Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0-or-later
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * Driver for Infineon tua6100 pll.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  * (c) 2006 Andrew de Quincey
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  * Based on code found in budget-av.c, which has the following:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  * Compiled from various sources by Michael Hunold <michael@mihu.de>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10)  * CI interface support (c) 2004 Olivier Gournet <ogournet@anevia.com> &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11)  *                               Andrew de Quincey <adq_dvb@lidskialf.net>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13)  * Copyright (C) 2002 Ralph Metzler <rjkm@metzlerbros.de>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15)  * Copyright (C) 1999-2002 Ralph  Metzler
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16)  *                       & Marcus Metzler for convergence integrated media GmbH
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) #include <linux/dvb/frontend.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) #include <asm/types.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) #include "tua6100.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) struct tua6100_priv {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) 	/* i2c details */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) 	int i2c_address;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) 	struct i2c_adapter *i2c;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) 	u32 frequency;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) static void tua6100_release(struct dvb_frontend *fe)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) 	kfree(fe->tuner_priv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) 	fe->tuner_priv = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) static int tua6100_sleep(struct dvb_frontend *fe)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) 	struct tua6100_priv *priv = fe->tuner_priv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) 	u8 reg0[] = { 0x00, 0x00 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) 	struct i2c_msg msg = { .addr = priv->i2c_address, .flags = 0, .buf = reg0, .len = 2 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) 	if (fe->ops.i2c_gate_ctrl)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) 		fe->ops.i2c_gate_ctrl(fe, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) 	if ((ret = i2c_transfer (priv->i2c, &msg, 1)) != 1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) 		printk("%s: i2c error\n", __func__);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) 	if (fe->ops.i2c_gate_ctrl)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) 		fe->ops.i2c_gate_ctrl(fe, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) 	return (ret == 1) ? 0 : ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) static int tua6100_set_params(struct dvb_frontend *fe)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 	struct dtv_frontend_properties *c = &fe->dtv_property_cache;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) 	struct tua6100_priv *priv = fe->tuner_priv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) 	u32 div;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) 	u32 prediv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) 	u8 reg0[] = { 0x00, 0x00 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 	u8 reg1[] = { 0x01, 0x00, 0x00, 0x00 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 	u8 reg2[] = { 0x02, 0x00, 0x00 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) 	struct i2c_msg msg0 = { .addr = priv->i2c_address, .flags = 0, .buf = reg0, .len = 2 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) 	struct i2c_msg msg1 = { .addr = priv->i2c_address, .flags = 0, .buf = reg1, .len = 4 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 	struct i2c_msg msg2 = { .addr = priv->i2c_address, .flags = 0, .buf = reg2, .len = 3 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) #define _R_VAL 4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) #define _P_VAL 32
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) #define _ri 4000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 	// setup register 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 	if (c->frequency < 2000000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 		reg0[1] = 0x03;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 		reg0[1] = 0x07;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 	// setup register 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 	if (c->frequency < 1630000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 		reg1[1] = 0x2c;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 		reg1[1] = 0x0c;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 	if (_P_VAL == 64)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 		reg1[1] |= 0x40;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 	if (c->frequency >= 1525000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 		reg1[1] |= 0x80;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 	// register 2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 	reg2[1] = (_R_VAL >> 8) & 0x03;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 	reg2[2] = _R_VAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 	if (c->frequency < 1455000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 		reg2[1] |= 0x1c;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 	else if (c->frequency < 1630000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 		reg2[1] |= 0x0c;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 		reg2[1] |= 0x1c;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 	 * The N divisor ratio (note: c->frequency is in kHz, but we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 	 * need it in Hz)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 	prediv = (c->frequency * _R_VAL) / (_ri / 1000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 	div = prediv / _P_VAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 	reg1[1] |= (div >> 9) & 0x03;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 	reg1[2] = div >> 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 	reg1[3] = (div << 7);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 	priv->frequency = ((div * _P_VAL) * (_ri / 1000)) / _R_VAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 	// Finally, calculate and store the value for A
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 	reg1[3] |= (prediv - (div*_P_VAL)) & 0x7f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) #undef _R_VAL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) #undef _P_VAL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) #undef _ri
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 	if (fe->ops.i2c_gate_ctrl)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 		fe->ops.i2c_gate_ctrl(fe, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 	if (i2c_transfer(priv->i2c, &msg0, 1) != 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 		return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 	if (fe->ops.i2c_gate_ctrl)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 		fe->ops.i2c_gate_ctrl(fe, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 	if (i2c_transfer(priv->i2c, &msg2, 1) != 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 		return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 	if (fe->ops.i2c_gate_ctrl)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 		fe->ops.i2c_gate_ctrl(fe, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 	if (i2c_transfer(priv->i2c, &msg1, 1) != 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 		return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 	if (fe->ops.i2c_gate_ctrl)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 		fe->ops.i2c_gate_ctrl(fe, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) static int tua6100_get_frequency(struct dvb_frontend *fe, u32 *frequency)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 	struct tua6100_priv *priv = fe->tuner_priv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 	*frequency = priv->frequency;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) static const struct dvb_tuner_ops tua6100_tuner_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 	.info = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 		.name = "Infineon TUA6100",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 		.frequency_min_hz  =  950 * MHz,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 		.frequency_max_hz  = 2150 * MHz,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 		.frequency_step_hz =    1 * MHz,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 	.release = tua6100_release,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 	.sleep = tua6100_sleep,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 	.set_params = tua6100_set_params,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 	.get_frequency = tua6100_get_frequency,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) struct dvb_frontend *tua6100_attach(struct dvb_frontend *fe, int addr, struct i2c_adapter *i2c)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 	struct tua6100_priv *priv = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 	u8 b1 [] = { 0x80 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 	u8 b2 [] = { 0x00 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 	struct i2c_msg msg [] = { { .addr = addr, .flags = 0, .buf = b1, .len = 1 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 				  { .addr = addr, .flags = I2C_M_RD, .buf = b2, .len = 1 } };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 	if (fe->ops.i2c_gate_ctrl)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 		fe->ops.i2c_gate_ctrl(fe, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 	ret = i2c_transfer (i2c, msg, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 	if (fe->ops.i2c_gate_ctrl)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 		fe->ops.i2c_gate_ctrl(fe, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 	if (ret != 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 	priv = kzalloc(sizeof(struct tua6100_priv), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 	if (priv == NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 	priv->i2c_address = addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 	priv->i2c = i2c;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 	memcpy(&fe->ops.tuner_ops, &tua6100_tuner_ops, sizeof(struct dvb_tuner_ops));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 	fe->tuner_priv = priv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 	return fe;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) EXPORT_SYMBOL(tua6100_attach);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) MODULE_DESCRIPTION("DVB tua6100 driver");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) MODULE_AUTHOR("Andrew de Quincey");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) MODULE_LICENSE("GPL");