^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) * Copyright (C) 2001 Sistina Software (UK) Limited.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) * This file is released under the GPL.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) #include "dm-core.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) #include <linux/vmalloc.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) #include <linux/blkdev.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) #include <linux/namei.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) #include <linux/ctype.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) #include <linux/string.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) #include <linux/interrupt.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) #include <linux/mutex.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) #include <linux/delay.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) #include <linux/atomic.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) #include <linux/blk-mq.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) #include <linux/mount.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) #include <linux/dax.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) #define DM_MSG_PREFIX "table"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) #define NODE_SIZE L1_CACHE_BYTES
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) * Similar to ceiling(log_size(n))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) static unsigned int int_log(unsigned int n, unsigned int base)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) int result = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) while (n > 1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) n = dm_div_up(n, base);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) result++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) return result;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) * Calculate the index of the child node of the n'th node k'th key.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) static inline unsigned int get_child(unsigned int n, unsigned int k)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) return (n * CHILDREN_PER_NODE) + k;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) * Return the n'th node of level l from table t.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) static inline sector_t *get_node(struct dm_table *t,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) unsigned int l, unsigned int n)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) return t->index[l] + (n * KEYS_PER_NODE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) * Return the highest key that you could lookup from the n'th
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) * node on level l of the btree.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) for (; l < t->depth - 1; l++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) n = get_child(n, CHILDREN_PER_NODE - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) if (n >= t->counts[l])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) return (sector_t) - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) return get_node(t, l, n)[KEYS_PER_NODE - 1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) * Fills in a level of the btree based on the highs of the level
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) * below it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) static int setup_btree_index(unsigned int l, struct dm_table *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) unsigned int n, k;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) sector_t *node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) for (n = 0U; n < t->counts[l]; n++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) node = get_node(t, l, n);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) for (k = 0U; k < KEYS_PER_NODE; k++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) node[k] = high(t, l + 1, get_child(n, k));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) unsigned long size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) void *addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) * Check that we're not going to overflow.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) if (nmemb > (ULONG_MAX / elem_size))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) size = nmemb * elem_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) addr = vzalloc(size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) return addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) EXPORT_SYMBOL(dm_vcalloc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) * highs, and targets are managed as dynamic arrays during a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) * table load.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) static int alloc_targets(struct dm_table *t, unsigned int num)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) sector_t *n_highs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) struct dm_target *n_targets;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) * Allocate both the target array and offset array at once.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) sizeof(sector_t));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) if (!n_highs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) n_targets = (struct dm_target *) (n_highs + num);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) memset(n_highs, -1, sizeof(*n_highs) * num);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) vfree(t->highs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) t->num_allocated = num;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) t->highs = n_highs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) t->targets = n_targets;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) int dm_table_create(struct dm_table **result, fmode_t mode,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) unsigned num_targets, struct mapped_device *md)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) if (!t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) INIT_LIST_HEAD(&t->devices);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) if (!num_targets)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) num_targets = KEYS_PER_NODE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) if (!num_targets) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) kfree(t);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) if (alloc_targets(t, num_targets)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) kfree(t);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) t->type = DM_TYPE_NONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) t->mode = mode;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) t->md = md;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) *result = t;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) static void free_devices(struct list_head *devices, struct mapped_device *md)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) struct list_head *tmp, *next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) list_for_each_safe(tmp, next, devices) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) struct dm_dev_internal *dd =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) list_entry(tmp, struct dm_dev_internal, list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) dm_device_name(md), dd->dm_dev->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) dm_put_table_device(md, dd->dm_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) kfree(dd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) static void dm_table_destroy_keyslot_manager(struct dm_table *t);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) void dm_table_destroy(struct dm_table *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) unsigned int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) if (!t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) /* free the indexes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) if (t->depth >= 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) vfree(t->index[t->depth - 2]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) /* free the targets */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) for (i = 0; i < t->num_targets; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) struct dm_target *tgt = t->targets + i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) if (tgt->type->dtr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) tgt->type->dtr(tgt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) dm_put_target_type(tgt->type);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) vfree(t->highs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) /* free the device list */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) free_devices(&t->devices, t->md);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) dm_free_md_mempools(t->mempools);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) dm_table_destroy_keyslot_manager(t);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) kfree(t);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) * See if we've already got a device in the list.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) struct dm_dev_internal *dd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) list_for_each_entry (dd, l, list)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) if (dd->dm_dev->bdev->bd_dev == dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) return dd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) * If possible, this checks an area of a destination device is invalid.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) sector_t start, sector_t len, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) struct queue_limits *limits = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) struct block_device *bdev = dev->bdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) sector_t dev_size =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) unsigned short logical_block_size_sectors =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) limits->logical_block_size >> SECTOR_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) char b[BDEVNAME_SIZE];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) if (!dev_size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) if ((start >= dev_size) || (start + len > dev_size)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) DMWARN("%s: %s too small for target: "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) "start=%llu, len=%llu, dev_size=%llu",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) dm_device_name(ti->table->md), bdevname(bdev, b),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) (unsigned long long)start,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) (unsigned long long)len,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) (unsigned long long)dev_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) * If the target is mapped to zoned block device(s), check
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) * that the zones are not partially mapped.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) unsigned int zone_sectors = bdev_zone_sectors(bdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) if (start & (zone_sectors - 1)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) dm_device_name(ti->table->md),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) (unsigned long long)start,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) zone_sectors, bdevname(bdev, b));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) * Note: The last zone of a zoned block device may be smaller
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) * than other zones. So for a target mapping the end of a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) * zoned block device with such a zone, len would not be zone
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) * aligned. We do not allow such last smaller zone to be part
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) * of the mapping here to ensure that mappings with multiple
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) * devices do not end up with a smaller zone in the middle of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) * the sector range.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) if (len & (zone_sectors - 1)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) dm_device_name(ti->table->md),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) (unsigned long long)len,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) zone_sectors, bdevname(bdev, b));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) if (logical_block_size_sectors <= 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) if (start & (logical_block_size_sectors - 1)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) DMWARN("%s: start=%llu not aligned to h/w "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) "logical block size %u of %s",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) dm_device_name(ti->table->md),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) (unsigned long long)start,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) limits->logical_block_size, bdevname(bdev, b));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) if (len & (logical_block_size_sectors - 1)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) DMWARN("%s: len=%llu not aligned to h/w "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) "logical block size %u of %s",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) dm_device_name(ti->table->md),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) (unsigned long long)len,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) limits->logical_block_size, bdevname(bdev, b));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) * This upgrades the mode on an already open dm_dev, being
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) * careful to leave things as they were if we fail to reopen the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) * device and not to touch the existing bdev field in case
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) * it is accessed concurrently.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) struct mapped_device *md)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) int r;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) struct dm_dev *old_dev, *new_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) old_dev = dd->dm_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) dd->dm_dev->mode | new_mode, &new_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) if (r)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) return r;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) dd->dm_dev = new_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) dm_put_table_device(md, old_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) * Convert the path to a device
