------><------><------>smiapp_reg_limits[i].addr,
<------><------><------>smiapp_reg_limits[i].what, val, val);
<------>}
<------>if (SMIA_LIM(sensor, SCALER_N_MIN) == 0)
<------><------>smiapp_replace_limit(sensor, SMIAPP_LIMIT_SCALER_N_MIN, 16);
<------>return 0;
}
static int smiapp_read_frame_fmt(struct smiapp_sensor *sensor)
{
<------>struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
<------>u32 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc;
<------>unsigned int i;
<------>int pixel_count = 0;
<------>int line_count = 0;
<------>int rval;
<------>rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_TYPE,
<------><------><------> &fmt_model_type);
<------>if (rval)
<------><------>return rval;
<------>rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_SUBTYPE,
<------><------><------> &fmt_model_subtype);
<------>if (rval)
<------><------>return rval;
<------>ncol_desc = (fmt_model_subtype
<------><------> & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_MASK)
<------><------>>> SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_SHIFT;
<------>nrow_desc = fmt_model_subtype
<------><------>& SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NROWS_MASK;
<------>dev_dbg(&client->dev, "format_model_type %s\n",
<------><------>fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE
<------><------>? "2 byte" :
<------><------>fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE
<------><------>? "4 byte" : "is simply bad");
<------>for (i = 0; i < ncol_desc + nrow_desc; i++) {
<------><------>u32 desc;
<------><------>u32 pixelcode;
<------><------>u32 pixels;
<------><------>char *which;
<------><------>char *what;
<------><------>u32 reg;
<------><------>if (fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE) {
<------><------><------>reg = SMIAPP_REG_U16_FRAME_FORMAT_DESCRIPTOR_2(i);
<------><------><------>rval = smiapp_read(sensor, reg, &desc);
<------><------><------>if (rval)
<------><------><------><------>return rval;
<------><------><------>pixelcode =
<------><------><------><------>(desc
<------><------><------><------> & SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_MASK)
<------><------><------><------>>> SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_SHIFT;
<------><------><------>pixels = desc & SMIAPP_FRAME_FORMAT_DESC_2_PIXELS_MASK;
<------><------>} else if (fmt_model_type
<------><------><------> == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE) {
<------><------><------>reg = SMIAPP_REG_U32_FRAME_FORMAT_DESCRIPTOR_4(i);
<------><------><------>rval = smiapp_read(sensor, reg, &desc);
<------><------><------>if (rval)
<------><------><------><------>return rval;
<------><------><------>pixelcode =
<------><------><------><------>(desc
<------><------><------><------> & SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_MASK)
<------><------><------><------>>> SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_SHIFT;
<------><------><------>pixels = desc & SMIAPP_FRAME_FORMAT_DESC_4_PIXELS_MASK;
<------><------>} else {
<------><------><------>dev_dbg(&client->dev,
<------><------><------><------>"invalid frame format model type %d\n",
<------><------><------><------>fmt_model_type);
<------><------><------>return -EINVAL;
<------><------>}
<------><------>if (i < ncol_desc)
<------><------><------>which = "columns";
<------><------>else
<------><------><------>which = "rows";
<------><------>switch (pixelcode) {
<------><------>case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED:
<------><------><------>what = "embedded";
<------><------><------>break;
<------><------>case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DUMMY:
<------><------><------>what = "dummy";
<------><------><------>break;
<------><------>case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_BLACK:
<------><------><------>what = "black";
<------><------><------>break;
<------><------>case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DARK:
<------><------><------>what = "dark";
<------><------><------>break;
<------><------>case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE:
<------><------><------>what = "visible";
<------><------><------>break;
<------><------>default:
<------><------><------>what = "invalid";
<------><------><------>break;
<------><------>}
<------><------>dev_dbg(&client->dev,
<------><------><------>"0x%8.8x %s pixels: %d %s (pixelcode %u)\n", reg,
<------><------><------>what, pixels, which, pixelcode);
<------><------>if (i < ncol_desc) {
<------><------><------>if (pixelcode ==
<------><------><------> SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE)
<------><------><------><------>sensor->visible_pixel_start = pixel_count;
<------><------><------>pixel_count += pixels;
<------><------><------>continue;
<------><------>}
<------><------>/* Handle row descriptors */
<------><------>switch (pixelcode) {
<------><------>case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED:
<------><------><------>if (sensor->embedded_end)
<------><------><------><------>break;
<------><------><------>sensor->embedded_start = line_count;
<------><------><------>sensor->embedded_end = line_count + pixels;
<------><------><------>break;
<------><------>case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE:
<------><------><------>sensor->image_start = line_count;
<------><------><------>break;
<------><------>}
<------><------>line_count += pixels;
<------>}
<------>if (sensor->embedded_end > sensor->image_start) {
<------><------>dev_dbg(&client->dev,
<------><------><------>"adjusting image start line to %u (was %u)\n",
<------><------><------>sensor->embedded_end, sensor->image_start);
<------><------>sensor->image_start = sensor->embedded_end;
<------>}
<------>dev_dbg(&client->dev, "embedded data from lines %d to %d\n",
<------><------>sensor->embedded_start, sensor->embedded_end);
<------>dev_dbg(&client->dev, "image data starts at line %d\n",
<------><------>sensor->image_start);
<------>return 0;
}
static int smiapp_pll_configure(struct smiapp_sensor *sensor)
{
<------>struct smiapp_pll *pll = &sensor->pll;
<------>int rval;
<------>rval = smiapp_write(
<------><------>sensor, SMIAPP_REG_U16_VT_PIX_CLK_DIV, pll->vt.pix_clk_div);
<------>if (rval < 0)
<------><------>return rval;
<------>rval = smiapp_write(
<------><------>sensor, SMIAPP_REG_U16_VT_SYS_CLK_DIV, pll->vt.sys_clk_div);
<------>if (rval < 0)
<------><------>return rval;
<------>rval = smiapp_write(
<------><------>sensor, SMIAPP_REG_U16_PRE_PLL_CLK_DIV, pll->pre_pll_clk_div);
<------>if (rval < 0)
<------><------>return rval;
<------>rval = smiapp_write(
<------><------>sensor, SMIAPP_REG_U16_PLL_MULTIPLIER, pll->pll_multiplier);
<------>if (rval < 0)
<------><------>return rval;
<------>/* Lane op clock ratio does not apply here. */
<------>rval = smiapp_write(
<------><------>sensor, SMIAPP_REG_U32_REQUESTED_LINK_BIT_RATE_MBPS,
<------><------>DIV_ROUND_UP(pll->op.sys_clk_freq_hz, 1000000 / 256 / 256));
<------>if (rval < 0 || sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
<------><------>return rval;
<------>rval = smiapp_write(
<------><------>sensor, SMIAPP_REG_U16_OP_PIX_CLK_DIV, pll->op.pix_clk_div);
<------>if (rval < 0)
<------><------>return rval;
<------>return smiapp_write(
<------><------>sensor, SMIAPP_REG_U16_OP_SYS_CLK_DIV, pll->op.sys_clk_div);
}
static int smiapp_pll_try(struct smiapp_sensor *sensor,
<------><------><------> struct smiapp_pll *pll)
{
<------>struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
<------>struct smiapp_pll_limits lim = {
<------><------>.min_pre_pll_clk_div = SMIA_LIM(sensor, MIN_PRE_PLL_CLK_DIV),
<------><------>.max_pre_pll_clk_div = SMIA_LIM(sensor, MAX_PRE_PLL_CLK_DIV),
<------><------>.min_pll_ip_freq_hz = SMIA_LIM(sensor, MIN_PLL_IP_FREQ_HZ),
<------><------>.max_pll_ip_freq_hz = SMIA_LIM(sensor, MAX_PLL_IP_FREQ_HZ),
<------><------>.min_pll_multiplier = SMIA_LIM(sensor, MIN_PLL_MULTIPLIER),
<------><------>.max_pll_multiplier = SMIA_LIM(sensor, MAX_PLL_MULTIPLIER),
<------><------>.min_pll_op_freq_hz = SMIA_LIM(sensor, MIN_PLL_OP_FREQ_HZ),
<------><------>.max_pll_op_freq_hz = SMIA_LIM(sensor, MAX_PLL_OP_FREQ_HZ),
<------><------>.op.min_sys_clk_div = SMIA_LIM(sensor, MIN_OP_SYS_CLK_DIV),
<------><------>.op.max_sys_clk_div = SMIA_LIM(sensor, MAX_OP_SYS_CLK_DIV),
<------><------>.op.min_pix_clk_div = SMIA_LIM(sensor, MIN_OP_PIX_CLK_DIV),
<------><------>.op.max_pix_clk_div = SMIA_LIM(sensor, MAX_OP_PIX_CLK_DIV),
<------><------>.op.min_sys_clk_freq_hz = SMIA_LIM(sensor, MIN_OP_SYS_CLK_FREQ_HZ),
<------><------>.op.max_sys_clk_freq_hz = SMIA_LIM(sensor, MAX_OP_SYS_CLK_FREQ_HZ),
<------><------>.op.min_pix_clk_freq_hz = SMIA_LIM(sensor, MIN_OP_PIX_CLK_FREQ_HZ),
<------><------>.op.max_pix_clk_freq_hz = SMIA_LIM(sensor, MAX_OP_PIX_CLK_FREQ_HZ),
<------><------>.vt.min_sys_clk_div = SMIA_LIM(sensor, MIN_VT_SYS_CLK_DIV),
<------><------>.vt.max_sys_clk_div = SMIA_LIM(sensor, MAX_VT_SYS_CLK_DIV),
<------><------>.vt.min_pix_clk_div = SMIA_LIM(sensor, MIN_VT_PIX_CLK_DIV),
<------><------>.vt.max_pix_clk_div = SMIA_LIM(sensor, MAX_VT_PIX_CLK_DIV),
<------><------>.vt.min_sys_clk_freq_hz = SMIA_LIM(sensor, MIN_VT_SYS_CLK_FREQ_HZ),
<------><------>.vt.max_sys_clk_freq_hz = SMIA_LIM(sensor, MAX_VT_SYS_CLK_FREQ_HZ),
<------><------>.vt.min_pix_clk_freq_hz = SMIA_LIM(sensor, MIN_VT_PIX_CLK_FREQ_HZ),
<------><------>.vt.max_pix_clk_freq_hz = SMIA_LIM(sensor, MAX_VT_PIX_CLK_FREQ_HZ),
<------><------>.min_line_length_pck_bin = SMIA_LIM(sensor, MIN_LINE_LENGTH_PCK_BIN),
<------><------>.min_line_length_pck = SMIA_LIM(sensor, MIN_LINE_LENGTH_PCK),
<------>};
<------>return smiapp_pll_calculate(&client->dev, &lim, pll);
}
static int smiapp_pll_update(struct smiapp_sensor *sensor)
{
<------>struct smiapp_pll *pll = &sensor->pll;
<------>int rval;
<------>pll->binning_horizontal = sensor->binning_horizontal;
<------>pll->binning_vertical = sensor->binning_vertical;
<------>pll->link_freq =
<------><------>sensor->link_freq->qmenu_int[sensor->link_freq->val];
<------>pll->scale_m = sensor->scale_m;
<------>pll->bits_per_pixel = sensor->csi_format->compressed;
<------>rval = smiapp_pll_try(sensor, pll);
<------>if (rval < 0)
<------><------>return rval;
<------>__v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_parray,
<------><------><------><------> pll->pixel_rate_pixel_array);
<------>__v4l2_ctrl_s_ctrl_int64(sensor->pixel_rate_csi, pll->pixel_rate_csi);
<------>return 0;
}
/*
*
* V4L2 Controls handling
*
*/
static void __smiapp_update_exposure_limits(struct smiapp_sensor *sensor)
{
<------>struct v4l2_ctrl *ctrl = sensor->exposure;
<------>int max;
<------>max = sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
<------><------>+ sensor->vblank->val
<------><------>- SMIA_LIM(sensor, COARSE_INTEGRATION_TIME_MAX_MARGIN);
<------>__v4l2_ctrl_modify_range(ctrl, ctrl->minimum, max, ctrl->step, max);
}
/*
* Order matters.
*
* 1. Bits-per-pixel, descending.
* 2. Bits-per-pixel compressed, descending.
* 3. Pixel order, same as in pixel_order_str. Formats for all four pixel
* orders must be defined.