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) dev_t dm_get_dev_t(const char *path)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) dev_t dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) struct block_device *bdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) bdev = lookup_bdev(path);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) if (IS_ERR(bdev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) dev = name_to_dev_t(path);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) dev = bdev->bd_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) bdput(bdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) return dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) EXPORT_SYMBOL_GPL(dm_get_dev_t);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) * Add a device to the list, or just increment the usage count if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) * it's already present.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) struct dm_dev **result)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) int r;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) dev_t dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) unsigned int major, minor;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) char dummy;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) struct dm_dev_internal *dd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) struct dm_table *t = ti->table;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) BUG_ON(!t);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) /* Extract the major/minor numbers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) dev = MKDEV(major, minor);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) if (MAJOR(dev) != major || MINOR(dev) != minor)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) return -EOVERFLOW;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) dev = dm_get_dev_t(path);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) if (!dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) dd = find_device(&t->devices, dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) if (!dd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) dd = kmalloc(sizeof(*dd), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) if (!dd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) kfree(dd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) return r;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) refcount_set(&dd->count, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) list_add(&dd->list, &t->devices);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) r = upgrade_mode(dd, mode, t->md);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) if (r)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) return r;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) refcount_inc(&dd->count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) *result = dd->dm_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) EXPORT_SYMBOL(dm_get_device);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) sector_t start, sector_t len, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) struct queue_limits *limits = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) struct block_device *bdev = dev->bdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) struct request_queue *q = bdev_get_queue(bdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) char b[BDEVNAME_SIZE];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) if (unlikely(!q)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) DMWARN("%s: Cannot set limits for nonexistent device %s",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) dm_device_name(ti->table->md), bdevname(bdev, b));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) if (blk_stack_limits(limits, &q->limits,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) get_start_sect(bdev) + start) < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) DMWARN("%s: adding target device %s caused an alignment inconsistency: "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) "physical_block_size=%u, logical_block_size=%u, "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) "alignment_offset=%u, start=%llu",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) dm_device_name(ti->table->md), bdevname(bdev, b),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) q->limits.physical_block_size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) q->limits.logical_block_size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) q->limits.alignment_offset,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) (unsigned long long) start << SECTOR_SHIFT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) * Decrement a device's use count and remove it if necessary.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) void dm_put_device(struct dm_target *ti, struct dm_dev *d)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) int found = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) struct list_head *devices = &ti->table->devices;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) struct dm_dev_internal *dd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) list_for_each_entry(dd, devices, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) if (dd->dm_dev == d) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) found = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) if (!found) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) DMWARN("%s: device %s not in table devices list",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) dm_device_name(ti->table->md), d->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) if (refcount_dec_and_test(&dd->count)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) dm_put_table_device(ti->table->md, d);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) list_del(&dd->list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) kfree(dd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) EXPORT_SYMBOL(dm_put_device);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) * Checks to see if the target joins onto the end of the table.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) static int adjoin(struct dm_table *table, struct dm_target *ti)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) struct dm_target *prev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) if (!table->num_targets)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) return !ti->begin;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) prev = &table->targets[table->num_targets - 1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) return (ti->begin == (prev->begin + prev->len));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) * Used to dynamically allocate the arg array.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) * process messages even if some device is suspended. These messages have a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) * small fixed number of arguments.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) * On the other hand, dm-switch needs to process bulk data using messages and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) * excessive use of GFP_NOIO could cause trouble.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) static char **realloc_argv(unsigned *size, char **old_argv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) char **argv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) unsigned new_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) gfp_t gfp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) if (*size) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) new_size = *size * 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) gfp = GFP_KERNEL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) new_size = 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) gfp = GFP_NOIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) argv = kmalloc_array(new_size, sizeof(*argv), gfp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) if (argv && old_argv) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) memcpy(argv, old_argv, *size * sizeof(*argv));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) *size = new_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) kfree(old_argv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) return argv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) * Destructively splits up the argument list to pass to ctr.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) int dm_split_args(int *argc, char ***argvp, char *input)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) char *start, *end = input, *out, **argv = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) unsigned array_size = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) *argc = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) if (!input) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) *argvp = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) argv = realloc_argv(&array_size, argv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) if (!argv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) while (1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) /* Skip whitespace */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) start = skip_spaces(end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) if (!*start)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) break; /* success, we hit the end */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) /* 'out' is used to remove any back-quotes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) end = out = start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) while (*end) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) /* Everything apart from '\0' can be quoted */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) if (*end == '\\' && *(end + 1)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) *out++ = *(end + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) end += 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) if (isspace(*end))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) break; /* end of token */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) *out++ = *end++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) /* have we already filled the array ? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) if ((*argc + 1) > array_size) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) argv = realloc_argv(&array_size, argv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) if (!argv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) /* we know this is whitespace */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) if (*end)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) end++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) /* terminate the string and put it in the array */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) *out = '\0';
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) argv[*argc] = start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) (*argc)++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) *argvp = argv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) * Impose necessary and sufficient conditions on a devices's table such
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) * that any incoming bio which respects its logical_block_size can be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) * processed successfully. If it falls across the boundary between
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) * two or more targets, the size of each piece it gets split into must
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) * be compatible with the logical_block_size of the target processing it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) static int validate_hardware_logical_block_alignment(struct dm_table *table,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) struct queue_limits *limits)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) * This function uses arithmetic modulo the logical_block_size
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) * (in units of 512-byte sectors).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) unsigned short device_logical_block_size_sects =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) limits->logical_block_size >> SECTOR_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) * Offset of the start of the next table entry, mod logical_block_size.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) unsigned short next_target_start = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) * Given an aligned bio that extends beyond the end of a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611) * target, how many sectors must the next target handle?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) unsigned short remaining = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615) struct dm_target *ti;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616) struct queue_limits ti_limits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) unsigned i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620) * Check each entry in the table in turn.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622) for (i = 0; i < dm_table_get_num_targets(table); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623) ti = dm_table_get_target(table, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625) blk_set_stacking_limits(&ti_limits);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627) /* combine all target devices' limits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628) if (ti->type->iterate_devices)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629) ti->type->iterate_devices(ti, dm_set_device_limits,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630) &ti_limits);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633) * If the remaining sectors fall entirely within this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634) * table entry are they compatible with its logical_block_size?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636) if (remaining < ti->len &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637) remaining & ((ti_limits.logical_block_size >>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638) SECTOR_SHIFT) - 1))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639) break; /* Error */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641) next_target_start =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642) (unsigned short) ((next_target_start + ti->len) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643) (device_logical_block_size_sects - 1));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644) remaining = next_target_start ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 645) device_logical_block_size_sects - next_target_start : 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 646) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 647)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 648) if (remaining) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 649) DMWARN("%s: table line %u (start sect %llu len %llu) "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 650) "not aligned to h/w logical block size %u",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 651) dm_device_name(table->md), i,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 652) (unsigned long long) ti->begin,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 653) (unsigned long long) ti->len,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 654) limits->logical_block_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 655) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 656) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 657)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 658) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 659) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 660)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 661) int dm_table_add_target(struct dm_table *t, const char *type,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 662) sector_t start, sector_t len, char *params)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 663) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 664) int r = -EINVAL, argc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 665) char **argv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 666) struct dm_target *tgt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 667)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 668) if (t->singleton) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 669) DMERR("%s: target type %s must appear alone in table",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 670) dm_device_name(t->md), t->targets->type->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 671) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 672) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 673)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 674) BUG_ON(t->num_targets >= t->num_allocated);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 675)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 676) tgt = t->targets + t->num_targets;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 677) memset(tgt, 0, sizeof(*tgt));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 678)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 679) if (!len) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 680) DMERR("%s: zero-length target", dm_device_name(t->md));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 681) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 682) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 683)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 684) tgt->type = dm_get_target_type(type);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 685) if (!tgt->type) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 686) DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 687) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 688) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 689)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 690) if (dm_target_needs_singleton(tgt->type)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 691) if (t->num_targets) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 692) tgt->error = "singleton target type must appear alone in table";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 693) goto bad;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 694) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 695) t->singleton = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 696) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 697)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 698) if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 699) tgt->error = "target type may not be included in a read-only table";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 700) goto bad;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 701) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 702)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 703) if (t->immutable_target_type) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 704) if (t->immutable_target_type != tgt->type) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 705) tgt->error = "immutable target type cannot be mixed with other target types";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 706) goto bad;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 707) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 708) } else if (dm_target_is_immutable(tgt->type)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 709) if (t->num_targets) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 710) tgt->error = "immutable target type cannot be mixed with other target types";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 711) goto bad;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 712) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 713) t->immutable_target_type = tgt->type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 714) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 715)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 716) if (dm_target_has_integrity(tgt->type))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 717) t->integrity_added = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 718)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 719) tgt->table = t;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 720) tgt->begin = start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 721) tgt->len = len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 722) tgt->error = "Unknown error";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 723)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 724) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 725) * Does this target adjoin the previous one ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 726) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 727) if (!adjoin(t, tgt)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 728) tgt->error = "Gap in table";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 729) goto bad;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 730) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 731)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 732) r = dm_split_args(&argc, &argv, params);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 733) if (r) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 734) tgt->error = "couldn't split parameters (insufficient memory)";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 735) goto bad;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 736) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 737)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 738) r = tgt->type->ctr(tgt, argc, argv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 739) kfree(argv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 740) if (r)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 741) goto bad;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 742)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 743) t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 744)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 745) if (!tgt->num_discard_bios && tgt->discards_supported)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 746) DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 747) dm_device_name(t->md), type);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 748)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 749) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 750)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 751) bad:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 752) DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 753) dm_put_target_type(tgt->type);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 754) return r;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 755) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 756)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 757) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 758) * Target argument parsing helpers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 759) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 760) static int validate_next_arg(const struct dm_arg *arg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 761) struct dm_arg_set *arg_set,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 762) unsigned *value, char **error, unsigned grouped)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 763) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 764) const char *arg_str = dm_shift_arg(arg_set);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 765) char dummy;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 766)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 767) if (!arg_str ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 768) (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 769) (*value < arg->min) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 770) (*value > arg->max) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 771) (grouped && arg_set->argc < *value)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 772) *error = arg->error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 773) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 774) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 775)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 776) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 777) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 778)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 779) int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 780) unsigned *value, char **error)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 781) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 782) return validate_next_arg(arg, arg_set, value, error, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 783) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 784) EXPORT_SYMBOL(dm_read_arg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 785)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 786) int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 787) unsigned *value, char **error)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 788) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 789) return validate_next_arg(arg, arg_set, value, error, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 790) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 791) EXPORT_SYMBOL(dm_read_arg_group);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 792)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 793) const char *dm_shift_arg(struct dm_arg_set *as)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 794) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 795) char *r;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 796)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 797) if (as->argc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 798) as->argc--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 799) r = *as->argv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 800) as->argv++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 801) return r;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 802) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 803)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 804) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 805) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 806) EXPORT_SYMBOL(dm_shift_arg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 807)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 808) void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 809) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 810) BUG_ON(as->argc < num_args);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 811) as->argc -= num_args;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 812) as->argv += num_args;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 813) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 814) EXPORT_SYMBOL(dm_consume_args);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 815)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 816) static bool __table_type_bio_based(enum dm_queue_mode table_type)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 817) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 818) return (table_type == DM_TYPE_BIO_BASED ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 819) table_type == DM_TYPE_DAX_BIO_BASED);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 820) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 821)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 822) static bool __table_type_request_based(enum dm_queue_mode table_type)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 823) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 824) return table_type == DM_TYPE_REQUEST_BASED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 825) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 826)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 827) void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 828) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 829) t->type = type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 830) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 831) EXPORT_SYMBOL_GPL(dm_table_set_type);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 832)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 833) /* validate the dax capability of the target device span */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 834) int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 835) sector_t start, sector_t len, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 836) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 837) int blocksize = *(int *) data, id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 838) bool rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 839)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 840) id = dax_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 841) rc = !dax_supported(dev->dax_dev, dev->bdev, blocksize, start, len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 842) dax_read_unlock(id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 843)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 844) return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 845) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 846)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 847) /* Check devices support synchronous DAX */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 848) static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 849) sector_t start, sector_t len, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 850) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 851) return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 852) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 853)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 854) bool dm_table_supports_dax(struct dm_table *t,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 855) iterate_devices_callout_fn iterate_fn, int *blocksize)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 856) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 857) struct dm_target *ti;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 858) unsigned i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 859)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 860) /* Ensure that all targets support DAX. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 861) for (i = 0; i < dm_table_get_num_targets(t); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 862) ti = dm_table_get_target(t, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 863)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 864) if (!ti->type->direct_access)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 865) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 866)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 867) if (!ti->type->iterate_devices ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 868) ti->type->iterate_devices(ti, iterate_fn, blocksize))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 869) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 870) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 871)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 872) return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 873) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 874)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 875) static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 876) sector_t start, sector_t len, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 877) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 878) struct block_device *bdev = dev->bdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 879) struct request_queue *q = bdev_get_queue(bdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 880)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 881) /* request-based cannot stack on partitions! */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 882) if (bdev_is_partition(bdev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 883) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 884)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 885) return queue_is_mq(q);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 886) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 887)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 888) static int dm_table_determine_type(struct dm_table *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 889) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 890) unsigned i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 891) unsigned bio_based = 0, request_based = 0, hybrid = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 892) struct dm_target *tgt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 893) struct list_head *devices = dm_table_get_devices(t);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 894) enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 895) int page_size = PAGE_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 896)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 897) if (t->type != DM_TYPE_NONE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 898) /* target already set the table's type */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 899) if (t->type == DM_TYPE_BIO_BASED) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 900) /* possibly upgrade to a variant of bio-based */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 901) goto verify_bio_based;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 902) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 903) BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 904) goto verify_rq_based;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 905) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 906)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 907) for (i = 0; i < t->num_targets; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 908) tgt = t->targets + i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 909) if (dm_target_hybrid(tgt))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 910) hybrid = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 911) else if (dm_target_request_based(tgt))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 912) request_based = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 913) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 914) bio_based = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 915)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 916) if (bio_based && request_based) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 917) DMERR("Inconsistent table: different target types"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 918) " can't be mixed up");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 919) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 920) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 921) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 922)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 923) if (hybrid && !bio_based && !request_based) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 924) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 925) * The targets can work either way.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 926) * Determine the type from the live device.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 927) * Default to bio-based if device is new.