*/
static const struct smiapp_csi_data_format smiapp_csi_data_formats[] = {
<------>{ MEDIA_BUS_FMT_SGRBG16_1X16, 16, 16, SMIAPP_PIXEL_ORDER_GRBG, },
<------>{ MEDIA_BUS_FMT_SRGGB16_1X16, 16, 16, SMIAPP_PIXEL_ORDER_RGGB, },
<------>{ MEDIA_BUS_FMT_SBGGR16_1X16, 16, 16, SMIAPP_PIXEL_ORDER_BGGR, },
<------>{ MEDIA_BUS_FMT_SGBRG16_1X16, 16, 16, SMIAPP_PIXEL_ORDER_GBRG, },
<------>{ MEDIA_BUS_FMT_SGRBG14_1X14, 14, 14, SMIAPP_PIXEL_ORDER_GRBG, },
<------>{ MEDIA_BUS_FMT_SRGGB14_1X14, 14, 14, SMIAPP_PIXEL_ORDER_RGGB, },
<------>{ MEDIA_BUS_FMT_SBGGR14_1X14, 14, 14, SMIAPP_PIXEL_ORDER_BGGR, },
<------>{ MEDIA_BUS_FMT_SGBRG14_1X14, 14, 14, SMIAPP_PIXEL_ORDER_GBRG, },
<------>{ MEDIA_BUS_FMT_SGRBG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GRBG, },
<------>{ MEDIA_BUS_FMT_SRGGB12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_RGGB, },
<------>{ MEDIA_BUS_FMT_SBGGR12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_BGGR, },
<------>{ MEDIA_BUS_FMT_SGBRG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GBRG, },
<------>{ MEDIA_BUS_FMT_SGRBG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GRBG, },
<------>{ MEDIA_BUS_FMT_SRGGB10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_RGGB, },
<------>{ MEDIA_BUS_FMT_SBGGR10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_BGGR, },
<------>{ MEDIA_BUS_FMT_SGBRG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GBRG, },
<------>{ MEDIA_BUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GRBG, },
<------>{ MEDIA_BUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_RGGB, },
<------>{ MEDIA_BUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_BGGR, },
<------>{ MEDIA_BUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GBRG, },
<------>{ MEDIA_BUS_FMT_SGRBG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GRBG, },
<------>{ MEDIA_BUS_FMT_SRGGB8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_RGGB, },
<------>{ MEDIA_BUS_FMT_SBGGR8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_BGGR, },
<------>{ MEDIA_BUS_FMT_SGBRG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GBRG, },
};
static const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" };
#define to_csi_format_idx(fmt) (((unsigned long)(fmt) \
<------><------><------><------> - (unsigned long)smiapp_csi_data_formats) \
<------><------><------><------>/ sizeof(*smiapp_csi_data_formats))
static u32 smiapp_pixel_order(struct smiapp_sensor *sensor)
{
<------>struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
<------>int flip = 0;
<------>if (sensor->hflip) {
<------><------>if (sensor->hflip->val)
<------><------><------>flip |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
<------><------>if (sensor->vflip->val)
<------><------><------>flip |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
<------>}
<------>flip ^= sensor->hvflip_inv_mask;
<------>dev_dbg(&client->dev, "flip %d\n", flip);
<------>return sensor->default_pixel_order ^ flip;
}
static void smiapp_update_mbus_formats(struct smiapp_sensor *sensor)
{
<------>struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
<------>unsigned int csi_format_idx =
<------><------>to_csi_format_idx(sensor->csi_format) & ~3;
<------>unsigned int internal_csi_format_idx =
<------><------>to_csi_format_idx(sensor->internal_csi_format) & ~3;
<------>unsigned int pixel_order = smiapp_pixel_order(sensor);
<------>sensor->mbus_frame_fmts =
<------><------>sensor->default_mbus_frame_fmts << pixel_order;
<------>sensor->csi_format =
<------><------>&smiapp_csi_data_formats[csi_format_idx + pixel_order];
<------>sensor->internal_csi_format =
<------><------>&smiapp_csi_data_formats[internal_csi_format_idx
<------><------><------><------><------> + pixel_order];
<------>BUG_ON(max(internal_csi_format_idx, csi_format_idx) + pixel_order
<------> >= ARRAY_SIZE(smiapp_csi_data_formats));
<------>dev_dbg(&client->dev, "new pixel order %s\n",
<------><------>pixel_order_str[pixel_order]);
}
static const char * const smiapp_test_patterns[] = {
<------>"Disabled",
<------>"Solid Colour",
<------>"Eight Vertical Colour Bars",
<------>"Colour Bars With Fade to Grey",
<------>"Pseudorandom Sequence (PN9)",
};
static int smiapp_set_ctrl(struct v4l2_ctrl *ctrl)
{
<------>struct smiapp_sensor *sensor =
<------><------>container_of(ctrl->handler, struct smiapp_subdev, ctrl_handler)
<------><------><------>->sensor;
<------>struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
<------>int pm_status;
<------>u32 orient = 0;
<------>unsigned int i;
<------>int exposure;
<------>int rval;
<------>switch (ctrl->id) {
<------>case V4L2_CID_HFLIP:
<------>case V4L2_CID_VFLIP:
<------><------>if (sensor->streaming)
<------><------><------>return -EBUSY;
<------><------>if (sensor->hflip->val)
<------><------><------>orient |= SMIAPP_IMAGE_ORIENTATION_HFLIP;
<------><------>if (sensor->vflip->val)
<------><------><------>orient |= SMIAPP_IMAGE_ORIENTATION_VFLIP;
<------><------>orient ^= sensor->hvflip_inv_mask;
<------><------>smiapp_update_mbus_formats(sensor);
<------><------>break;
<------>case V4L2_CID_VBLANK:
<------><------>exposure = sensor->exposure->val;
<------><------>__smiapp_update_exposure_limits(sensor);
<------><------>if (exposure > sensor->exposure->maximum) {
<------><------><------>sensor->exposure->val = sensor->exposure->maximum;
<------><------><------>rval = smiapp_set_ctrl(sensor->exposure);
<------><------><------>if (rval < 0)
<------><------><------><------>return rval;
<------><------>}
<------><------>break;
<------>case V4L2_CID_LINK_FREQ:
<------><------>if (sensor->streaming)
<------><------><------>return -EBUSY;
<------><------>rval = smiapp_pll_update(sensor);
<------><------>if (rval)
<------><------><------>return rval;
<------><------>return 0;
<------>case V4L2_CID_TEST_PATTERN:
<------><------>for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
<------><------><------>v4l2_ctrl_activate(
<------><------><------><------>sensor->test_data[i],
<------><------><------><------>ctrl->val ==
<------><------><------><------>V4L2_SMIAPP_TEST_PATTERN_MODE_SOLID_COLOUR);
<------><------>break;
<------>}
<------>pm_status = pm_runtime_get_if_active(&client->dev, true);
<------>if (!pm_status)
<------><------>return 0;
<------>switch (ctrl->id) {
<------>case V4L2_CID_ANALOGUE_GAIN:
<------><------>rval = smiapp_write(
<------><------><------>sensor,
<------><------><------>SMIAPP_REG_U16_ANALOGUE_GAIN_CODE_GLOBAL, ctrl->val);
<------><------>break;
<------>case V4L2_CID_EXPOSURE:
<------><------>rval = smiapp_write(
<------><------><------>sensor,
<------><------><------>SMIAPP_REG_U16_COARSE_INTEGRATION_TIME, ctrl->val);
<------><------>break;
<------>case V4L2_CID_HFLIP:
<------>case V4L2_CID_VFLIP:
<------><------>rval = smiapp_write(sensor, SMIAPP_REG_U8_IMAGE_ORIENTATION,
<------><------><------><------> orient);
<------><------>break;
<------>case V4L2_CID_VBLANK:
<------><------>rval = smiapp_write(
<------><------><------>sensor, SMIAPP_REG_U16_FRAME_LENGTH_LINES,
<------><------><------>sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
<------><------><------>+ ctrl->val);
<------><------>break;
<------>case V4L2_CID_HBLANK:
<------><------>rval = smiapp_write(
<------><------><------>sensor, SMIAPP_REG_U16_LINE_LENGTH_PCK,
<------><------><------>sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
<------><------><------>+ ctrl->val);
<------><------>break;
<------>case V4L2_CID_TEST_PATTERN:
<------><------>rval = smiapp_write(
<------><------><------>sensor, SMIAPP_REG_U16_TEST_PATTERN_MODE, ctrl->val);
<------><------>break;
<------>case V4L2_CID_TEST_PATTERN_RED:
<------><------>rval = smiapp_write(
<------><------><------>sensor, SMIAPP_REG_U16_TEST_DATA_RED, ctrl->val);
<------><------>break;
<------>case V4L2_CID_TEST_PATTERN_GREENR:
<------><------>rval = smiapp_write(
<------><------><------>sensor, SMIAPP_REG_U16_TEST_DATA_GREENR, ctrl->val);
<------><------>break;
<------>case V4L2_CID_TEST_PATTERN_BLUE:
<------><------>rval = smiapp_write(
<------><------><------>sensor, SMIAPP_REG_U16_TEST_DATA_BLUE, ctrl->val);
<------><------>break;
<------>case V4L2_CID_TEST_PATTERN_GREENB:
<------><------>rval = smiapp_write(
<------><------><------>sensor, SMIAPP_REG_U16_TEST_DATA_GREENB, ctrl->val);
<------><------>break;
<------>case V4L2_CID_PIXEL_RATE:
<------><------>/* For v4l2_ctrl_s_ctrl_int64() used internally. */
<------><------>rval = 0;
<------><------>break;
<------>default:
<------><------>rval = -EINVAL;
<------>}
<------>if (pm_status > 0) {
<------><------>pm_runtime_mark_last_busy(&client->dev);
<------><------>pm_runtime_put_autosuspend(&client->dev);
<------>}
<------>return rval;
}
static const struct v4l2_ctrl_ops smiapp_ctrl_ops = {
<------>.s_ctrl = smiapp_set_ctrl,
};
static int smiapp_init_controls(struct smiapp_sensor *sensor)
{
<------>struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
<------>int rval;
<------>rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 12);
<------>if (rval)
<------><------>return rval;
<------>sensor->pixel_array->ctrl_handler.lock = &sensor->mutex;
<------>sensor->analog_gain = v4l2_ctrl_new_std(
<------><------>&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
<------><------>V4L2_CID_ANALOGUE_GAIN,
<------><------>SMIA_LIM(sensor, ANALOGUE_GAIN_CODE_MIN),
<------><------>SMIA_LIM(sensor, ANALOGUE_GAIN_CODE_MAX),
<------><------>max(SMIA_LIM(sensor, ANALOGUE_GAIN_CODE_STEP), 1U),
<------><------>SMIA_LIM(sensor, ANALOGUE_GAIN_CODE_MIN));
<------>/* Exposure limits will be updated soon, use just something here. */
<------>sensor->exposure = v4l2_ctrl_new_std(
<------><------>&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
<------><------>V4L2_CID_EXPOSURE, 0, 0, 1, 0);
<------>sensor->hflip = v4l2_ctrl_new_std(
<------><------>&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
<------><------>V4L2_CID_HFLIP, 0, 1, 1, 0);
<------>sensor->vflip = v4l2_ctrl_new_std(
<------><------>&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
<------><------>V4L2_CID_VFLIP, 0, 1, 1, 0);
<------>sensor->vblank = v4l2_ctrl_new_std(
<------><------>&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
<------><------>V4L2_CID_VBLANK, 0, 1, 1, 0);
<------>if (sensor->vblank)
<------><------>sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE;
<------>sensor->hblank = v4l2_ctrl_new_std(
<------><------>&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
<------><------>V4L2_CID_HBLANK, 0, 1, 1, 0);
<------>if (sensor->hblank)
<------><------>sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE;
<------>sensor->pixel_rate_parray = v4l2_ctrl_new_std(
<------><------>&sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops,
<------><------>V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
<------>v4l2_ctrl_new_std_menu_items(&sensor->pixel_array->ctrl_handler,
<------><------><------><------> &smiapp_ctrl_ops, V4L2_CID_TEST_PATTERN,
<------><------><------><------> ARRAY_SIZE(smiapp_test_patterns) - 1,
<------><------><------><------> 0, 0, smiapp_test_patterns);
<------>if (sensor->pixel_array->ctrl_handler.error) {
<------><------>dev_err(&client->dev,
<------><------><------>"pixel array controls initialization failed (%d)\n",
<------><------><------>sensor->pixel_array->ctrl_handler.error);
<------><------>return sensor->pixel_array->ctrl_handler.error;
<------>}
<------>sensor->pixel_array->sd.ctrl_handler =
<------><------>&sensor->pixel_array->ctrl_handler;
<------>v4l2_ctrl_cluster(2, &sensor->hflip);
<------>rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0);
<------>if (rval)
<------><------>return rval;
<------>sensor->src->ctrl_handler.lock = &sensor->mutex;
<------>sensor->pixel_rate_csi = v4l2_ctrl_new_std(
<------><------>&sensor->src->ctrl_handler, &smiapp_ctrl_ops,
<------><------>V4L2_CID_PIXEL_RATE, 1, INT_MAX, 1, 1);
<------>if (sensor->src->ctrl_handler.error) {
<------><------>dev_err(&client->dev,
<------><------><------>"src controls initialization failed (%d)\n",
<------><------><------>sensor->src->ctrl_handler.error);
<------><------>return sensor->src->ctrl_handler.error;
<------>}
<------>sensor->src->sd.ctrl_handler = &sensor->src->ctrl_handler;
<------>return 0;
}
/*
* For controls that require information on available media bus codes
* and linke frequencies.