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 928) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 929) if (__table_type_request_based(live_md_type))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 930) request_based = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 931) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 932) bio_based = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 933) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 934)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 935) if (bio_based) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 936) verify_bio_based:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 937) /* We must use this table as bio-based */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 938) t->type = DM_TYPE_BIO_BASED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 939) if (dm_table_supports_dax(t, device_not_dax_capable, &page_size) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 940) (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 941) t->type = DM_TYPE_DAX_BIO_BASED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 942) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 943) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 944) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 945)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 946) BUG_ON(!request_based); /* No targets in this table */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 947)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 948) t->type = DM_TYPE_REQUEST_BASED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 949)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 950) verify_rq_based:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 951) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 952) * Request-based dm supports only tables that have a single target now.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 953) * To support multiple targets, request splitting support is needed,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 954) * and that needs lots of changes in the block-layer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 955) * (e.g. request completion process for partial completion.)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 956) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 957) if (t->num_targets > 1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 958) DMERR("request-based DM doesn't support multiple targets");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 959) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 960) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 961)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 962) if (list_empty(devices)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 963) int srcu_idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 964) struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 965)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 966) /* inherit live table's type */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 967) if (live_table)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 968) t->type = live_table->type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 969) dm_put_live_table(t->md, srcu_idx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 970) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 971) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 972)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 973) tgt = dm_table_get_immutable_target(t);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 974) if (!tgt) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 975) DMERR("table load rejected: immutable target is required");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 976) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 977) } else if (tgt->max_io_len) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 978) DMERR("table load rejected: immutable target that splits IO is not supported");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 979) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 980) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 981)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 982) /* Non-request-stackable devices can't be used for request-based dm */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 983) if (!tgt->type->iterate_devices ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 984) !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 985) DMERR("table load rejected: including non-request-stackable devices");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 986) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 987) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 988)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 989) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 990) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 991)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 992) enum dm_queue_mode dm_table_get_type(struct dm_table *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 993) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 994) return t->type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 995) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 996)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 997) struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 998) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 999) return t->immutable_target_type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) /* Immutable target is implicitly a singleton */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005) if (t->num_targets > 1 ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) !dm_target_is_immutable(t->targets[0].type))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) return t->targets;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012) struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014) struct dm_target *ti;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) unsigned i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017) for (i = 0; i < dm_table_get_num_targets(t); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018) ti = dm_table_get_target(t, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019) if (dm_target_is_wildcard(ti->type))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020) return ti;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) bool dm_table_bio_based(struct dm_table *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) return __table_type_bio_based(dm_table_get_type(t));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031) bool dm_table_request_based(struct dm_table *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033) return __table_type_request_based(dm_table_get_type(t));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036) static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038) enum dm_queue_mode type = dm_table_get_type(t);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039) unsigned per_io_data_size = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040) unsigned min_pool_size = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041) struct dm_target *ti;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042) unsigned i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044) if (unlikely(type == DM_TYPE_NONE)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045) DMWARN("no table type is set, can't allocate mempools");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049) if (__table_type_bio_based(type))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050) for (i = 0; i < t->num_targets; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051) ti = t->targets + i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052) per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053) min_pool_size = max(min_pool_size, ti->num_flush_bios);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056) t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057) per_io_data_size, min_pool_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058) if (!t->mempools)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) void dm_table_free_md_mempools(struct dm_table *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) dm_free_md_mempools(t->mempools);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) t->mempools = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) return t->mempools;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) static int setup_indexes(struct dm_table *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078) unsigned int total = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) sector_t *indexes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) /* allocate the space for *all* the indexes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) for (i = t->depth - 2; i >= 0; i--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) total += t->counts[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088) if (!indexes)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) /* set up internal nodes, bottom-up */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) for (i = t->depth - 2; i >= 0; i--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) t->index[i] = indexes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) indexes += (KEYS_PER_NODE * t->counts[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) setup_btree_index(i, t);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102) * Builds the btree to index the map.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104) static int dm_table_build_index(struct dm_table *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106) int r = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) unsigned int leaf_nodes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109) /* how many indexes will the btree have ? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110) leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111) t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) /* leaf layer has already been set up */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114) t->counts[t->depth - 1] = leaf_nodes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115) t->index[t->depth - 1] = t->highs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) if (t->depth >= 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118) r = setup_indexes(t);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) return r;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123) static bool integrity_profile_exists(struct gendisk *disk)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125) return !!blk_get_integrity(disk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129) * Get a disk whose integrity profile reflects the table's profile.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130) * Returns NULL if integrity support was inconsistent or unavailable.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132) static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134) struct list_head *devices = dm_table_get_devices(t);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135) struct dm_dev_internal *dd = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136) struct gendisk *prev_disk = NULL, *template_disk = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137) unsigned i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139) for (i = 0; i < dm_table_get_num_targets(t); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140) struct dm_target *ti = dm_table_get_target(t, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141) if (!dm_target_passes_integrity(ti->type))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142) goto no_integrity;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145) list_for_each_entry(dd, devices, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146) template_disk = dd->dm_dev->bdev->bd_disk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147) if (!integrity_profile_exists(template_disk))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148) goto no_integrity;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149) else if (prev_disk &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150) blk_integrity_compare(prev_disk, template_disk) < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151) goto no_integrity;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152) prev_disk = template_disk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155) return template_disk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157) no_integrity:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158) if (prev_disk)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159) DMWARN("%s: integrity not set: %s and %s profile mismatch",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160) dm_device_name(t->md),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161) prev_disk->disk_name,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1162) template_disk->disk_name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1163) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1164) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1165)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1166) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1167) * Register the mapped device for blk_integrity support if the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1168) * underlying devices have an integrity profile. But all devices may
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1169) * not have matching profiles (checking all devices isn't reliable
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1170) * during table load because this table may use other DM device(s) which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1171) * must be resumed before they will have an initialized integity
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1172) * profile). Consequently, stacked DM devices force a 2 stage integrity
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1173) * profile validation: First pass during table load, final pass during
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1174) * resume.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1175) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1176) static int dm_table_register_integrity(struct dm_table *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1177) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1178) struct mapped_device *md = t->md;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1179) struct gendisk *template_disk = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1180)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1181) /* If target handles integrity itself do not register it here. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1182) if (t->integrity_added)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1183) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1184)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1185) template_disk = dm_table_get_integrity_disk(t);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1186) if (!template_disk)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1187) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1188)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1189) if (!integrity_profile_exists(dm_disk(md))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1190) t->integrity_supported = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1191) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1192) * Register integrity profile during table load; we can do
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1193) * this because the final profile must match during resume.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1194) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1195) blk_integrity_register(dm_disk(md),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1196) blk_get_integrity(template_disk));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1197) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1198) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1199)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1200) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1201) * If DM device already has an initialized integrity
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1202) * profile the new profile should not conflict.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1203) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1204) if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1205) DMWARN("%s: conflict with existing integrity profile: "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1206) "%s profile mismatch",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1207) dm_device_name(t->md),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1208) template_disk->disk_name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1209) return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1210) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1211)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1212) /* Preserve existing integrity profile */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1213) t->integrity_supported = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1214) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1215) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1216)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1217) #ifdef CONFIG_BLK_INLINE_ENCRYPTION
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1218)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1219) struct dm_keyslot_manager {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1220) struct blk_keyslot_manager ksm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1221) struct mapped_device *md;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1222) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1223)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1224) struct dm_keyslot_evict_args {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1225) const struct blk_crypto_key *key;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1226) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1227) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1228)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1229) static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1230) sector_t start, sector_t len, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1231) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1232) struct dm_keyslot_evict_args *args = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1233) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1234)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1235) err = blk_crypto_evict_key(bdev_get_queue(dev->bdev), args->key);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1236) if (!args->err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1237) args->err = err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1238) /* Always try to evict the key from all devices. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1239) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1240) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1241)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1242) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1243) * When an inline encryption key is evicted from a device-mapper device, evict
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1244) * it from all the underlying devices.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1245) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1246) static int dm_keyslot_evict(struct blk_keyslot_manager *ksm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1247) const struct blk_crypto_key *key, unsigned int slot)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1248) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1249) struct dm_keyslot_manager *dksm = container_of(ksm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1250) struct dm_keyslot_manager,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1251) ksm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1252) struct mapped_device *md = dksm->md;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1253) struct dm_keyslot_evict_args args = { key };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1254) struct dm_table *t;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1255) int srcu_idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1256) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1257) struct dm_target *ti;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1258)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1259) t = dm_get_live_table(md, &srcu_idx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1260) if (!t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1261) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1262) for (i = 0; i < dm_table_get_num_targets(t); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1263) ti = dm_table_get_target(t, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1264) if (!ti->type->iterate_devices)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1265) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1266) ti->type->iterate_devices(ti, dm_keyslot_evict_callback, &args);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1267) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1268) dm_put_live_table(md, srcu_idx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1269) return args.err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1270) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1271)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1272) struct dm_derive_raw_secret_args {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1273) const u8 *wrapped_key;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1274) unsigned int wrapped_key_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1275) u8 *secret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1276) unsigned int secret_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1277) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1278) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1279)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1280) static int dm_derive_raw_secret_callback(struct dm_target *ti,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1281) struct dm_dev *dev, sector_t start,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1282) sector_t len, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1283) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1284) struct dm_derive_raw_secret_args *args = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1285) struct request_queue *q = bdev_get_queue(dev->bdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1286)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1287) if (!args->err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1288) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1289)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1290) if (!q->ksm) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1291) args->err = -EOPNOTSUPP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1292) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1293) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1294)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1295) args->err = blk_ksm_derive_raw_secret(q->ksm, args->wrapped_key,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1296) args->wrapped_key_size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1297) args->secret,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1298) args->secret_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1299) /* Try another device in case this fails. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1300) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1301) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1302)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1303) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1304) * Retrieve the raw_secret from the underlying device. Given that only one
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1305) * raw_secret can exist for a particular wrappedkey, retrieve it only from the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1306) * first device that supports derive_raw_secret().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1307) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1308) static int dm_derive_raw_secret(struct blk_keyslot_manager *ksm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1309) const u8 *wrapped_key,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1310) unsigned int wrapped_key_size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1311) u8 *secret, unsigned int secret_size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1312) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1313) struct dm_keyslot_manager *dksm = container_of(ksm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1314) struct dm_keyslot_manager,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1315) ksm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1316) struct mapped_device *md = dksm->md;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1317) struct dm_derive_raw_secret_args args = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1318) .wrapped_key = wrapped_key,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1319) .wrapped_key_size = wrapped_key_size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1320) .secret = secret,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1321) .secret_size = secret_size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1322) .err = -EOPNOTSUPP,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1323) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1324) struct dm_table *t;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1325) int srcu_idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1326) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1327) struct dm_target *ti;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1328)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1329) t = dm_get_live_table(md, &srcu_idx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1330) if (!t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1331) return -EOPNOTSUPP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1332) for (i = 0; i < dm_table_get_num_targets(t); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1333) ti = dm_table_get_target(t, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1334) if (!ti->type->iterate_devices)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1335) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1336) ti->type->iterate_devices(ti, dm_derive_raw_secret_callback,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1337) &args);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1338) if (!args.err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1339) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1340) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1341) dm_put_live_table(md, srcu_idx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1342) return args.err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1343) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1344)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1345)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1346) static struct blk_ksm_ll_ops dm_ksm_ll_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1347) .keyslot_evict = dm_keyslot_evict,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1348) .derive_raw_secret = dm_derive_raw_secret,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1349) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1350)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1351) static int device_intersect_crypto_modes(struct dm_target *ti,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1352) struct dm_dev *dev, sector_t start,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1353) sector_t len, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1354) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1355) struct blk_keyslot_manager *parent = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1356) struct blk_keyslot_manager *child = bdev_get_queue(dev->bdev)->ksm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1357)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1358) blk_ksm_intersect_modes(parent, child);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1359) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1360) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1361)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1362) void dm_destroy_keyslot_manager(struct blk_keyslot_manager *ksm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1363) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1364) struct dm_keyslot_manager *dksm = container_of(ksm,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1365) struct dm_keyslot_manager,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1366) ksm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1367)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1368) if (!ksm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1369) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1370)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1371) blk_ksm_destroy(ksm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1372) kfree(dksm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1373) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1374)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1375) static void dm_table_destroy_keyslot_manager(struct dm_table *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1376) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1377) dm_destroy_keyslot_manager(t->ksm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1378) t->ksm = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1379) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1380)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1381) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1382) * Constructs and initializes t->ksm with a keyslot manager that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1383) * represents the common set of crypto capabilities of the devices
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1384) * described by the dm_table. However, if the constructed keyslot
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1385) * manager does not support a superset of the crypto capabilities
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1386) * supported by the current keyslot manager of the mapped_device,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1387) * it returns an error instead, since we don't support restricting
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1388) * crypto capabilities on table changes. Finally, if the constructed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1389) * keyslot manager doesn't actually support any crypto modes at all,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1390) * it just returns NULL.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1391) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1392) static int dm_table_construct_keyslot_manager(struct dm_table *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1393) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1394) struct dm_keyslot_manager *dksm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1395) struct blk_keyslot_manager *ksm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1396) struct dm_target *ti;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1397) unsigned int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1398) bool ksm_is_empty = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1399)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1400) dksm = kmalloc(sizeof(*dksm), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1401) if (!dksm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1402) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1403) dksm->md = t->md;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1404)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1405) ksm = &dksm->ksm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1406) blk_ksm_init_passthrough(ksm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1407) ksm->ksm_ll_ops = dm_ksm_ll_ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1408) ksm->max_dun_bytes_supported = UINT_MAX;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1409) memset(ksm->crypto_modes_supported, 0xFF,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1410) sizeof(ksm->crypto_modes_supported));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1411) ksm->features = BLK_CRYPTO_FEATURE_STANDARD_KEYS |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1412) BLK_CRYPTO_FEATURE_WRAPPED_KEYS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1413)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1414) for (i = 0; i < dm_table_get_num_targets(t); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1415) ti = dm_table_get_target(t, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1416)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1417) if (!dm_target_passes_crypto(ti->type)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1418) blk_ksm_intersect_modes(ksm, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1419) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1420) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1421) if (!ti->type->iterate_devices)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1422) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1423) ti->type->iterate_devices(ti, device_intersect_crypto_modes,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1424) ksm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1425) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1426)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1427) if (t->md->queue && !blk_ksm_is_superset(ksm, t->md->queue->ksm)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1428) DMWARN("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1429) dm_destroy_keyslot_manager(ksm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1430) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1431) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1432)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1433) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1434) * If the new KSM doesn't actually support any crypto modes, we may as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1435) * well represent it with a NULL ksm.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1436) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1437) ksm_is_empty = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1438) for (i = 0; i < ARRAY_SIZE(ksm->crypto_modes_supported); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1439) if (ksm->crypto_modes_supported[i]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1440) ksm_is_empty = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1441) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1442) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1443) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1444)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1445) if (ksm_is_empty) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1446) dm_destroy_keyslot_manager(ksm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1447) ksm = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1448) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1449)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1450) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1451) * t->ksm is only set temporarily while the table is being set