*/
static int smiapp_init_late_controls(struct smiapp_sensor *sensor)
{
<------>unsigned long *valid_link_freqs = &sensor->valid_link_freqs[
<------><------>sensor->csi_format->compressed - sensor->compressed_min_bpp];
<------>unsigned int i;
<------>for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++) {
<------><------>int max_value = (1 << sensor->csi_format->width) - 1;
<------><------>sensor->test_data[i] = v4l2_ctrl_new_std(
<------><------><------><------>&sensor->pixel_array->ctrl_handler,
<------><------><------><------>&smiapp_ctrl_ops, V4L2_CID_TEST_PATTERN_RED + i,
<------><------><------><------>0, max_value, 1, max_value);
<------>}
<------>sensor->link_freq = v4l2_ctrl_new_int_menu(
<------><------>&sensor->src->ctrl_handler, &smiapp_ctrl_ops,
<------><------>V4L2_CID_LINK_FREQ, __fls(*valid_link_freqs),
<------><------>__ffs(*valid_link_freqs), sensor->hwcfg->op_sys_clock);
<------>return sensor->src->ctrl_handler.error;
}
static void smiapp_free_controls(struct smiapp_sensor *sensor)
{
<------>unsigned int i;
<------>for (i = 0; i < sensor->ssds_used; i++)
<------><------>v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler);
}
static int smiapp_get_mbus_formats(struct smiapp_sensor *sensor)
{
<------>struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
<------>struct smiapp_pll *pll = &sensor->pll;
<------>u8 compressed_max_bpp = 0;
<------>unsigned int type, n;
<------>unsigned int i, pixel_order;
<------>int rval;
<------>rval = smiapp_read(
<------><------>sensor, SMIAPP_REG_U8_DATA_FORMAT_MODEL_TYPE, &type);
<------>if (rval)
<------><------>return rval;
<------>dev_dbg(&client->dev, "data_format_model_type %d\n", type);
<------>rval = smiapp_read(sensor, SMIAPP_REG_U8_PIXEL_ORDER,
<------><------><------> &pixel_order);
<------>if (rval)
<------><------>return rval;
<------>if (pixel_order >= ARRAY_SIZE(pixel_order_str)) {
<------><------>dev_dbg(&client->dev, "bad pixel order %d\n", pixel_order);
<------><------>return -EINVAL;
<------>}
<------>dev_dbg(&client->dev, "pixel order %d (%s)\n", pixel_order,
<------><------>pixel_order_str[pixel_order]);
<------>switch (type) {
<------>case SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL:
<------><------>n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N;
<------><------>break;
<------>case SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED:
<------><------>n = SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED_N;
<------><------>break;
<------>default:
<------><------>return -EINVAL;
<------>}
<------>sensor->default_pixel_order = pixel_order;
<------>sensor->mbus_frame_fmts = 0;
<------>for (i = 0; i < n; i++) {
<------><------>unsigned int fmt, j;
<------><------>rval = smiapp_read(
<------><------><------>sensor,
<------><------><------>SMIAPP_REG_U16_DATA_FORMAT_DESCRIPTOR(i), &fmt);
<------><------>if (rval)
<------><------><------>return rval;
<------><------>dev_dbg(&client->dev, "%u: bpp %u, compressed %u\n",
<------><------><------>i, fmt >> 8, (u8)fmt);
<------><------>for (j = 0; j < ARRAY_SIZE(smiapp_csi_data_formats); j++) {
<------><------><------>const struct smiapp_csi_data_format *f =
<------><------><------><------>&smiapp_csi_data_formats[j];
<------><------><------>if (f->pixel_order != SMIAPP_PIXEL_ORDER_GRBG)
<------><------><------><------>continue;
<------><------><------>if (f->width != fmt >> 8 || f->compressed != (u8)fmt)
<------><------><------><------>continue;
<------><------><------>dev_dbg(&client->dev, "jolly good! %d\n", j);
<------><------><------>sensor->default_mbus_frame_fmts |= 1 << j;
<------><------>}
<------>}
<------>/* Figure out which BPP values can be used with which formats. */
<------>pll->binning_horizontal = 1;
<------>pll->binning_vertical = 1;
<------>pll->scale_m = sensor->scale_m;
<------>for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
<------><------>sensor->compressed_min_bpp =
<------><------><------>min(smiapp_csi_data_formats[i].compressed,
<------><------><------> sensor->compressed_min_bpp);
<------><------>compressed_max_bpp =
<------><------><------>max(smiapp_csi_data_formats[i].compressed,
<------><------><------> compressed_max_bpp);
<------>}
<------>sensor->valid_link_freqs = devm_kcalloc(
<------><------>&client->dev,
<------><------>compressed_max_bpp - sensor->compressed_min_bpp + 1,
<------><------>sizeof(*sensor->valid_link_freqs), GFP_KERNEL);
<------>if (!sensor->valid_link_freqs)
<------><------>return -ENOMEM;
<------>for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
<------><------>const struct smiapp_csi_data_format *f =
<------><------><------>&smiapp_csi_data_formats[i];
<------><------>unsigned long *valid_link_freqs =
<------><------><------>&sensor->valid_link_freqs[
<------><------><------><------>f->compressed - sensor->compressed_min_bpp];
<------><------>unsigned int j;
<------><------>if (!(sensor->default_mbus_frame_fmts & 1 << i))
<------><------><------>continue;
<------><------>pll->bits_per_pixel = f->compressed;
<------><------>for (j = 0; sensor->hwcfg->op_sys_clock[j]; j++) {
<------><------><------>pll->link_freq = sensor->hwcfg->op_sys_clock[j];
<------><------><------>rval = smiapp_pll_try(sensor, pll);
<------><------><------>dev_dbg(&client->dev, "link freq %u Hz, bpp %u %s\n",
<------><------><------><------>pll->link_freq, pll->bits_per_pixel,
<------><------><------><------>rval ? "not ok" : "ok");
<------><------><------>if (rval)
<------><------><------><------>continue;
<------><------><------>set_bit(j, valid_link_freqs);
<------><------>}
<------><------>if (!*valid_link_freqs) {
<------><------><------>dev_info(&client->dev,
<------><------><------><------> "no valid link frequencies for %u bpp\n",
<------><------><------><------> f->compressed);
<------><------><------>sensor->default_mbus_frame_fmts &= ~BIT(i);
<------><------><------>continue;
<------><------>}
<------><------>if (!sensor->csi_format
<------><------> || f->width > sensor->csi_format->width
<------><------> || (f->width == sensor->csi_format->width
<------><------><------>&& f->compressed > sensor->csi_format->compressed)) {
<------><------><------>sensor->csi_format = f;
<------><------><------>sensor->internal_csi_format = f;
<------><------>}
<------>}
<------>if (!sensor->csi_format) {
<------><------>dev_err(&client->dev, "no supported mbus code found\n");
<------><------>return -EINVAL;
<------>}
<------>smiapp_update_mbus_formats(sensor);
<------>return 0;
}
static void smiapp_update_blanking(struct smiapp_sensor *sensor)
{
<------>struct v4l2_ctrl *vblank = sensor->vblank;
<------>struct v4l2_ctrl *hblank = sensor->hblank;
<------>uint16_t min_fll, max_fll, min_llp, max_llp, min_lbp;
<------>int min, max;
<------>if (sensor->binning_vertical > 1 || sensor->binning_horizontal > 1) {
<------><------>min_fll = SMIA_LIM(sensor, MIN_FRAME_LENGTH_LINES_BIN);
<------><------>max_fll = SMIA_LIM(sensor, MAX_FRAME_LENGTH_LINES_BIN);
<------><------>min_llp = SMIA_LIM(sensor, MIN_LINE_LENGTH_PCK_BIN);
<------><------>max_llp = SMIA_LIM(sensor, MAX_LINE_LENGTH_PCK_BIN);
<------><------>min_lbp = SMIA_LIM(sensor, MIN_LINE_BLANKING_PCK_BIN);
<------>} else {
<------><------>min_fll = SMIA_LIM(sensor, MIN_FRAME_LENGTH_LINES);
<------><------>max_fll = SMIA_LIM(sensor, MAX_FRAME_LENGTH_LINES);
<------><------>min_llp = SMIA_LIM(sensor, MIN_LINE_LENGTH_PCK);
<------><------>max_llp = SMIA_LIM(sensor, MAX_LINE_LENGTH_PCK);
<------><------>min_lbp = SMIA_LIM(sensor, MIN_LINE_BLANKING_PCK);
<------>}
<------>min = max_t(int,
<------><------> SMIA_LIM(sensor, MIN_FRAME_BLANKING_LINES),
<------><------> min_fll -
<------><------> sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height);
<------>max = max_fll - sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height;
<------>__v4l2_ctrl_modify_range(vblank, min, max, vblank->step, min);
<------>min = max_t(int,
<------><------> min_llp -
<------><------> sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width,
<------><------> min_lbp);
<------>max = max_llp - sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width;
<------>__v4l2_ctrl_modify_range(hblank, min, max, hblank->step, min);
<------>__smiapp_update_exposure_limits(sensor);
}
static int smiapp_pll_blanking_update(struct smiapp_sensor *sensor)
{
<------>struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
<------>int rval;
<------>rval = smiapp_pll_update(sensor);
<------>if (rval < 0)
<------><------>return rval;
<------>/* Output from pixel array, including blanking */
<------>smiapp_update_blanking(sensor);
<------>dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val);
<------>dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val);
<------>dev_dbg(&client->dev, "real timeperframe\t100/%d\n",
<------><------>sensor->pll.pixel_rate_pixel_array /
<------><------>((sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width
<------><------> + sensor->hblank->val) *
<------><------> (sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height
<------><------> + sensor->vblank->val) / 100));
<------>return 0;
}
/*
*
* SMIA++ NVM handling
*
*/
static int smiapp_read_nvm_page(struct smiapp_sensor *sensor, u32 p, u8 *nvm,
<------><------><------><------>u8 *status)
{
<------>unsigned int i;
<------>int rval;
<------>u32 s;
<------>*status = 0;
<------>rval = smiapp_write(sensor,
<------><------><------> SMIAPP_REG_U8_DATA_TRANSFER_IF_1_PAGE_SELECT, p);
<------>if (rval)
<------><------>return rval;
<------>rval = smiapp_write(sensor, SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL,
<------><------><------> SMIAPP_DATA_TRANSFER_IF_1_CTRL_EN);
<------>if (rval)
<------><------>return rval;
<------>rval = smiapp_read(sensor, SMIAPP_REG_U8_DATA_TRANSFER_IF_1_STATUS,
<------><------><------> &s);
<------>if (rval)
<------><------>return rval;
<------>if (s & SMIAPP_DATA_TRANSFER_IF_1_STATUS_EUSAGE) {
<------><------>*status = s;
<------><------>return -ENODATA;
<------>}
<------>if (SMIA_LIM(sensor, DATA_TRANSFER_IF_CAPABILITY) &
<------> SMIAPP_DATA_TRANSFER_IF_CAPABILITY_POLL) {
<------><------>for (i = 1000; i > 0; i--) {
<------><------><------>if (s & SMIAPP_DATA_TRANSFER_IF_1_STATUS_RD_READY)
<------><------><------><------>break;
<------><------><------>rval = smiapp_read(
<------><------><------><------>sensor,
<------><------><------><------>SMIAPP_REG_U8_DATA_TRANSFER_IF_1_STATUS,
<------><------><------><------>&s);
<------><------><------>if (rval)
<------><------><------><------>return rval;
<------><------>}
<------><------>if (!i)
<------><------><------>return -ETIMEDOUT;
<------>}
<------>for (i = 0; i < SMIAPP_NVM_PAGE_SIZE; i++) {
<------><------>u32 v;
<------><------>rval = smiapp_read(sensor,
<------><------><------><------> SMIAPP_REG_U8_DATA_TRANSFER_IF_1_DATA_0 + i,
<------><------><------><------> &v);
<------><------>if (rval)
<------><------><------>return rval;
<------><------>*nvm++ = v;
<------>}
<------>return 0;
}
static int smiapp_read_nvm(struct smiapp_sensor *sensor, unsigned char *nvm,
<------><------><------> size_t nvm_size)
{
<------>u8 status = 0;
<------>u32 p;
<------>int rval = 0, rval2;
<------>for (p = 0; p < nvm_size / SMIAPP_NVM_PAGE_SIZE && !rval; p++) {
<------><------>rval = smiapp_read_nvm_page(sensor, p, nvm, &status);
<------><------>nvm += SMIAPP_NVM_PAGE_SIZE;
<------>}
<------>if (rval == -ENODATA &&
<------> status & SMIAPP_DATA_TRANSFER_IF_1_STATUS_EUSAGE)
<------><------>rval = 0;
<------>rval2 = smiapp_write(sensor, SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL, 0);
<------>if (rval < 0)
<------><------>return rval;
<------>else
<------><------>return rval2 ?: p * SMIAPP_NVM_PAGE_SIZE;
}
/*
*
* SMIA++ CCI address control
*
*/
static int smiapp_change_cci_addr(struct smiapp_sensor *sensor)
{
<------>struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
<------>int rval;
<------>u32 val;
<------>client->addr = sensor->hwcfg->i2c_addr_dfl;
<------>rval = smiapp_write(sensor,
<------><------><------> SMIAPP_REG_U8_CCI_ADDRESS_CONTROL,
<------><------><------> sensor->hwcfg->i2c_addr_alt << 1);
<------>if (rval)
<------><------>return rval;
<------>client->addr = sensor->hwcfg->i2c_addr_alt;
<------>/* verify addr change went ok */
<------>rval = smiapp_read(sensor, SMIAPP_REG_U8_CCI_ADDRESS_CONTROL, &val);
<------>if (rval)
<------><------>return rval;
<------>if (val != sensor->hwcfg->i2c_addr_alt << 1)
<------><------>return -ENODEV;
<------>return 0;
}
/*
*
* SMIA++ Mode Control
*
*/
static int smiapp_setup_flash_strobe(struct smiapp_sensor *sensor)
{
<------>struct smiapp_flash_strobe_parms *strobe_setup;
<------>unsigned int ext_freq = sensor->hwcfg->ext_clk;
<------>u32 tmp;
<------>u32 strobe_adjustment;
<------>u32 strobe_width_high_rs;
<------>int rval;
<------>strobe_setup = sensor->hwcfg->strobe_setup;
<------>/*
<------> * How to calculate registers related to strobe length. Please
<------> * do not change, or if you do at least know what you're
<------> * doing. :-)
<------> *
<------> * Sakari Ailus <sakari.ailus@iki.fi> 2010-10-25
<------> *
<------> * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl
<------> * / EXTCLK freq [Hz]) * flash_strobe_adjustment
<------> *
<------> * tFlash_strobe_width_ctrl E N, [1 - 0xffff]
<------> * flash_strobe_adjustment E N, [1 - 0xff]
<------> *
<------> * The formula above is written as below to keep it on one
<------> * line:
<------> *
<------> * l / 10^6 = w / e * a
<------> *
<------> * Let's mark w * a by x:
<------> *
<------> * x = w * a
<------> *
<------> * Thus, we get:
<------> *
<------> * x = l * e / 10^6
<------> *
<------> * The strobe width must be at least as long as requested,
<------> * thus rounding upwards is needed.
<------> *
<------> * x = (l * e + 10^6 - 1) / 10^6
<------> * -----------------------------
<------> *
<------> * Maximum possible accuracy is wanted at all times. Thus keep
<------> * a as small as possible.
<------> *
<------> * Calculate a, assuming maximum w, with rounding upwards:
<------> *
<------> * a = (x + (2^16 - 1) - 1) / (2^16 - 1)
<------> * -------------------------------------
<------> *
<------> * Thus, we also get w, with that a, with rounding upwards:
<------> *
<------> * w = (x + a - 1) / a
<------> * -------------------
<------> *
<------> * To get limits:
<------> *
<------> * x E [1, (2^16 - 1) * (2^8 - 1)]
<------> *
<------> * Substituting maximum x to the original formula (with rounding),
<------> * the maximum l is thus
<------> *
<------> * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1
<------> *
<------> * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e
<------> * --------------------------------------------------
<------> *
<------> * flash_strobe_length must be clamped between 1 and
<------> * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq.
<------> *
<------> * Then,
<------> *
<------> * flash_strobe_adjustment = ((flash_strobe_length *
<------> * EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1)
<------> *
<------> * tFlash_strobe_width_ctrl = ((flash_strobe_length *
<------> * EXTCLK freq + 10^6 - 1) / 10^6 +
<------> * flash_strobe_adjustment - 1) / flash_strobe_adjustment
<------> */
<------>tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) -
<------><------> 1000000 + 1, ext_freq);
<------>strobe_setup->strobe_width_high_us =
<------><------>clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp);
<------>tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq +
<------><------><------>1000000 - 1), 1000000ULL);
<------>strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1);
<------>strobe_width_high_rs = (tmp + strobe_adjustment - 1) /
<------><------><------><------>strobe_adjustment;
<------>rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_MODE_RS,
<------><------><------> strobe_setup->mode);
<------>if (rval < 0)
<------><------>goto out;
<------>rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_STROBE_ADJUSTMENT,
<------><------><------> strobe_adjustment);
<------>if (rval < 0)
<------><------>goto out;
<------>rval = smiapp_write(
<------><------>sensor, SMIAPP_REG_U16_TFLASH_STROBE_WIDTH_HIGH_RS_CTRL,
<------><------>strobe_width_high_rs);
<------>if (rval < 0)
<------><------>goto out;
<------>rval = smiapp_write(sensor, SMIAPP_REG_U16_TFLASH_STROBE_DELAY_RS_CTRL,
<------><------><------> strobe_setup->strobe_delay);
<------>if (rval < 0)
<------><------>goto out;
<------>rval = smiapp_write(sensor, SMIAPP_REG_U16_FLASH_STROBE_START_POINT,
<------><------><------> strobe_setup->stobe_start_point);
<------>if (rval < 0)
<------><------>goto out;
<------>rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_TRIGGER_RS,
<------><------><------> strobe_setup->trigger);
out:
<------>sensor->hwcfg->strobe_setup->trigger = 0;
<------>return rval;
}
/* -----------------------------------------------------------------------------
* Power management
*/
static int smiapp_power_on(struct device *dev)
{
<------>struct i2c_client *client = to_i2c_client(dev);
<------>struct v4l2_subdev *subdev = i2c_get_clientdata(client);
<------>struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
<------>/*
<------> * The sub-device related to the I2C device is always the
<------> * source one, i.e. ssds[0].
<------> */
<------>struct smiapp_sensor *sensor =
<------><------>container_of(ssd, struct smiapp_sensor, ssds[0]);
<------>unsigned int sleep;
<------>int rval;
<------>rval = regulator_enable(sensor->vana);
<------>if (rval) {
<------><------>dev_err(&client->dev, "failed to enable vana regulator\n");
<------><------>return rval;
<------>}
<------>usleep_range(1000, 1000);
<------>rval = clk_prepare_enable(sensor->ext_clk);
<------>if (rval < 0) {
<------><------>dev_dbg(&client->dev, "failed to enable xclk\n");
<------><------>goto out_xclk_fail;
<------>}
<------>usleep_range(1000, 1000);
<------>gpiod_set_value(sensor->xshutdown, 1);
<------>sleep = SMIAPP_RESET_DELAY(sensor->hwcfg->ext_clk);
<------>usleep_range(sleep, sleep);
<------>/*
<------> * Failures to respond to the address change command have been noticed.