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1452) * up, and it gets set to NULL after the capabilities have
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1453) * been transferred to the request_queue.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1454) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1455) t->ksm = ksm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1456)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1457) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1458) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1459)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1460) static void dm_update_keyslot_manager(struct request_queue *q,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1461) struct dm_table *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1462) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1463) if (!t->ksm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1464) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1465)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1466) /* Make the ksm less restrictive */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1467) if (!q->ksm) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1468) blk_ksm_register(t->ksm, q);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1469) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1470) blk_ksm_update_capabilities(q->ksm, t->ksm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1471) dm_destroy_keyslot_manager(t->ksm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1472) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1473) t->ksm = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1474) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1475)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1476) #else /* CONFIG_BLK_INLINE_ENCRYPTION */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1477)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1478) static int dm_table_construct_keyslot_manager(struct dm_table *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1479) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1480) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1481) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1482)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1483) void dm_destroy_keyslot_manager(struct blk_keyslot_manager *ksm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1484) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1485) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1486)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1487) static void dm_table_destroy_keyslot_manager(struct dm_table *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1488) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1489) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1490)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1491) static void dm_update_keyslot_manager(struct request_queue *q,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1492) struct dm_table *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1493) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1494) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1495)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1496) #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1497)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1498) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1499) * Prepares the table for use by building the indices,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1500) * setting the type, and allocating mempools.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1501) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1502) int dm_table_complete(struct dm_table *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1503) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1504) int r;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1505)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1506) r = dm_table_determine_type(t);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1507) if (r) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1508) DMERR("unable to determine table type");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1509) return r;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1510) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1511)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1512) r = dm_table_build_index(t);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1513) if (r) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1514) DMERR("unable to build btrees");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1515) return r;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1516) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1517)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1518) r = dm_table_register_integrity(t);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1519) if (r) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1520) DMERR("could not register integrity profile.");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1521) return r;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1522) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1523)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1524) r = dm_table_construct_keyslot_manager(t);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1525) if (r) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1526) DMERR("could not construct keyslot manager.");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1527) return r;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1528) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1529)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1530) r = dm_table_alloc_md_mempools(t, t->md);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1531) if (r)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1532) DMERR("unable to allocate mempools");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1533)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1534) return r;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1535) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1536)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1537) static DEFINE_MUTEX(_event_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1538) void dm_table_event_callback(struct dm_table *t,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1539) void (*fn)(void *), void *context)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1540) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1541) mutex_lock(&_event_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1542) t->event_fn = fn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1543) t->event_context = context;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1544) mutex_unlock(&_event_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1545) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1546)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1547) void dm_table_event(struct dm_table *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1548) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1549) mutex_lock(&_event_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1550) if (t->event_fn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1551) t->event_fn(t->event_context);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1552) mutex_unlock(&_event_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1553) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1554) EXPORT_SYMBOL(dm_table_event);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1555)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1556) inline sector_t dm_table_get_size(struct dm_table *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1557) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1558) return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1559) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1560) EXPORT_SYMBOL(dm_table_get_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1561)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1562) struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1563) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1564) if (index >= t->num_targets)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1565) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1566)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1567) return t->targets + index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1568) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1569)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1570) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1571) * Search the btree for the correct target.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1572) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1573) * Caller should check returned pointer for NULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1574) * to trap I/O beyond end of device.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1575) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1576) struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1577) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1578) unsigned int l, n = 0, k = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1579) sector_t *node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1580)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1581) if (unlikely(sector >= dm_table_get_size(t)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1582) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1583)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1584) for (l = 0; l < t->depth; l++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1585) n = get_child(n, k);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1586) node = get_node(t, l, n);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1587)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1588) for (k = 0; k < KEYS_PER_NODE; k++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1589) if (node[k] >= sector)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1590) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1591) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1592)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1593) return &t->targets[(KEYS_PER_NODE * n) + k];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1594) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1595)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1596) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1597) * type->iterate_devices() should be called when the sanity check needs to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1598) * iterate and check all underlying data devices. iterate_devices() will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1599) * iterate all underlying data devices until it encounters a non-zero return
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1600) * code, returned by whether the input iterate_devices_callout_fn, or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1601) * iterate_devices() itself internally.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1602) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1603) * For some target type (e.g. dm-stripe), one call of iterate_devices() may
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1604) * iterate multiple underlying devices internally, in which case a non-zero
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1605) * return code returned by iterate_devices_callout_fn will stop the iteration
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1606) * in advance.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1607) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1608) * Cases requiring _any_ underlying device supporting some kind of attribute,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1609) * should use the iteration structure like dm_table_any_dev_attr(), or call
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1610) * it directly. @func should handle semantics of positive examples, e.g.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1611) * capable of something.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1612) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1613) * Cases requiring _all_ underlying devices supporting some kind of attribute,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1614) * should use the iteration structure like dm_table_supports_nowait() or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1615) * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1616) * uses an @anti_func that handle semantics of counter examples, e.g. not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1617) * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1618) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1619) static bool dm_table_any_dev_attr(struct dm_table *t,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1620) iterate_devices_callout_fn func, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1621) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1622) struct dm_target *ti;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1623) unsigned int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1624)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1625) for (i = 0; i < dm_table_get_num_targets(t); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1626) ti = dm_table_get_target(t, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1627)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1628) if (ti->type->iterate_devices &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1629) ti->type->iterate_devices(ti, func, data))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1630) return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1631) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1632)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1633) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1634) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1635)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1636) static int count_device(struct dm_target *ti, struct dm_dev *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1637) sector_t start, sector_t len, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1638) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1639) unsigned *num_devices = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1640)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1641) (*num_devices)++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1642)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1643) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1644) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1645)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1646) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1647) * Check whether a table has no data devices attached using each
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1648) * target's iterate_devices method.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1649) * Returns false if the result is unknown because a target doesn't
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1650) * support iterate_devices.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1651) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1652) bool dm_table_has_no_data_devices(struct dm_table *table)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1653) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1654) struct dm_target *ti;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1655) unsigned i, num_devices;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1656)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1657) for (i = 0; i < dm_table_get_num_targets(table); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1658) ti = dm_table_get_target(table, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1659)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1660) if (!ti->type->iterate_devices)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1661) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1662)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1663) num_devices = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1664) ti->type->iterate_devices(ti, count_device, &num_devices);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1665) if (num_devices)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1666) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1667) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1668)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1669) return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1670) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1671)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1672) static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1673) sector_t start, sector_t len, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1674) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1675) struct request_queue *q = bdev_get_queue(dev->bdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1676) enum blk_zoned_model *zoned_model = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1677)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1678) return !q || blk_queue_zoned_model(q) != *zoned_model;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1679) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1680)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1681) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1682) * Check the device zoned model based on the target feature flag. If the target
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1683) * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1684) * also accepted but all devices must have the same zoned model. If the target
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1685) * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1686) * zoned model with all zoned devices having the same zone size.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1687) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1688) static bool dm_table_supports_zoned_model(struct dm_table *t,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1689) enum blk_zoned_model zoned_model)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1690) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1691) struct dm_target *ti;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1692) unsigned i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1693)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1694) for (i = 0; i < dm_table_get_num_targets(t); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1695) ti = dm_table_get_target(t, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1696)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1697) if (dm_target_supports_zoned_hm(ti->type)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1698) if (!ti->type->iterate_devices ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1699) ti->type->iterate_devices(ti, device_not_zoned_model,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1700) &zoned_model))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1701) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1702) } else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1703) if (zoned_model == BLK_ZONED_HM)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1704) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1705) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1706) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1707)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1708) return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1709) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1710)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1711) static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1712) sector_t start, sector_t len, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1713) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1714) struct request_queue *q = bdev_get_queue(dev->bdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1715) unsigned int *zone_sectors = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1716)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1717) if (!blk_queue_is_zoned(q))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1718) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1719)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1720) return !q || blk_queue_zone_sectors(q) != *zone_sectors;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1721) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1722)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1723) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1724) * Check consistency of zoned model and zone sectors across all targets. For
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1725) * zone sectors, if the destination device is a zoned block device, it shall
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1726) * have the specified zone_sectors.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1727) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1728) static int validate_hardware_zoned_model(struct dm_table *table,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1729) enum blk_zoned_model zoned_model,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1730) unsigned int zone_sectors)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1731) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1732) if (zoned_model == BLK_ZONED_NONE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1733) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1734)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1735) if (!dm_table_supports_zoned_model(table, zoned_model)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1736) DMERR("%s: zoned model is not consistent across all devices",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1737) dm_device_name(table->md));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1738) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1739) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1740)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1741) /* Check zone size validity and compatibility */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1742) if (!zone_sectors || !is_power_of_2(zone_sectors))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1743) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1744)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1745) if (dm_table_any_dev_attr(table, device_not_matches_zone_sectors, &zone_sectors)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1746) DMERR("%s: zone sectors is not consistent across all zoned devices",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1747) dm_device_name(table->md));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1748) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1749) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1750)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1751) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1752) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1753)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1754) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1755) * Establish the new table's queue_limits and validate them.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1756) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1757) int dm_calculate_queue_limits(struct dm_table *table,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1758) struct queue_limits *limits)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1759) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1760) struct dm_target *ti;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1761) struct queue_limits ti_limits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1762) unsigned i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1763) enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1764) unsigned int zone_sectors = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1765)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1766) blk_set_stacking_limits(limits);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1767)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1768) for (i = 0; i < dm_table_get_num_targets(table); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1769) blk_set_stacking_limits(&ti_limits);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1770)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1771) ti = dm_table_get_target(table, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1772)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1773) if (!ti->type->iterate_devices)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1774) goto combine_limits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1775)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1776) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1777) * Combine queue limits of all the devices this target uses.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1778) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1779) ti->type->iterate_devices(ti, dm_set_device_limits,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1780) &ti_limits);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1781)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1782) if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1783) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1784) * After stacking all limits, validate all devices
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1785) * in table support this zoned model and zone sectors.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1786) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1787) zoned_model = ti_limits.zoned;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1788) zone_sectors = ti_limits.chunk_sectors;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1789) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1790)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1791) /* Set I/O hints portion of queue limits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1792) if (ti->type->io_hints)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1793) ti->type->io_hints(ti, &ti_limits);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1794)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1795) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1796) * Check each device area is consistent with the target's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1797) * overall queue limits.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1798) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1799) if (ti->type->iterate_devices(ti, device_area_is_invalid,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1800) &ti_limits))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1801) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1802)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1803) combine_limits:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1804) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1805) * Merge this target's queue limits into the overall limits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1806) * for the table.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1807) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1808) if (blk_stack_limits(limits, &ti_limits, 0) < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1809) DMWARN("%s: adding target device "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1810) "(start sect %llu len %llu) "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1811) "caused an alignment inconsistency",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1812) dm_device_name(table->md),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1813) (unsigned long long) ti->begin,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1814) (unsigned long long) ti->len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1815) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1816)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1817) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1818) * Verify that the zoned model and zone sectors, as determined before
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1819) * any .io_hints override, are the same across all devices in the table.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1820) * - this is especially relevant if .io_hints is emulating a disk-managed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1821) * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1822) * BUT...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1823) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1824) if (limits->zoned != BLK_ZONED_NONE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1825) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1826) * ...IF the above limits stacking determined a zoned model
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1827) * validate that all of the table's devices conform to it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1828) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1829) zoned_model = limits->zoned;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1830) zone_sectors = limits->chunk_sectors;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1831) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1832) if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1833) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1834)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1835) return validate_hardware_logical_block_alignment(table, limits);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1836) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1837)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1838) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1839) * Verify that all devices have an integrity profile that matches the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1840) * DM device's registered integrity profile. If the profiles don't
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1841) * match then unregister the DM device's integrity profile.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1842) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1843) static void dm_table_verify_integrity(struct dm_table *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1844) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1845) struct gendisk *template_disk = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1846)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1847) if (t->integrity_added)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1848) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1849)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1850) if (t->integrity_supported) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1851) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1852) * Verify that the original integrity profile
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1853) * matches all the devices in this table.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1854) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1855) template_disk = dm_table_get_integrity_disk(t);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1856) if (template_disk &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1857) blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1858) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1859) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1860)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1861) if (integrity_profile_exists(dm_disk(t->md))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1862) DMWARN("%s: unable to establish an integrity profile",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1863) dm_device_name(t->md));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1864) blk_integrity_unregister(dm_disk(t->md));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1865) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1866) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1867)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1868) static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1869) sector_t start, sector_t len, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1870) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1871) unsigned long flush = (unsigned long) data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1872) struct request_queue *q = bdev_get_queue(dev->bdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1873)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1874) return q && (q->queue_flags & flush);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1875) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1876)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1877) static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1878) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1879) struct dm_target *ti;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1880) unsigned i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1881)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1882) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1883) * Require at least one underlying device to support flushes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1884) * t->devices includes internal dm devices such as mirror logs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1885) * so we need to use iterate_devices here, which targets