<------> * Those failures seem to be caused by the sensor requiring a longer
<------> * boot time than advertised. An additional 10ms delay seems to work
<------> * around the issue, but the SMIA++ I2C write retry hack makes the delay
<------> * unnecessary. The failures need to be investigated to find a proper
<------> * fix, and a delay will likely need to be added here if the I2C write
<------> * retry hack is reverted before the root cause of the boot time issue
<------> * is found.
<------> */
<------>if (sensor->hwcfg->i2c_addr_alt) {
<------><------>rval = smiapp_change_cci_addr(sensor);
<------><------>if (rval) {
<------><------><------>dev_err(&client->dev, "cci address change error\n");
<------><------><------>goto out_cci_addr_fail;
<------><------>}
<------>}
<------>rval = smiapp_write(sensor, SMIAPP_REG_U8_SOFTWARE_RESET,
<------><------><------> SMIAPP_SOFTWARE_RESET);
<------>if (rval < 0) {
<------><------>dev_err(&client->dev, "software reset failed\n");
<------><------>goto out_cci_addr_fail;
<------>}
<------>if (sensor->hwcfg->i2c_addr_alt) {
<------><------>rval = smiapp_change_cci_addr(sensor);
<------><------>if (rval) {
<------><------><------>dev_err(&client->dev, "cci address change error\n");
<------><------><------>goto out_cci_addr_fail;
<------><------>}
<------>}
<------>rval = smiapp_write(sensor, SMIAPP_REG_U16_COMPRESSION_MODE,
<------><------><------> SMIAPP_COMPRESSION_MODE_SIMPLE_PREDICTOR);
<------>if (rval) {
<------><------>dev_err(&client->dev, "compression mode set failed\n");
<------><------>goto out_cci_addr_fail;
<------>}
<------>rval = smiapp_write(
<------><------>sensor, SMIAPP_REG_U16_EXTCLK_FREQUENCY_MHZ,
<------><------>sensor->hwcfg->ext_clk / (1000000 / (1 << 8)));
<------>if (rval) {
<------><------>dev_err(&client->dev, "extclk frequency set failed\n");
<------><------>goto out_cci_addr_fail;
<------>}
<------>rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_LANE_MODE,
<------><------><------> sensor->hwcfg->lanes - 1);
<------>if (rval) {
<------><------>dev_err(&client->dev, "csi lane mode set failed\n");
<------><------>goto out_cci_addr_fail;
<------>}
<------>rval = smiapp_write(sensor, SMIAPP_REG_U8_FAST_STANDBY_CTRL,
<------><------><------> SMIAPP_FAST_STANDBY_CTRL_IMMEDIATE);
<------>if (rval) {
<------><------>dev_err(&client->dev, "fast standby set failed\n");
<------><------>goto out_cci_addr_fail;
<------>}
<------>rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_SIGNALLING_MODE,
<------><------><------> sensor->hwcfg->csi_signalling_mode);
<------>if (rval) {
<------><------>dev_err(&client->dev, "csi signalling mode set failed\n");
<------><------>goto out_cci_addr_fail;
<------>}
<------>/* DPHY control done by sensor based on requested link rate */
<------>rval = smiapp_write(sensor, SMIAPP_REG_U8_DPHY_CTRL,
<------><------><------> SMIAPP_DPHY_CTRL_UI);
<------>if (rval < 0)
<------><------>goto out_cci_addr_fail;
<------>rval = smiapp_call_quirk(sensor, post_poweron);
<------>if (rval) {
<------><------>dev_err(&client->dev, "post_poweron quirks failed\n");
<------><------>goto out_cci_addr_fail;
<------>}
<------>return 0;
out_cci_addr_fail:
<------>gpiod_set_value(sensor->xshutdown, 0);
<------>clk_disable_unprepare(sensor->ext_clk);
out_xclk_fail:
<------>regulator_disable(sensor->vana);
<------>return rval;
}
static int smiapp_power_off(struct device *dev)
{
<------>struct i2c_client *client = to_i2c_client(dev);
<------>struct v4l2_subdev *subdev = i2c_get_clientdata(client);
<------>struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
<------>struct smiapp_sensor *sensor =
<------><------>container_of(ssd, struct smiapp_sensor, ssds[0]);
<------>/*
<------> * Currently power/clock to lens are enable/disabled separately
<------> * but they are essentially the same signals. So if the sensor is
<------> * powered off while the lens is powered on the sensor does not
<------> * really see a power off and next time the cci address change
<------> * will fail. So do a soft reset explicitly here.
<------> */
<------>if (sensor->hwcfg->i2c_addr_alt)
<------><------>smiapp_write(sensor,
<------><------><------> SMIAPP_REG_U8_SOFTWARE_RESET,
<------><------><------> SMIAPP_SOFTWARE_RESET);
<------>gpiod_set_value(sensor->xshutdown, 0);
<------>clk_disable_unprepare(sensor->ext_clk);
<------>usleep_range(5000, 5000);
<------>regulator_disable(sensor->vana);
<------>sensor->streaming = false;
<------>return 0;
}
/* -----------------------------------------------------------------------------
* Video stream management
*/
static int smiapp_start_streaming(struct smiapp_sensor *sensor)
{
<------>struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
<------>unsigned int binning_mode;
<------>int rval;
<------>mutex_lock(&sensor->mutex);
<------>rval = smiapp_write(sensor, SMIAPP_REG_U16_CSI_DATA_FORMAT,
<------><------><------> (sensor->csi_format->width << 8) |
<------><------><------> sensor->csi_format->compressed);
<------>if (rval)
<------><------>goto out;
<------>/* Binning configuration */
<------>if (sensor->binning_horizontal == 1 &&
<------> sensor->binning_vertical == 1) {
<------><------>binning_mode = 0;
<------>} else {
<------><------>u8 binning_type =
<------><------><------>(sensor->binning_horizontal << 4)
<------><------><------>| sensor->binning_vertical;
<------><------>rval = smiapp_write(
<------><------><------>sensor, SMIAPP_REG_U8_BINNING_TYPE, binning_type);
<------><------>if (rval < 0)
<------><------><------>goto out;
<------><------>binning_mode = 1;
<------>}
<------>rval = smiapp_write(sensor, SMIAPP_REG_U8_BINNING_MODE, binning_mode);
<------>if (rval < 0)
<------><------>goto out;
<------>/* Set up PLL */
<------>rval = smiapp_pll_configure(sensor);
<------>if (rval)
<------><------>goto out;
<------>/* Analog crop start coordinates */
<------>rval = smiapp_write(sensor, SMIAPP_REG_U16_X_ADDR_START,
<------><------><------> sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left);
<------>if (rval < 0)
<------><------>goto out;
<------>rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_ADDR_START,
<------><------><------> sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top);
<------>if (rval < 0)
<------><------>goto out;
<------>/* Analog crop end coordinates */
<------>rval = smiapp_write(
<------><------>sensor, SMIAPP_REG_U16_X_ADDR_END,
<------><------>sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left
<------><------>+ sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width - 1);
<------>if (rval < 0)
<------><------>goto out;
<------>rval = smiapp_write(
<------><------>sensor, SMIAPP_REG_U16_Y_ADDR_END,
<------><------>sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top
<------><------>+ sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height - 1);
<------>if (rval < 0)
<------><------>goto out;
<------>/*
<------> * Output from pixel array, including blanking, is set using
<------> * controls below. No need to set here.
<------> */
<------>/* Digital crop */
<------>if (SMIA_LIM(sensor, DIGITAL_CROP_CAPABILITY)
<------> == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
<------><------>rval = smiapp_write(
<------><------><------>sensor, SMIAPP_REG_U16_DIGITAL_CROP_X_OFFSET,
<------><------><------>sensor->scaler->crop[SMIAPP_PAD_SINK].left);
<------><------>if (rval < 0)
<------><------><------>goto out;
<------><------>rval = smiapp_write(
<------><------><------>sensor, SMIAPP_REG_U16_DIGITAL_CROP_Y_OFFSET,
<------><------><------>sensor->scaler->crop[SMIAPP_PAD_SINK].top);
<------><------>if (rval < 0)
<------><------><------>goto out;
<------><------>rval = smiapp_write(
<------><------><------>sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_WIDTH,
<------><------><------>sensor->scaler->crop[SMIAPP_PAD_SINK].width);
<------><------>if (rval < 0)
<------><------><------>goto out;
<------><------>rval = smiapp_write(
<------><------><------>sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_HEIGHT,
<------><------><------>sensor->scaler->crop[SMIAPP_PAD_SINK].height);
<------><------>if (rval < 0)
<------><------><------>goto out;
<------>}
<------>/* Scaling */
<------>if (SMIA_LIM(sensor, SCALING_CAPABILITY)
<------> != SMIAPP_SCALING_CAPABILITY_NONE) {
<------><------>rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALING_MODE,
<------><------><------><------> sensor->scaling_mode);
<------><------>if (rval < 0)
<------><------><------>goto out;
<------><------>rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALE_M,
<------><------><------><------> sensor->scale_m);
<------><------>if (rval < 0)
<------><------><------>goto out;
<------>}
<------>/* Output size from sensor */
<------>rval = smiapp_write(sensor, SMIAPP_REG_U16_X_OUTPUT_SIZE,
<------><------><------> sensor->src->crop[SMIAPP_PAD_SRC].width);
<------>if (rval < 0)
<------><------>goto out;
<------>rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_OUTPUT_SIZE,
<------><------><------> sensor->src->crop[SMIAPP_PAD_SRC].height);
<------>if (rval < 0)
<------><------>goto out;
<------>if ((SMIA_LIM(sensor, FLASH_MODE_CAPABILITY) &
<------> (SMIAPP_FLASH_MODE_CAPABILITY_SINGLE_STROBE |
<------> SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE)) &&
<------> sensor->hwcfg->strobe_setup != NULL &&
<------> sensor->hwcfg->strobe_setup->trigger != 0) {
<------><------>rval = smiapp_setup_flash_strobe(sensor);
<------><------>if (rval)
<------><------><------>goto out;
<------>}
<------>rval = smiapp_call_quirk(sensor, pre_streamon);
<------>if (rval) {
<------><------>dev_err(&client->dev, "pre_streamon quirks failed\n");
<------><------>goto out;
<------>}
<------>rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
<------><------><------> SMIAPP_MODE_SELECT_STREAMING);
out:
<------>mutex_unlock(&sensor->mutex);
<------>return rval;
}
static int smiapp_stop_streaming(struct smiapp_sensor *sensor)
{
<------>struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
<------>int rval;
<------>mutex_lock(&sensor->mutex);
<------>rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT,
<------><------><------> SMIAPP_MODE_SELECT_SOFTWARE_STANDBY);
<------>if (rval)
<------><------>goto out;
<------>rval = smiapp_call_quirk(sensor, post_streamoff);
<------>if (rval)
<------><------>dev_err(&client->dev, "post_streamoff quirks failed\n");
out:
<------>mutex_unlock(&sensor->mutex);
<------>return rval;
}
/* -----------------------------------------------------------------------------
* V4L2 subdev video operations
*/
static int smiapp_pm_get_init(struct smiapp_sensor *sensor)
{
<------>struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
<------>int rval;
<------>rval = pm_runtime_get_sync(&client->dev);
<------>if (rval < 0) {
<------><------>if (rval != -EBUSY && rval != -EAGAIN)
<------><------><------>pm_runtime_set_active(&client->dev);
<------><------>pm_runtime_put_noidle(&client->dev);
<------><------>return rval;
<------>} else if (!rval) {
<------><------>rval = v4l2_ctrl_handler_setup(&sensor->pixel_array->
<------><------><------><------><------> ctrl_handler);
<------><------>if (rval)
<------><------><------>return rval;
<------><------>return v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler);
<------>}
<------>return 0;
}
static int smiapp_set_stream(struct v4l2_subdev *subdev, int enable)
{
<------>struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
<------>struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
<------>int rval;
<------>if (sensor->streaming == enable)
<------><------>return 0;
<------>if (!enable) {
<------><------>smiapp_stop_streaming(sensor);
<------><------>sensor->streaming = false;
<------><------>pm_runtime_mark_last_busy(&client->dev);
<------><------>pm_runtime_put_autosuspend(&client->dev);
<------><------>return 0;
<------>}
<------>rval = smiapp_pm_get_init(sensor);
<------>if (rval)
<------><------>return rval;
<------>sensor->streaming = true;
<------>rval = smiapp_start_streaming(sensor);
<------>if (rval < 0) {
<------><------>sensor->streaming = false;
<------><------>pm_runtime_mark_last_busy(&client->dev);
<------><------>pm_runtime_put_autosuspend(&client->dev);
<------>}
<------>return rval;
}
static int smiapp_enum_mbus_code(struct v4l2_subdev *subdev,
<------><------><------><------> struct v4l2_subdev_pad_config *cfg,
<------><------><------><------> struct v4l2_subdev_mbus_code_enum *code)
{
<------>struct i2c_client *client = v4l2_get_subdevdata(subdev);
<------>struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
<------>unsigned int i;
<------>int idx = -1;
<------>int rval = -EINVAL;
<------>mutex_lock(&sensor->mutex);
<------>dev_err(&client->dev, "subdev %s, pad %d, index %d\n",
<------><------>subdev->name, code->pad, code->index);
<------>if (subdev != &sensor->src->sd || code->pad != SMIAPP_PAD_SRC) {
<------><------>if (code->index)
<------><------><------>goto out;
<------><------>code->code = sensor->internal_csi_format->code;
<------><------>rval = 0;
<------><------>goto out;
<------>}
<------>for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
<------><------>if (sensor->mbus_frame_fmts & (1 << i))
<------><------><------>idx++;
<------><------>if (idx == code->index) {
<------><------><------>code->code = smiapp_csi_data_formats[i].code;
<------><------><------>dev_err(&client->dev, "found index %d, i %d, code %x\n",
<------><------><------><------>code->index, i, code->code);
<------><------><------>rval = 0;
<------><------><------>break;
<------><------>}
<------>}
out:
<------>mutex_unlock(&sensor->mutex);
<------>return rval;
}
static u32 __smiapp_get_mbus_code(struct v4l2_subdev *subdev,
<------><------><------><------> unsigned int pad)
{
<------>struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
<------>if (subdev == &sensor->src->sd && pad == SMIAPP_PAD_SRC)
<------><------>return sensor->csi_format->code;
<------>else
<------><------>return sensor->internal_csi_format->code;
}
static int __smiapp_get_format(struct v4l2_subdev *subdev,
<------><------><------> struct v4l2_subdev_pad_config *cfg,
<------><------><------> struct v4l2_subdev_format *fmt)
{
<------>struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
<------>if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
<------><------>fmt->format = *v4l2_subdev_get_try_format(subdev, cfg,
<------><------><------><------><------><------><------> fmt->pad);
<------>} else {
<------><------>struct v4l2_rect *r;
<------><------>if (fmt->pad == ssd->source_pad)
<------><------><------>r = &ssd->crop[ssd->source_pad];
<------><------>else
<------><------><------>r = &ssd->sink_fmt;
<------><------>fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
<------><------>fmt->format.width = r->width;
<------><------>fmt->format.height = r->height;
<------><------>fmt->format.field = V4L2_FIELD_NONE;
<------>}
<------>return 0;
}
static int smiapp_get_format(struct v4l2_subdev *subdev,
<------><------><------> struct v4l2_subdev_pad_config *cfg,
<------><------><------> struct v4l2_subdev_format *fmt)
{
<------>struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
<------>int rval;
<------>mutex_lock(&sensor->mutex);
<------>rval = __smiapp_get_format(subdev, cfg, fmt);
<------>mutex_unlock(&sensor->mutex);
<------>return rval;
}
static void smiapp_get_crop_compose(struct v4l2_subdev *subdev,
<------><------><------><------> struct v4l2_subdev_pad_config *cfg,
<------><------><------><------> struct v4l2_rect **crops,
<------><------><------><------> struct v4l2_rect **comps, int which)
{
<------>struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
<------>unsigned int i;
<------>if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
<------><------>if (crops)
<------><------><------>for (i = 0; i < subdev->entity.num_pads; i++)
<------><------><------><------>crops[i] = &ssd->crop[i];
<------><------>if (comps)
<------><------><------>*comps = &ssd->compose;
<------>} else {
<------><------>if (crops) {
<------><------><------>for (i = 0; i < subdev->entity.num_pads; i++) {
<------><------><------><------>crops[i] = v4l2_subdev_get_try_crop(subdev, cfg, i);
<------><------><------><------>BUG_ON(!crops[i]);
<------><------><------>}
<------><------>}
<------><------>if (comps) {
<------><------><------>*comps = v4l2_subdev_get_try_compose(subdev, cfg,
<------><------><------><------><------><------><------> SMIAPP_PAD_SINK);
<------><------><------>BUG_ON(!*comps);
<------><------>}
<------>}
}
/* Changes require propagation only on sink pad. */
static void smiapp_propagate(struct v4l2_subdev *subdev,
<------><------><------> struct v4l2_subdev_pad_config *cfg, int which,
<------><------><------> int target)
{
<------>struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
<------>struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
<------>struct v4l2_rect *comp, *crops[SMIAPP_PADS];
<------>smiapp_get_crop_compose(subdev, cfg, crops, &comp, which);
<------>switch (target) {
<------>case V4L2_SEL_TGT_CROP:
<------><------>comp->width = crops[SMIAPP_PAD_SINK]->width;
<------><------>comp->height = crops[SMIAPP_PAD_SINK]->height;
<------><------>if (which == V4L2_SUBDEV_FORMAT_ACTIVE) {
<------><------><------>if (ssd == sensor->scaler) {
<------><------><------><------>sensor->scale_m =
<------><------><------><------><------>SMIA_LIM(sensor, SCALER_N_MIN);
<------><------><------><------>sensor->scaling_mode =
<------><------><------><------><------>SMIAPP_SCALING_MODE_NONE;
<------><------><------>} else if (ssd == sensor->binner) {
<------><------><------><------>sensor->binning_horizontal = 1;
<------><------><------><------>sensor->binning_vertical = 1;
<------><------><------>}
<------><------>}
<------><------>fallthrough;
<------>case V4L2_SEL_TGT_COMPOSE:
<------><------>*crops[SMIAPP_PAD_SRC] = *comp;
<------><------>break;
<------>default:
<------><------>BUG();
<------>}
}
static const struct smiapp_csi_data_format
*smiapp_validate_csi_data_format(struct smiapp_sensor *sensor, u32 code)
{
<------>unsigned int i;
<------>for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) {
<------><------>if (sensor->mbus_frame_fmts & (1 << i)
<------><------> && smiapp_csi_data_formats[i].code == code)
<------><------><------>return &smiapp_csi_data_formats[i];
<------>}
<------>return sensor->csi_format;
}
static int smiapp_set_format_source(struct v4l2_subdev *subdev,
<------><------><------><------> struct v4l2_subdev_pad_config *cfg,
<------><------><------><------> struct v4l2_subdev_format *fmt)
{
<------>struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
<------>const struct smiapp_csi_data_format *csi_format,
<------><------>*old_csi_format = sensor->csi_format;
<------>unsigned long *valid_link_freqs;
<------>u32 code = fmt->format.code;
<------>unsigned int i;
<------>int rval;
<------>rval = __smiapp_get_format(subdev, cfg, fmt);
<------>if (rval)
<------><------>return rval;
<------>/*
<------> * Media bus code is changeable on src subdev's source pad. On
<------> * other source pads we just get format here.
<------> */
<------>if (subdev != &sensor->src->sd)
<------><------>return 0;
<------>csi_format = smiapp_validate_csi_data_format(sensor, code);
<------>fmt->format.code = csi_format->code;
<------>if (fmt->which != V4L2_SUBDEV_FORMAT_ACTIVE)
<------><------>return 0;
<------>sensor->csi_format = csi_format;
<------>if (csi_format->width != old_csi_format->width)
<------><------>for (i = 0; i < ARRAY_SIZE(sensor->test_data); i++)
<------><------><------>__v4l2_ctrl_modify_range(
<------><------><------><------>sensor->test_data[i], 0,
<------><------><------><------>(1 << csi_format->width) - 1, 1, 0);
<------>if (csi_format->compressed == old_csi_format->compressed)
<------><------>return 0;
<------>valid_link_freqs =
<------><------>&sensor->valid_link_freqs[sensor->csi_format->compressed
<------><------><------><------><------> - sensor->compressed_min_bpp];
<------>__v4l2_ctrl_modify_range(
<------><------>sensor->link_freq, 0,
<------><------>__fls(*valid_link_freqs), ~*valid_link_freqs,
<------><------>__ffs(*valid_link_freqs));
<------>return smiapp_pll_update(sensor);
}
static int smiapp_set_format(struct v4l2_subdev *subdev,
<------><------><------> struct v4l2_subdev_pad_config *cfg,
<------><------><------> struct v4l2_subdev_format *fmt)
{
<------>struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
<------>struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
<------>struct v4l2_rect *crops[SMIAPP_PADS];
<------>mutex_lock(&sensor->mutex);
<------>if (fmt->pad == ssd->source_pad) {
<------><------>int rval;
<------><------>rval = smiapp_set_format_source(subdev, cfg, fmt);
<------><------>mutex_unlock(&sensor->mutex);
<------><------>return rval;
<------>}
<------>/* Sink pad. Width and height are changeable here. */
<------>fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad);
<------>fmt->format.width &= ~1;
<------>fmt->format.height &= ~1;
<------>fmt->format.field = V4L2_FIELD_NONE;
<------>fmt->format.width =
<------><------>clamp(fmt->format.width,
<------><------> SMIA_LIM(sensor, MIN_X_OUTPUT_SIZE),
<------><------> SMIA_LIM(sensor, MAX_X_OUTPUT_SIZE));
<------>fmt->format.height =
<------><------>clamp(fmt->format.height,
<------><------> SMIA_LIM(sensor, MIN_Y_OUTPUT_SIZE),
<------><------> SMIA_LIM(sensor, MAX_Y_OUTPUT_SIZE));
<------>smiapp_get_crop_compose(subdev, cfg, crops, NULL, fmt->which);
<------>crops[ssd->sink_pad]->left = 0;
<------>crops[ssd->sink_pad]->top = 0;
<------>crops[ssd->sink_pad]->width = fmt->format.width;
<------>crops[ssd->sink_pad]->height = fmt->format.height;
<------>if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE)
<------><------>ssd->sink_fmt = *crops[ssd->sink_pad];
<------>smiapp_propagate(subdev, cfg, fmt->which,
<------><------><------> V4L2_SEL_TGT_CROP);
<------>mutex_unlock(&sensor->mutex);
<------>return 0;
}
/*
* Calculate goodness of scaled image size compared to expected image
* size and flags provided.
*/
#define SCALING_GOODNESS 100000
#define SCALING_GOODNESS_EXTREME 100000000
static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w,
<------><------><------> int h, int ask_h, u32 flags)
{
<------>struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
<------>struct i2c_client *client = v4l2_get_subdevdata(subdev);
<------>int val = 0;
<------>w &= ~1;
<------>ask_w &= ~1;
<------>h &= ~1;
<------>ask_h &= ~1;
<------>if (flags & V4L2_SEL_FLAG_GE) {
<------><------>if (w < ask_w)
<------><------><------>val -= SCALING_GOODNESS;
<------><------>if (h < ask_h)
<------><------><------>val -= SCALING_GOODNESS;
<------>}
<------>if (flags & V4L2_SEL_FLAG_LE) {
<------><------>if (w > ask_w)
<------><------><------>val -= SCALING_GOODNESS;
<------><------>if (h > ask_h)
<------><------><------>val -= SCALING_GOODNESS;
<------>}
<------>val -= abs(w - ask_w);
<------>val -= abs(h - ask_h);
<------>if (w < SMIA_LIM(sensor, MIN_X_OUTPUT_SIZE))
<------><------>val -= SCALING_GOODNESS_EXTREME;
<------>dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n",
<------><------>w, ask_w, h, ask_h, val);
<------>return val;
}
static void smiapp_set_compose_binner(struct v4l2_subdev *subdev,
<------><------><------><------> struct v4l2_subdev_pad_config *cfg,
<------><------><------><------> struct v4l2_subdev_selection *sel,
<------><------><------><------> struct v4l2_rect **crops,
<------><------><------><------> struct v4l2_rect *comp)
{
<------>struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
<------>unsigned int i;
<------>unsigned int binh = 1, binv = 1;
<------>int best = scaling_goodness(
<------><------>subdev,
<------><------>crops[SMIAPP_PAD_SINK]->width, sel->r.width,
<------><------>crops[SMIAPP_PAD_SINK]->height, sel->r.height, sel->flags);
<------>for (i = 0; i < sensor->nbinning_subtypes; i++) {
<------><------>int this = scaling_goodness(
<------><------><------>subdev,
<------><------><------>crops[SMIAPP_PAD_SINK]->width
<------><------><------>/ sensor->binning_subtypes[i].horizontal,
<------><------><------>sel->r.width,
<------><------><------>crops[SMIAPP_PAD_SINK]->height
<------><------><------>/ sensor->binning_subtypes[i].vertical,
<------><------><------>sel->r.height, sel->flags);
<------><------>if (this > best) {
<------><------><------>binh = sensor->binning_subtypes[i].horizontal;
<------><------><------>binv = sensor->binning_subtypes[i].vertical;
<------><------><------>best = this;
<------><------>}
<------>}
<------>if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
<------><------>sensor->binning_vertical = binv;
<------><------>sensor->binning_horizontal = binh;
<------>}
<------>sel->r.width = (crops[SMIAPP_PAD_SINK]->width / binh) & ~1;
<------>sel->r.height = (crops[SMIAPP_PAD_SINK]->height / binv) & ~1;
}
/*
* Calculate best scaling ratio and mode for given output resolution.
*
* Try all of these: horizontal ratio, vertical ratio and smallest
* size possible (horizontally).
*
* Also try whether horizontal scaler or full scaler gives a better
* result.
*/
static void smiapp_set_compose_scaler(struct v4l2_subdev *subdev,
<------><------><------><------> struct v4l2_subdev_pad_config *cfg,
<------><------><------><------> struct v4l2_subdev_selection *sel,
<------><------><------><------> struct v4l2_rect **crops,
<------><------><------><------> struct v4l2_rect *comp)
{
<------>struct i2c_client *client = v4l2_get_subdevdata(subdev);
<------>struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
<------>u32 min, max, a, b, max_m;
<------>u32 scale_m = SMIA_LIM(sensor, SCALER_N_MIN);
<------>int mode = SMIAPP_SCALING_MODE_HORIZONTAL;
<------>u32 try[4];
<------>u32 ntry = 0;
<------>unsigned int i;
<------>int best = INT_MIN;
<------>sel->r.width = min_t(unsigned int, sel->r.width,
<------><------><------> crops[SMIAPP_PAD_SINK]->width);
<------>sel->r.height = min_t(unsigned int, sel->r.height,
<------><------><------> crops[SMIAPP_PAD_SINK]->height);
<------>a = crops[SMIAPP_PAD_SINK]->width
<------><------>* SMIA_LIM(sensor, SCALER_N_MIN) / sel->r.width;
<------>b = crops[SMIAPP_PAD_SINK]->height
<------><------>* SMIA_LIM(sensor, SCALER_N_MIN) / sel->r.height;
<------>max_m = crops[SMIAPP_PAD_SINK]->width
<------><------>* SMIA_LIM(sensor, SCALER_N_MIN)
<------><------>/ SMIA_LIM(sensor, MIN_X_OUTPUT_SIZE);
<------>a = clamp(a, SMIA_LIM(sensor, SCALER_M_MIN),
<------><------> SMIA_LIM(sensor, SCALER_M_MAX));
<------>b = clamp(b, SMIA_LIM(sensor, SCALER_M_MIN),
<------><------> SMIA_LIM(sensor, SCALER_M_MAX));
<------>max_m = clamp(max_m, SMIA_LIM(sensor, SCALER_M_MIN),
<------><------> SMIA_LIM(sensor, SCALER_M_MAX));
<------>dev_dbg(&client->dev, "scaling: a %d b %d max_m %d\n", a, b, max_m);
<------>min = min(max_m, min(a, b));
<------>max = min(max_m, max(a, b));
<------>try[ntry] = min;
<------>ntry++;
<------>if (min != max) {
<------><------>try[ntry] = max;
<------><------>ntry++;
<------>}
<------>if (max != max_m) {
<------><------>try[ntry] = min + 1;
<------><------>ntry++;
<------><------>if (min != max) {
<------><------><------>try[ntry] = max + 1;
<------><------><------>ntry++;
<------><------>}
<------>}
<------>for (i = 0; i < ntry; i++) {
<------><------>int this = scaling_goodness(
<------><------><------>subdev,
<------><------><------>crops[SMIAPP_PAD_SINK]->width
<------><------><------>/ try[i]
<------><------><------>* SMIA_LIM(sensor, SCALER_N_MIN),
<------><------><------>sel->r.width,
<------><------><------>crops[SMIAPP_PAD_SINK]->height,
<------><------><------>sel->r.height,
<------><------><------>sel->flags);
<------><------>dev_dbg(&client->dev, "trying factor %d (%d)\n", try[i], i);
<------><------>if (this > best) {
<------><------><------>scale_m = try[i];
<------><------><------>mode = SMIAPP_SCALING_MODE_HORIZONTAL;
<------><------><------>best = this;
<------><------>}
<------><------>if (SMIA_LIM(sensor, SCALING_CAPABILITY)
<------><------> == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
<------><------><------>continue;
<------><------>this = scaling_goodness(
<------><------><------>subdev, crops[SMIAPP_PAD_SINK]->width
<------><------><------>/ try[i]
<------><------><------>* SMIA_LIM(sensor, SCALER_N_MIN),
<------><------><------>sel->r.width,
<------><------><------>crops[SMIAPP_PAD_SINK]->height
<------><------><------>/ try[i]
<------><------><------>* SMIA_LIM(sensor, SCALER_N_MIN),
<------><------><------>sel->r.height,
<------><------><------>sel->flags);
<------><------>if (this > best) {
<------><------><------>scale_m = try[i];
<------><------><------>mode = SMIAPP_SCALING_MODE_BOTH;
<------><------><------>best = this;
<------><------>}
<------>}
<------>sel->r.width =
<------><------>(crops[SMIAPP_PAD_SINK]->width
<------><------> / scale_m
<------><------> * SMIA_LIM(sensor, SCALER_N_MIN)) & ~1;
<------>if (mode == SMIAPP_SCALING_MODE_BOTH)
<------><------>sel->r.height =
<------><------><------>(crops[SMIAPP_PAD_SINK]->height
<------><------><------> / scale_m
<------><------><------> * SMIA_LIM(sensor, SCALER_N_MIN))
<------><------><------>& ~1;
<------>else
<------><------>sel->r.height = crops[SMIAPP_PAD_SINK]->height;
<------>if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
<------><------>sensor->scale_m = scale_m;
<------><------>sensor->scaling_mode = mode;
<------>}
}
/* We're only called on source pads. This function sets scaling. */
static int smiapp_set_compose(struct v4l2_subdev *subdev,
<------><------><------> struct v4l2_subdev_pad_config *cfg,
<------><------><------> struct v4l2_subdev_selection *sel)
{
<------>struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
<------>struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
<------>struct v4l2_rect *comp, *crops[SMIAPP_PADS];
<------>smiapp_get_crop_compose(subdev, cfg, crops, &comp, sel->which);
<------>sel->r.top = 0;
<------>sel->r.left = 0;
<------>if (ssd == sensor->binner)
<------><------>smiapp_set_compose_binner(subdev, cfg, sel, crops, comp);
<------>else
<------><------>smiapp_set_compose_scaler(subdev, cfg, sel, crops, comp);
<------>*comp = sel->r;
<------>smiapp_propagate(subdev, cfg, sel->which, V4L2_SEL_TGT_COMPOSE);
<------>if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE)
<------><------>return smiapp_pll_blanking_update(sensor);
<------>return 0;
}
static int __smiapp_sel_supported(struct v4l2_subdev *subdev,
<------><------><------><------> struct v4l2_subdev_selection *sel)
{
<------>struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
<------>struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
<------>/* We only implement crop in three places. */
<------>switch (sel->target) {
<------>case V4L2_SEL_TGT_CROP:
<------>case V4L2_SEL_TGT_CROP_BOUNDS:
<------><------>if (ssd == sensor->pixel_array
<------><------> && sel->pad == SMIAPP_PA_PAD_SRC)
<------><------><------>return 0;
<------><------>if (ssd == sensor->src
<------><------> && sel->pad == SMIAPP_PAD_SRC)
<------><------><------>return 0;
<------><------>if (ssd == sensor->scaler
<------><------> && sel->pad == SMIAPP_PAD_SINK
<------><------> && SMIA_LIM(sensor, DIGITAL_CROP_CAPABILITY)
<------><------> == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP)
<------><------><------>return 0;
<------><------>return -EINVAL;
<------>case V4L2_SEL_TGT_NATIVE_SIZE:
<------><------>if (ssd == sensor->pixel_array
<------><------> && sel->pad == SMIAPP_PA_PAD_SRC)
<------><------><------>return 0;
<------><------>return -EINVAL;
<------>case V4L2_SEL_TGT_COMPOSE:
<------>case V4L2_SEL_TGT_COMPOSE_BOUNDS:
<------><------>if (sel->pad == ssd->source_pad)
<------><------><------>return -EINVAL;
<------><------>if (ssd == sensor->binner)
<------><------><------>return 0;
<------><------>if (ssd == sensor->scaler
<------><------> && SMIA_LIM(sensor, SCALING_CAPABILITY)
<------><------> != SMIAPP_SCALING_CAPABILITY_NONE)
<------><------><------>return 0;
<------><------>fallthrough;
<------>default:
<------><------>return -EINVAL;
<------>}
}
static int smiapp_set_crop(struct v4l2_subdev *subdev,
<------><------><------> struct v4l2_subdev_pad_config *cfg,
<------><------><------> struct v4l2_subdev_selection *sel)
{
<------>struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
<------>struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
<------>struct v4l2_rect *src_size, *crops[SMIAPP_PADS];
<------>struct v4l2_rect _r;
<------>smiapp_get_crop_compose(subdev, cfg, crops, NULL, sel->which);
<------>if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
<------><------>if (sel->pad == ssd->sink_pad)
<------><------><------>src_size = &ssd->sink_fmt;
<------><------>else
<------><------><------>src_size = &ssd->compose;
<------>} else {
<------><------>if (sel->pad == ssd->sink_pad) {
<------><------><------>_r.left = 0;
<------><------><------>_r.top = 0;
<------><------><------>_r.width = v4l2_subdev_get_try_format(subdev, cfg, sel->pad)
<------><------><------><------>->width;
<------><------><------>_r.height = v4l2_subdev_get_try_format(subdev, cfg, sel->pad)
<------><------><------><------>->height;
<------><------><------>src_size = &_r;
<------><------>} else {
<------><------><------>src_size = v4l2_subdev_get_try_compose(
<------><------><------><------>subdev, cfg, ssd->sink_pad);
<------><------>}
<------>}
<------>if (ssd == sensor->src && sel->pad == SMIAPP_PAD_SRC) {
<------><------>sel->r.left = 0;
<------><------>sel->r.top = 0;
<------>}
<------>sel->r.width = min(sel->r.width, src_size->width);
<------>sel->r.height = min(sel->r.height, src_size->height);
<------>sel->r.left = min_t(int, sel->r.left, src_size->width - sel->r.width);
<------>sel->r.top = min_t(int, sel->r.top, src_size->height - sel->r.height);
<------>*crops[sel->pad] = sel->r;
<------>if (ssd != sensor->pixel_array && sel->pad == SMIAPP_PAD_SINK)
<------><------>smiapp_propagate(subdev, cfg, sel->which,
<------><------><------><------> V4L2_SEL_TGT_CROP);
<------>return 0;
}
static void smiapp_get_native_size(struct smiapp_subdev *ssd,
<------><------><------><------> struct v4l2_rect *r)
{
<------>r->top = 0;
<------>r->left = 0;
<------>r->width = SMIA_LIM(ssd->sensor, X_ADDR_MAX) + 1;
<------>r->height = SMIA_LIM(ssd->sensor, Y_ADDR_MAX) + 1;
}
static int __smiapp_get_selection(struct v4l2_subdev *subdev,
<------><------><------><------> struct v4l2_subdev_pad_config *cfg,
<------><------><------><------> struct v4l2_subdev_selection *sel)
{
<------>struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
<------>struct smiapp_subdev *ssd = to_smiapp_subdev(subdev);
<------>struct v4l2_rect *comp, *crops[SMIAPP_PADS];
<------>struct v4l2_rect sink_fmt;
<------>int ret;
<------>ret = __smiapp_sel_supported(subdev, sel);
<------>if (ret)
<------><------>return ret;
<------>smiapp_get_crop_compose(subdev, cfg, crops, &comp, sel->which);
<------>if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) {
<------><------>sink_fmt = ssd->sink_fmt;
<------>} else {
<------><------>struct v4l2_mbus_framefmt *fmt =
<------><------><------>v4l2_subdev_get_try_format(subdev, cfg, ssd->sink_pad);
<------><------>sink_fmt.left = 0;
<------><------>sink_fmt.top = 0;
<------><------>sink_fmt.width = fmt->width;
<------><------>sink_fmt.height = fmt->height;
<------>}
<------>switch (sel->target) {
<------>case V4L2_SEL_TGT_CROP_BOUNDS:
<------>case V4L2_SEL_TGT_NATIVE_SIZE:
<------><------>if (ssd == sensor->pixel_array)
<------><------><------>smiapp_get_native_size(ssd, &sel->r);
<------><------>else if (sel->pad == ssd->sink_pad)
<------><------><------>sel->r = sink_fmt;
<------><------>else
<------><------><------>sel->r = *comp;
<------><------>break;
<------>case V4L2_SEL_TGT_CROP:
<------>case V4L2_SEL_TGT_COMPOSE_BOUNDS:
<------><------>sel->r = *crops[sel->pad];
<------><------>break;
<------>case V4L2_SEL_TGT_COMPOSE:
<------><------>sel->r = *comp;
<------><------>break;
<------>}
<------>return 0;
}
static int smiapp_get_selection(struct v4l2_subdev *subdev,
<------><------><------><------>struct v4l2_subdev_pad_config *cfg,
<------><------><------><------>struct v4l2_subdev_selection *sel)
{
<------>struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
<------>int rval;
<------>mutex_lock(&sensor->mutex);
<------>rval = __smiapp_get_selection(subdev, cfg, sel);
<------>mutex_unlock(&sensor->mutex);
<------>return rval;
}
static int smiapp_set_selection(struct v4l2_subdev *subdev,
<------><------><------><------>struct v4l2_subdev_pad_config *cfg,
<------><------><------><------>struct v4l2_subdev_selection *sel)
{
<------>struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
<------>int ret;
<------>ret = __smiapp_sel_supported(subdev, sel);
<------>if (ret)
<------><------>return ret;
<------>mutex_lock(&sensor->mutex);
<------>sel->r.left = max(0, sel->r.left & ~1);
<------>sel->r.top = max(0, sel->r.top & ~1);
<------>sel->r.width = SMIAPP_ALIGN_DIM(sel->r.width, sel->flags);
<------>sel->r.height = SMIAPP_ALIGN_DIM(sel->r.height, sel->flags);
<------>sel->r.width = max_t(unsigned int,
<------><------><------> SMIA_LIM(sensor, MIN_X_OUTPUT_SIZE),
<------><------><------> sel->r.width);
<------>sel->r.height = max_t(unsigned int,
<------><------><------> SMIA_LIM(sensor, MIN_Y_OUTPUT_SIZE),
<------><------><------> sel->r.height);
<------>switch (sel->target) {
<------>case V4L2_SEL_TGT_CROP:
<------><------>ret = smiapp_set_crop(subdev, cfg, sel);
<------><------>break;
<------>case V4L2_SEL_TGT_COMPOSE:
<------><------>ret = smiapp_set_compose(subdev, cfg, sel);
<------><------>break;
<------>default:
<------><------>ret = -EINVAL;
<------>}
<------>mutex_unlock(&sensor->mutex);
<------>return ret;
}
static int smiapp_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames)
{
<------>struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
<------>*frames = sensor->frame_skip;
<------>return 0;
}
static int smiapp_get_skip_top_lines(struct v4l2_subdev *subdev, u32 *lines)
{
<------>struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
<------>*lines = sensor->image_start;
<------>return 0;
}
/* -----------------------------------------------------------------------------
* sysfs attributes
*/
static ssize_t
smiapp_sysfs_nvm_read(struct device *dev, struct device_attribute *attr,
<------><------> char *buf)
{
<------>struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
<------>struct i2c_client *client = v4l2_get_subdevdata(subdev);
<------>struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
<------>int rval;
<------>if (!sensor->dev_init_done)
<------><------>return -EBUSY;
<------>rval = smiapp_pm_get_init(sensor);
<------>if (rval < 0)
<------><------>return -ENODEV;
<------>rval = smiapp_read_nvm(sensor, buf, PAGE_SIZE);
<------>if (rval < 0) {
<------><------>pm_runtime_put(&client->dev);
<------><------>dev_err(&client->dev, "nvm read failed\n");
<------><------>return -ENODEV;
<------>}
<------>pm_runtime_mark_last_busy(&client->dev);
<------>pm_runtime_put_autosuspend(&client->dev);
<------>/*
<------> * NVM is still way below a PAGE_SIZE, so we can safely
<------> * assume this for now.
<------> */
<------>return rval;
}
static DEVICE_ATTR(nvm, S_IRUGO, smiapp_sysfs_nvm_read, NULL);
static ssize_t
smiapp_sysfs_ident_read(struct device *dev, struct device_attribute *attr,
<------><------><------>char *buf)
{
<------>struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev));
<------>struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
<------>struct smiapp_module_info *minfo = &sensor->minfo;
<------>return snprintf(buf, PAGE_SIZE, "%2.2x%4.4x%2.2x\n",
<------><------><------>minfo->manufacturer_id, minfo->model_id,
<------><------><------>minfo->revision_number_major) + 1;
}
static DEVICE_ATTR(ident, S_IRUGO, smiapp_sysfs_ident_read, NULL);
/* -----------------------------------------------------------------------------
* V4L2 subdev core operations
*/
static int smiapp_identify_module(struct smiapp_sensor *sensor)
{
<------>struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
<------>struct smiapp_module_info *minfo = &sensor->minfo;
<------>unsigned int i;
<------>int rval = 0;
<------>minfo->name = SMIAPP_NAME;
<------>/* Module info */
<------>rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MANUFACTURER_ID,
<------><------><------><------> &minfo->manufacturer_id);
<------>if (!rval)
<------><------>rval = smiapp_read_8only(sensor, SMIAPP_REG_U16_MODEL_ID,
<------><------><------><------><------> &minfo->model_id);
<------>if (!rval)
<------><------>rval = smiapp_read_8only(sensor,
<------><------><------><------><------> SMIAPP_REG_U8_REVISION_NUMBER_MAJOR,
<------><------><------><------><------> &minfo->revision_number_major);
<------>if (!rval)
<------><------>rval = smiapp_read_8only(sensor,
<------><------><------><------><------> SMIAPP_REG_U8_REVISION_NUMBER_MINOR,
<------><------><------><------><------> &minfo->revision_number_minor);
<------>if (!rval)
<------><------>rval = smiapp_read_8only(sensor,
<------><------><------><------><------> SMIAPP_REG_U8_MODULE_DATE_YEAR,
<------><------><------><------><------> &minfo->module_year);
<------>if (!rval)
<------><------>rval = smiapp_read_8only(sensor,
<------><------><------><------><------> SMIAPP_REG_U8_MODULE_DATE_MONTH,
<------><------><------><------><------> &minfo->module_month);
<------>if (!rval)
<------><------>rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MODULE_DATE_DAY,
<------><------><------><------><------> &minfo->module_day);
<------>/* Sensor info */
<------>if (!rval)
<------><------>rval = smiapp_read_8only(sensor,
<------><------><------><------><------> SMIAPP_REG_U8_SENSOR_MANUFACTURER_ID,
<------><------><------><------><------> &minfo->sensor_manufacturer_id);
<------>if (!rval)
<------><------>rval = smiapp_read_8only(sensor,
<------><------><------><------><------> SMIAPP_REG_U16_SENSOR_MODEL_ID,
<------><------><------><------><------> &minfo->sensor_model_id);
<------>if (!rval)
<------><------>rval = smiapp_read_8only(sensor,
<------><------><------><------><------> SMIAPP_REG_U8_SENSOR_REVISION_NUMBER,
<------><------><------><------><------> &minfo->sensor_revision_number);
<------>if (!rval)
<------><------>rval = smiapp_read_8only(sensor,
<------><------><------><------><------> SMIAPP_REG_U8_SENSOR_FIRMWARE_VERSION,
<------><------><------><------><------> &minfo->sensor_firmware_version);
<------>/* SMIA */
<------>if (!rval)
<------><------>rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIA_VERSION,
<------><------><------><------><------> &minfo->smia_version);
<------>if (!rval)
<------><------>rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIAPP_VERSION,
<------><------><------><------><------> &minfo->smiapp_version);
<------>if (rval) {
<------><------>dev_err(&client->dev, "sensor detection failed\n");
<------><------>return -ENODEV;
<------>}
<------>dev_dbg(&client->dev, "module 0x%2.2x-0x%4.4x\n",
<------><------>minfo->manufacturer_id, minfo->model_id);
<------>dev_dbg(&client->dev,
<------><------>"module revision 0x%2.2x-0x%2.2x date %2.2d-%2.2d-%2.2d\n",
<------><------>minfo->revision_number_major, minfo->revision_number_minor,
<------><------>minfo->module_year, minfo->module_month, minfo->module_day);
<------>dev_dbg(&client->dev, "sensor 0x%2.2x-0x%4.4x\n",
<------><------>minfo->sensor_manufacturer_id, minfo->sensor_model_id);
<------>dev_dbg(&client->dev,
<------><------>"sensor revision 0x%2.2x firmware version 0x%2.2x\n",
<------><------>minfo->sensor_revision_number, minfo->sensor_firmware_version);
<------>dev_dbg(&client->dev, "smia version %2.2d smiapp version %2.2d\n",
<------><------>minfo->smia_version, minfo->smiapp_version);
<------>/*
<------> * Some modules have bad data in the lvalues below. Hope the
<------> * rvalues have better stuff. The lvalues are module
<------> * parameters whereas the rvalues are sensor parameters.
<------> */
<------>if (!minfo->manufacturer_id && !minfo->model_id) {
<------><------>minfo->manufacturer_id = minfo->sensor_manufacturer_id;
<------><------>minfo->model_id = minfo->sensor_model_id;
<------><------>minfo->revision_number_major = minfo->sensor_revision_number;
<------>}
<------>for (i = 0; i < ARRAY_SIZE(smiapp_module_idents); i++) {
<------><------>if (smiapp_module_idents[i].manufacturer_id
<------><------> != minfo->manufacturer_id)
<------><------><------>continue;
<------><------>if (smiapp_module_idents[i].model_id != minfo->model_id)
<------><------><------>continue;
<------><------>if (smiapp_module_idents[i].flags
<------><------> & SMIAPP_MODULE_IDENT_FLAG_REV_LE) {
<------><------><------>if (smiapp_module_idents[i].revision_number_major
<------><------><------> < minfo->revision_number_major)
<------><------><------><------>continue;
<------><------>} else {
<------><------><------>if (smiapp_module_idents[i].revision_number_major
<------><------><------> != minfo->revision_number_major)
<------><------><------><------>continue;
<------><------>}
<------><------>minfo->name = smiapp_module_idents[i].name;
<------><------>minfo->quirk = smiapp_module_idents[i].quirk;
<------><------>break;
<------>}
<------>if (i >= ARRAY_SIZE(smiapp_module_idents))
<------><------>dev_warn(&client->dev,
<------><------><------> "no quirks for this module; let's hope it's fully compliant\n");
<------>dev_dbg(&client->dev, "the sensor is called %s, ident %2.2x%4.4x%2.2x\n",
<------><------>minfo->name, minfo->manufacturer_id, minfo->model_id,
<------><------>minfo->revision_number_major);
<------>return 0;
}
static const struct v4l2_subdev_ops smiapp_ops;
static const struct v4l2_subdev_internal_ops smiapp_internal_ops;
static const struct media_entity_operations smiapp_entity_ops;
static int smiapp_register_subdev(struct smiapp_sensor *sensor,
<------><------><------><------> struct smiapp_subdev *ssd,
<------><------><------><------> struct smiapp_subdev *sink_ssd,
<------><------><------><------> u16 source_pad, u16 sink_pad, u32 link_flags)
{
<------>struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
<------>int rval;
<------>if (!sink_ssd)
<------><------>return 0;
<------>rval = media_entity_pads_init(&ssd->sd.entity,
<------><------><------><------> ssd->npads, ssd->pads);
<------>if (rval) {
<------><------>dev_err(&client->dev,
<------><------><------>"media_entity_pads_init failed\n");
<------><------>return rval;
<------>}
<------>rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev,
<------><------><------><------><------> &ssd->sd);
<------>if (rval) {
<------><------>dev_err(&client->dev,
<------><------><------>"v4l2_device_register_subdev failed\n");
<------><------>return rval;
<------>}
<------>rval = media_create_pad_link(&ssd->sd.entity, source_pad,
<------><------><------><------> &sink_ssd->sd.entity, sink_pad,
<------><------><------><------> link_flags);
<------>if (rval) {
<------><------>dev_err(&client->dev,
<------><------><------>"media_create_pad_link failed\n");
<------><------>v4l2_device_unregister_subdev(&ssd->sd);
<------><------>return rval;
<------>}
<------>return 0;
}
static void smiapp_unregistered(struct v4l2_subdev *subdev)
{
<------>struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
<------>unsigned int i;
<------>for (i = 1; i < sensor->ssds_used; i++)
<------><------>v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
}
static int smiapp_registered(struct v4l2_subdev *subdev)
{
<------>struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
<------>int rval;
<------>if (sensor->scaler) {
<------><------>rval = smiapp_register_subdev(
<------><------><------>sensor, sensor->binner, sensor->scaler,
<------><------><------>SMIAPP_PAD_SRC, SMIAPP_PAD_SINK,
<------><------><------>MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
<------><------>if (rval < 0)
<------><------><------>return rval;
<------>}
<------>rval = smiapp_register_subdev(
<------><------>sensor, sensor->pixel_array, sensor->binner,
<------><------>SMIAPP_PA_PAD_SRC, SMIAPP_PAD_SINK,
<------><------>MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
<------>if (rval)
<------><------>goto out_err;
<------>return 0;
out_err:
<------>smiapp_unregistered(subdev);
<------>return rval;
}
static void smiapp_cleanup(struct smiapp_sensor *sensor)
{
<------>struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
<------>device_remove_file(&client->dev, &dev_attr_nvm);
<------>device_remove_file(&client->dev, &dev_attr_ident);
<------>smiapp_free_controls(sensor);
}
static void smiapp_create_subdev(struct smiapp_sensor *sensor,
<------><------><------><------> struct smiapp_subdev *ssd, const char *name,
<------><------><------><------> unsigned short num_pads)
{
<------>struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd);
<------>if (!ssd)
<------><------>return;
<------>if (ssd != sensor->src)
<------><------>v4l2_subdev_init(&ssd->sd, &smiapp_ops);
<------>ssd->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
<------>ssd->sensor = sensor;
<------>ssd->npads = num_pads;
<------>ssd->source_pad = num_pads - 1;
<------>v4l2_i2c_subdev_set_name(&ssd->sd, client, sensor->minfo.name, name);
<------>smiapp_get_native_size(ssd, &ssd->sink_fmt);
<------>ssd->compose.width = ssd->sink_fmt.width;
<------>ssd->compose.height = ssd->sink_fmt.height;
<------>ssd->crop[ssd->source_pad] = ssd->compose;
<------>ssd->pads[ssd->source_pad].flags = MEDIA_PAD_FL_SOURCE;
<------>if (ssd != sensor->pixel_array) {
<------><------>ssd->crop[ssd->sink_pad] = ssd->compose;
<------><------>ssd->pads[ssd->sink_pad].flags = MEDIA_PAD_FL_SINK;
<------>}
<------>ssd->sd.entity.ops = &smiapp_entity_ops;
<------>if (ssd == sensor->src)
<------><------>return;
<------>ssd->sd.internal_ops = &smiapp_internal_ops;
<------>ssd->sd.owner = THIS_MODULE;
<------>ssd->sd.dev = &client->dev;
<------>v4l2_set_subdevdata(&ssd->sd, client);
}
static int smiapp_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
{
<------>struct smiapp_subdev *ssd = to_smiapp_subdev(sd);
<------>struct smiapp_sensor *sensor = ssd->sensor;
<------>unsigned int i;
<------>mutex_lock(&sensor->mutex);
<------>for (i = 0; i < ssd->npads; i++) {
<------><------>struct v4l2_mbus_framefmt *try_fmt =
<------><------><------>v4l2_subdev_get_try_format(sd, fh->pad, i);
<------><------>struct v4l2_rect *try_crop =
<------><------><------>v4l2_subdev_get_try_crop(sd, fh->pad, i);
<------><------>struct v4l2_rect *try_comp;
<------><------>smiapp_get_native_size(ssd, try_crop);
<------><------>try_fmt->width = try_crop->width;
<------><------>try_fmt->height = try_crop->height;
<------><------>try_fmt->code = sensor->internal_csi_format->code;
<------><------>try_fmt->field = V4L2_FIELD_NONE;
<------><------>if (ssd != sensor->pixel_array)
<------><------><------>continue;
<------><------>try_comp = v4l2_subdev_get_try_compose(sd, fh->pad, i);
<------><------>*try_comp = *try_crop;
<------>}
<------>mutex_unlock(&sensor->mutex);
<------>return 0;
}
static const struct v4l2_subdev_video_ops smiapp_video_ops = {
<------>.s_stream = smiapp_set_stream,
};
static const struct v4l2_subdev_pad_ops smiapp_pad_ops = {
<------>.enum_mbus_code = smiapp_enum_mbus_code,
<------>.get_fmt = smiapp_get_format,
<------>.set_fmt = smiapp_set_format,
<------>.get_selection = smiapp_get_selection,
<------>.set_selection = smiapp_set_selection,
};
static const struct v4l2_subdev_sensor_ops smiapp_sensor_ops = {
<------>.g_skip_frames = smiapp_get_skip_frames,
<------>.g_skip_top_lines = smiapp_get_skip_top_lines,
};
static const struct v4l2_subdev_ops smiapp_ops = {
<------>.video = &smiapp_video_ops,
<------>.pad = &smiapp_pad_ops,
<------>.sensor = &smiapp_sensor_ops,
};
static const struct media_entity_operations smiapp_entity_ops = {
<------>.link_validate = v4l2_subdev_link_validate,
};
static const struct v4l2_subdev_internal_ops smiapp_internal_src_ops = {
<------>.registered = smiapp_registered,
<------>.unregistered = smiapp_unregistered,
<------>.open = smiapp_open,
};
static const struct v4l2_subdev_internal_ops smiapp_internal_ops = {
<------>.open = smiapp_open,
};
/* -----------------------------------------------------------------------------
* I2C Driver
*/
static int __maybe_unused smiapp_suspend(struct device *dev)
{
<------>struct i2c_client *client = to_i2c_client(dev);
<------>struct v4l2_subdev *subdev = i2c_get_clientdata(client);
<------>struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
<------>bool streaming = sensor->streaming;
<------>int rval;
<------>rval = pm_runtime_get_sync(dev);
<------>if (rval < 0) {
<------><------>if (rval != -EBUSY && rval != -EAGAIN)
<------><------><------>pm_runtime_set_active(&client->dev);
<------><------>pm_runtime_put(dev);
<------><------>return -EAGAIN;
<------>}
<------>if (sensor->streaming)
<------><------>smiapp_stop_streaming(sensor);
<------>/* save state for resume */
<------>sensor->streaming = streaming;
<------>return 0;
}
static int __maybe_unused smiapp_resume(struct device *dev)
{
<------>struct i2c_client *client = to_i2c_client(dev);
<------>struct v4l2_subdev *subdev = i2c_get_clientdata(client);
<------>struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
<------>int rval = 0;
<------>pm_runtime_put(dev);
<------>if (sensor->streaming)
<------><------>rval = smiapp_start_streaming(sensor);
<------>return rval;
}
static struct smiapp_hwconfig *smiapp_get_hwconfig(struct device *dev)
{
<------>struct smiapp_hwconfig *hwcfg;
<------>struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = 0 };
<------>struct fwnode_handle *ep;
<------>struct fwnode_handle *fwnode = dev_fwnode(dev);
<------>u32 rotation;
<------>int i;
<------>int rval;
<------>if (!fwnode)
<------><------>return dev->platform_data;
<------>ep = fwnode_graph_get_next_endpoint(fwnode, NULL);
<------>if (!ep)
<------><------>return NULL;
<------>bus_cfg.bus_type = V4L2_MBUS_CSI2_DPHY;
<------>rval = v4l2_fwnode_endpoint_alloc_parse(ep, &bus_cfg);
<------>if (rval == -ENXIO) {
<------><------>bus_cfg = (struct v4l2_fwnode_endpoint)
<------><------><------>{ .bus_type = V4L2_MBUS_CCP2 };
<------><------>rval = v4l2_fwnode_endpoint_alloc_parse(ep, &bus_cfg);
<------>}
<------>if (rval)
<------><------>goto out_err;
<------>hwcfg = devm_kzalloc(dev, sizeof(*hwcfg), GFP_KERNEL);
<------>if (!hwcfg)
<------><------>goto out_err;
<------>switch (bus_cfg.bus_type) {
<------>case V4L2_MBUS_CSI2_DPHY:
<------><------>hwcfg->csi_signalling_mode = SMIAPP_CSI_SIGNALLING_MODE_CSI2;
<------><------>hwcfg->lanes = bus_cfg.bus.mipi_csi2.num_data_lanes;
<------><------>break;
<------>case V4L2_MBUS_CCP2:
<------><------>hwcfg->csi_signalling_mode = (bus_cfg.bus.mipi_csi1.strobe) ?
<------><------>SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_STROBE :
<------><------>SMIAPP_CSI_SIGNALLING_MODE_CCP2_DATA_CLOCK;
<------><------>hwcfg->lanes = 1;
<------><------>break;
<------>default:
<------><------>dev_err(dev, "unsupported bus %u\n", bus_cfg.bus_type);
<------><------>goto out_err;
<------>}
<------>dev_dbg(dev, "lanes %u\n", hwcfg->lanes);
<------>rval = fwnode_property_read_u32(fwnode, "rotation", &rotation);
<------>if (!rval) {
<------><------>switch (rotation) {
<------><------>case 180:
<------><------><------>hwcfg->module_board_orient =
<------><------><------><------>SMIAPP_MODULE_BOARD_ORIENT_180;
<------><------><------>fallthrough;
<------><------>case 0:
<------><------><------>break;
<------><------>default:
<------><------><------>dev_err(dev, "invalid rotation %u\n", rotation);
<------><------><------>goto out_err;
<------><------>}
<------>}
<------>rval = fwnode_property_read_u32(dev_fwnode(dev), "clock-frequency",
<------><------><------><------><------>&hwcfg->ext_clk);
<------>if (rval)
<------><------>dev_info(dev, "can't get clock-frequency\n");
<------>dev_dbg(dev, "clk %d, mode %d\n", hwcfg->ext_clk,
<------><------>hwcfg->csi_signalling_mode);
<------>if (!bus_cfg.nr_of_link_frequencies) {
<------><------>dev_warn(dev, "no link frequencies defined\n");
<------><------>goto out_err;
<------>}
<------>hwcfg->op_sys_clock = devm_kcalloc(
<------><------>dev, bus_cfg.nr_of_link_frequencies + 1 /* guardian */,
<------><------>sizeof(*hwcfg->op_sys_clock), GFP_KERNEL);
<------>if (!hwcfg->op_sys_clock)
<------><------>goto out_err;
<------>for (i = 0; i < bus_cfg.nr_of_link_frequencies; i++) {
<------><------>hwcfg->op_sys_clock[i] = bus_cfg.link_frequencies[i];
<------><------>dev_dbg(dev, "freq %d: %lld\n", i, hwcfg->op_sys_clock[i]);
<------>}
<------>v4l2_fwnode_endpoint_free(&bus_cfg);
<------>fwnode_handle_put(ep);
<------>return hwcfg;
out_err:
<------>v4l2_fwnode_endpoint_free(&bus_cfg);
<------>fwnode_handle_put(ep);
<------>return NULL;
}
static int smiapp_probe(struct i2c_client *client)
{
<------>struct smiapp_sensor *sensor;
<------>struct smiapp_hwconfig *hwcfg = smiapp_get_hwconfig(&client->dev);
<------>unsigned int i;
<------>int rval;
<------>if (hwcfg == NULL)
<------><------>return -ENODEV;
<------>sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL);
<------>if (sensor == NULL)
<------><------>return -ENOMEM;
<------>sensor->hwcfg = hwcfg;
<------>sensor->src = &sensor->ssds[sensor->ssds_used];
<------>v4l2_i2c_subdev_init(&sensor->src->sd, client, &smiapp_ops);
<------>sensor->src->sd.internal_ops = &smiapp_internal_src_ops;
<------>sensor->vana = devm_regulator_get(&client->dev, "vana");
<------>if (IS_ERR(sensor->vana)) {
<------><------>dev_err(&client->dev, "could not get regulator for vana\n");
<------><------>return PTR_ERR(sensor->vana);
<------>}
<------>sensor->ext_clk = devm_clk_get(&client->dev, NULL);
<------>if (PTR_ERR(sensor->ext_clk) == -ENOENT) {
<------><------>dev_info(&client->dev, "no clock defined, continuing...\n");
<------><------>sensor->ext_clk = NULL;
<------>} else if (IS_ERR(sensor->ext_clk)) {
<------><------>dev_err(&client->dev, "could not get clock (%ld)\n",
<------><------><------>PTR_ERR(sensor->ext_clk));
<------><------>return -EPROBE_DEFER;
<------>}
<------>if (sensor->ext_clk) {
<------><------>if (sensor->hwcfg->ext_clk) {
<------><------><------>unsigned long rate;
<------><------><------>rval = clk_set_rate(sensor->ext_clk,
<------><------><------><------><------> sensor->hwcfg->ext_clk);
<------><------><------>if (rval < 0) {
<------><------><------><------>dev_err(&client->dev,
<------><------><------><------><------>"unable to set clock freq to %u\n",
<------><------><------><------><------>sensor->hwcfg->ext_clk);
<------><------><------><------>return rval;
<------><------><------>}
<------><------><------>rate = clk_get_rate(sensor->ext_clk);
<------><------><------>if (rate != sensor->hwcfg->ext_clk) {
<------><------><------><------>dev_err(&client->dev,
<------><------><------><------><------>"can't set clock freq, asked for %u but got %lu\n",
<------><------><------><------><------>sensor->hwcfg->ext_clk, rate);
<------><------><------><------>return rval;
<------><------><------>}
<------><------>} else {
<------><------><------>sensor->hwcfg->ext_clk = clk_get_rate(sensor->ext_clk);
<------><------><------>dev_dbg(&client->dev, "obtained clock freq %u\n",
<------><------><------><------>sensor->hwcfg->ext_clk);
<------><------>}
<------>} else if (sensor->hwcfg->ext_clk) {
<------><------>dev_dbg(&client->dev, "assuming clock freq %u\n",
<------><------><------>sensor->hwcfg->ext_clk);
<------>} else {
<------><------>dev_err(&client->dev, "unable to obtain clock freq\n");
<------><------>return -EINVAL;
<------>}
<------>sensor->xshutdown = devm_gpiod_get_optional(&client->dev, "xshutdown",
<------><------><------><------><------><------> GPIOD_OUT_LOW);
<------>if (IS_ERR(sensor->xshutdown))
<------><------>return PTR_ERR(sensor->xshutdown);
<------>rval = smiapp_power_on(&client->dev);
<------>if (rval < 0)
<------><------>return rval;
<------>mutex_init(&sensor->mutex);
<------>rval = smiapp_identify_module(sensor);
<------>if (rval) {
<------><------>rval = -ENODEV;
<------><------>goto out_power_off;
<------>}
<------>rval = smiapp_read_all_smia_limits(sensor);
<------>if (rval) {
<------><------>rval = -ENODEV;
<------><------>goto out_power_off;
<------>}
<------>rval = smiapp_read_frame_fmt(sensor);
<------>if (rval) {
<------><------>rval = -ENODEV;
<------><------>goto out_power_off;
<------>}
<------>/*
<------> * Handle Sensor Module orientation on the board.
<------> *
<------> * The application of H-FLIP and V-FLIP on the sensor is modified by
<------> * the sensor orientation on the board.
<------> *
<------> * For SMIAPP_BOARD_SENSOR_ORIENT_180 the default behaviour is to set
<------> * both H-FLIP and V-FLIP for normal operation which also implies
<------> * that a set/unset operation for user space HFLIP and VFLIP v4l2
<------> * controls will need to be internally inverted.
<------> *
<------> * Rotation also changes the bayer pattern.
<------> */
<------>if (sensor->hwcfg->module_board_orient ==
<------> SMIAPP_MODULE_BOARD_ORIENT_180)
<------><------>sensor->hvflip_inv_mask = SMIAPP_IMAGE_ORIENTATION_HFLIP |
<------><------><------><------><------> SMIAPP_IMAGE_ORIENTATION_VFLIP;
<------>rval = smiapp_call_quirk(sensor, limits);
<------>if (rval) {
<------><------>dev_err(&client->dev, "limits quirks failed\n");
<------><------>goto out_power_off;
<------>}
<------>if (SMIA_LIM(sensor, BINNING_CAPABILITY)) {
<------><------>u32 val;
<------><------>rval = smiapp_read(sensor,
<------><------><------><------> SMIAPP_REG_U8_BINNING_SUBTYPES, &val);
<------><------>if (rval < 0) {
<------><------><------>rval = -ENODEV;
<------><------><------>goto out_power_off;
<------><------>}
<------><------>sensor->nbinning_subtypes = min_t(u8, val,
<------><------><------><------><------><------> SMIAPP_BINNING_SUBTYPES);
<------><------>for (i = 0; i < sensor->nbinning_subtypes; i++) {
<------><------><------>rval = smiapp_read(
<------><------><------><------>sensor, SMIAPP_REG_U8_BINNING_TYPE_n(i), &val);
<------><------><------>if (rval < 0) {
<------><------><------><------>rval = -ENODEV;
<------><------><------><------>goto out_power_off;
<------><------><------>}
<------><------><------>sensor->binning_subtypes[i] =
<------><------><------><------>*(struct smiapp_binning_subtype *)&val;
<------><------><------>dev_dbg(&client->dev, "binning %xx%x\n",
<------><------><------><------>sensor->binning_subtypes[i].horizontal,
<------><------><------><------>sensor->binning_subtypes[i].vertical);
<------><------>}
<------>}
<------>sensor->binning_horizontal = 1;
<------>sensor->binning_vertical = 1;
<------>if (device_create_file(&client->dev, &dev_attr_ident) != 0) {
<------><------>dev_err(&client->dev, "sysfs ident entry creation failed\n");
<------><------>rval = -ENOENT;
<------><------>goto out_power_off;
<------>}
<------>if (sensor->minfo.smiapp_version &&
<------> SMIA_LIM(sensor, DATA_TRANSFER_IF_CAPABILITY) &
<------> SMIAPP_DATA_TRANSFER_IF_CAPABILITY_SUPPORTED) {
<------><------>if (device_create_file(&client->dev, &dev_attr_nvm) != 0) {
<------><------><------>dev_err(&client->dev, "sysfs nvm entry failed\n");
<------><------><------>rval = -EBUSY;
<------><------><------>goto out_cleanup;
<------><------>}
<------>}
<------>/* We consider this as profile 0 sensor if any of these are zero. */
<------>if (!SMIA_LIM(sensor, MIN_OP_SYS_CLK_DIV) ||
<------> !SMIA_LIM(sensor, MAX_OP_SYS_CLK_DIV) ||
<------> !SMIA_LIM(sensor, MIN_OP_PIX_CLK_DIV) ||
<------> !SMIA_LIM(sensor, MAX_OP_PIX_CLK_DIV)) {
<------><------>sensor->minfo.smiapp_profile = SMIAPP_PROFILE_0;
<------>} else if (SMIA_LIM(sensor, SCALING_CAPABILITY)
<------><------> != SMIAPP_SCALING_CAPABILITY_NONE) {
<------><------>if (SMIA_LIM(sensor, SCALING_CAPABILITY)
<------><------> == SMIAPP_SCALING_CAPABILITY_HORIZONTAL)
<------><------><------>sensor->minfo.smiapp_profile = SMIAPP_PROFILE_1;
<------><------>else
<------><------><------>sensor->minfo.smiapp_profile = SMIAPP_PROFILE_2;
<------><------>sensor->scaler = &sensor->ssds[sensor->ssds_used];
<------><------>sensor->ssds_used++;
<------>} else if (SMIA_LIM(sensor, DIGITAL_CROP_CAPABILITY)
<------><------> == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) {
<------><------>sensor->scaler = &sensor->ssds[sensor->ssds_used];
<------><------>sensor->ssds_used++;
<------>}
<------>sensor->binner = &sensor->ssds[sensor->ssds_used];
<------>sensor->ssds_used++;
<------>sensor->pixel_array = &sensor->ssds[sensor->ssds_used];
<------>sensor->ssds_used++;
<------>sensor->scale_m = SMIA_LIM(sensor, SCALER_N_MIN);
<------>/* prepare PLL configuration input values */
<------>sensor->pll.bus_type = SMIAPP_PLL_BUS_TYPE_CSI2;
<------>sensor->pll.csi2.lanes = sensor->hwcfg->lanes;
<------>sensor->pll.ext_clk_freq_hz = sensor->hwcfg->ext_clk;
<------>sensor->pll.scale_n = SMIA_LIM(sensor, SCALER_N_MIN);
<------>/* Profile 0 sensors have no separate OP clock branch. */
<------>if (sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0)
<------><------>sensor->pll.flags |= SMIAPP_PLL_FLAG_NO_OP_CLOCKS;
<------>smiapp_create_subdev(sensor, sensor->scaler, " scaler", 2);
<------>smiapp_create_subdev(sensor, sensor->binner, " binner", 2);
<------>smiapp_create_subdev(sensor, sensor->pixel_array, " pixel_array", 1);
<------>dev_dbg(&client->dev, "profile %d\n", sensor->minfo.smiapp_profile);
<------>sensor->pixel_array->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR;
<------>rval = smiapp_init_controls(sensor);
<------>if (rval < 0)
<------><------>goto out_cleanup;
<------>rval = smiapp_call_quirk(sensor, init);
<------>if (rval)
<------><------>goto out_cleanup;
<------>rval = smiapp_get_mbus_formats(sensor);
<------>if (rval) {
<------><------>rval = -ENODEV;
<------><------>goto out_cleanup;
<------>}
<------>rval = smiapp_init_late_controls(sensor);
<------>if (rval) {
<------><------>rval = -ENODEV;
<------><------>goto out_cleanup;
<------>}
<------>mutex_lock(&sensor->mutex);
<------>rval = smiapp_pll_blanking_update(sensor);
<------>mutex_unlock(&sensor->mutex);
<------>if (rval) {
<------><------>dev_err(&client->dev, "update mode failed\n");
<------><------>goto out_cleanup;
<------>}
<------>sensor->streaming = false;
<------>sensor->dev_init_done = true;
<------>rval = media_entity_pads_init(&sensor->src->sd.entity, 2,
<------><------><------><------> sensor->src->pads);
<------>if (rval < 0)
<------><------>goto out_media_entity_cleanup;
<------>pm_runtime_set_active(&client->dev);
<------>pm_runtime_get_noresume(&client->dev);
<------>pm_runtime_enable(&client->dev);
<------>rval = v4l2_async_register_subdev_sensor_common(&sensor->src->sd);
<------>if (rval < 0)
<------><------>goto out_disable_runtime_pm;
<------>pm_runtime_set_autosuspend_delay(&client->dev, 1000);
<------>pm_runtime_use_autosuspend(&client->dev);
<------>pm_runtime_put_autosuspend(&client->dev);
<------>return 0;
out_disable_runtime_pm:
<------>pm_runtime_put_noidle(&client->dev);
<------>pm_runtime_disable(&client->dev);
out_media_entity_cleanup:
<------>media_entity_cleanup(&sensor->src->sd.entity);
out_cleanup:
<------>smiapp_cleanup(sensor);
out_power_off:
<------>smiapp_power_off(&client->dev);
<------>mutex_destroy(&sensor->mutex);
<------>return rval;
}
static int smiapp_remove(struct i2c_client *client)
{
<------>struct v4l2_subdev *subdev = i2c_get_clientdata(client);
<------>struct smiapp_sensor *sensor = to_smiapp_sensor(subdev);
<------>unsigned int i;
<------>v4l2_async_unregister_subdev(subdev);
<------>pm_runtime_disable(&client->dev);
<------>if (!pm_runtime_status_suspended(&client->dev))
<------><------>smiapp_power_off(&client->dev);
<------>pm_runtime_set_suspended(&client->dev);
<------>for (i = 0; i < sensor->ssds_used; i++) {
<------><------>v4l2_device_unregister_subdev(&sensor->ssds[i].sd);
<------><------>media_entity_cleanup(&sensor->ssds[i].sd.entity);
<------>}
<------>smiapp_cleanup(sensor);
<------>mutex_destroy(&sensor->mutex);
<------>return 0;
}
static const struct of_device_id smiapp_of_table[] = {
<------>{ .compatible = "nokia,smia" },
<------>{ },
};
MODULE_DEVICE_TABLE(of, smiapp_of_table);
static const struct i2c_device_id smiapp_id_table[] = {
<------>{ SMIAPP_NAME, 0 },
<------>{ },
};
MODULE_DEVICE_TABLE(i2c, smiapp_id_table);
static const struct dev_pm_ops smiapp_pm_ops = {
<------>SET_SYSTEM_SLEEP_PM_OPS(smiapp_suspend, smiapp_resume)
<------>SET_RUNTIME_PM_OPS(smiapp_power_off, smiapp_power_on, NULL)
};
static struct i2c_driver smiapp_i2c_driver = {
<------>.driver = {
<------><------>.of_match_table = smiapp_of_table,
<------><------>.name = SMIAPP_NAME,
<------><------>.pm = &smiapp_pm_ops,
<------>},
<------>.probe_new = smiapp_probe,
<------>.remove = smiapp_remove,
<------>.id_table = smiapp_id_table,
};
module_i2c_driver(smiapp_i2c_driver);
MODULE_AUTHOR("Sakari Ailus <sakari.ailus@iki.fi>");
MODULE_DESCRIPTION("Generic SMIA/SMIA++ camera module driver");
MODULE_LICENSE("GPL v2");