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1886) * supporting flushes must provide.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1887) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1888) for (i = 0; i < dm_table_get_num_targets(t); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1889) ti = dm_table_get_target(t, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1890)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1891) if (!ti->num_flush_bios)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1892) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1893)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1894) if (ti->flush_supported)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1895) return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1896)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1897) if (ti->type->iterate_devices &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1898) ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1899) return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1900) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1901)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1902) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1903) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1904)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1905) static int device_dax_write_cache_enabled(struct dm_target *ti,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1906) struct dm_dev *dev, sector_t start,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1907) sector_t len, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1908) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1909) struct dax_device *dax_dev = dev->dax_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1910)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1911) if (!dax_dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1912) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1913)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1914) if (dax_write_cache_enabled(dax_dev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1915) return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1916) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1917) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1918)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1919) static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1920) sector_t start, sector_t len, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1921) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1922) struct request_queue *q = bdev_get_queue(dev->bdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1923)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1924) return q && !blk_queue_nonrot(q);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1925) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1926)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1927) static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1928) sector_t start, sector_t len, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1929) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1930) struct request_queue *q = bdev_get_queue(dev->bdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1931)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1932) return q && !blk_queue_add_random(q);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1933) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1934)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1935) static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1936) sector_t start, sector_t len, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1937) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1938) struct request_queue *q = bdev_get_queue(dev->bdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1939)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1940) return q && !q->limits.max_write_same_sectors;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1941) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1942)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1943) static bool dm_table_supports_write_same(struct dm_table *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1944) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1945) struct dm_target *ti;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1946) unsigned i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1947)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1948) for (i = 0; i < dm_table_get_num_targets(t); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1949) ti = dm_table_get_target(t, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1950)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1951) if (!ti->num_write_same_bios)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1952) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1953)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1954) if (!ti->type->iterate_devices ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1955) ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1956) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1957) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1958)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1959) return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1960) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1961)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1962) static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1963) sector_t start, sector_t len, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1964) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1965) struct request_queue *q = bdev_get_queue(dev->bdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1966)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1967) return q && !q->limits.max_write_zeroes_sectors;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1968) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1969)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1970) static bool dm_table_supports_write_zeroes(struct dm_table *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1971) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1972) struct dm_target *ti;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1973) unsigned i = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1974)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1975) while (i < dm_table_get_num_targets(t)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1976) ti = dm_table_get_target(t, i++);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1977)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1978) if (!ti->num_write_zeroes_bios)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1979) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1980)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1981) if (!ti->type->iterate_devices ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1982) ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1983) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1984) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1985)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1986) return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1987) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1988)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1989) static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1990) sector_t start, sector_t len, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1991) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1992) struct request_queue *q = bdev_get_queue(dev->bdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1993)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1994) return q && !blk_queue_nowait(q);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1995) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1996)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1997) static bool dm_table_supports_nowait(struct dm_table *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1998) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1999) struct dm_target *ti;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2000) unsigned i = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2001)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2002) while (i < dm_table_get_num_targets(t)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2003) ti = dm_table_get_target(t, i++);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2004)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2005) if (!dm_target_supports_nowait(ti->type))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2006) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2007)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2008) if (!ti->type->iterate_devices ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2009) ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2010) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2011) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2012)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2013) return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2014) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2015)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2016) static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2017) sector_t start, sector_t len, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2018) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2019) struct request_queue *q = bdev_get_queue(dev->bdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2020)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2021) return q && !blk_queue_discard(q);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2022) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2023)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2024) static bool dm_table_supports_discards(struct dm_table *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2025) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2026) struct dm_target *ti;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2027) unsigned i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2028)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2029) for (i = 0; i < dm_table_get_num_targets(t); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2030) ti = dm_table_get_target(t, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2031)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2032) if (!ti->num_discard_bios)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2033) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2034)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2035) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2036) * Either the target provides discard support (as implied by setting
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2037) * 'discards_supported') or it relies on _all_ data devices having
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2038) * discard support.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2039) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2040) if (!ti->discards_supported &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2041) (!ti->type->iterate_devices ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2042) ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2043) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2044) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2045)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2046) return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2047) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2048)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2049) static int device_not_secure_erase_capable(struct dm_target *ti,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2050) struct dm_dev *dev, sector_t start,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2051) sector_t len, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2052) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2053) struct request_queue *q = bdev_get_queue(dev->bdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2054)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2055) return q && !blk_queue_secure_erase(q);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2056) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2057)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2058) static bool dm_table_supports_secure_erase(struct dm_table *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2059) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2060) struct dm_target *ti;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2061) unsigned int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2062)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2063) for (i = 0; i < dm_table_get_num_targets(t); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2064) ti = dm_table_get_target(t, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2065)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2066) if (!ti->num_secure_erase_bios)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2067) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2068)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2069) if (!ti->type->iterate_devices ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2070) ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2071) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2072) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2073)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2074) return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2075) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2076)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2077) static int device_requires_stable_pages(struct dm_target *ti,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2078) struct dm_dev *dev, sector_t start,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2079) sector_t len, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2080) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2081) struct request_queue *q = bdev_get_queue(dev->bdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2082)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2083) return q && blk_queue_stable_writes(q);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2084) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2085)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2086) void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2087) struct queue_limits *limits)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2088) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2089) bool wc = false, fua = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2090) int page_size = PAGE_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2091)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2092) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2093) * Copy table's limits to the DM device's request_queue
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2094) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2095) q->limits = *limits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2096)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2097) if (dm_table_supports_nowait(t))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2098) blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2099) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2100) blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2101)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2102) if (!dm_table_supports_discards(t)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2103) blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2104) /* Must also clear discard limits... */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2105) q->limits.max_discard_sectors = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2106) q->limits.max_hw_discard_sectors = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2107) q->limits.discard_granularity = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2108) q->limits.discard_alignment = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2109) q->limits.discard_misaligned = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2110) } else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2111) blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2112)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2113) if (dm_table_supports_secure_erase(t))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2114) blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2115)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2116) if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2117) wc = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2118) if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2119) fua = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2120) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2121) blk_queue_write_cache(q, wc, fua);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2122)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2123) if (dm_table_supports_dax(t, device_not_dax_capable, &page_size)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2124) blk_queue_flag_set(QUEUE_FLAG_DAX, q);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2125) if (dm_table_supports_dax(t, device_not_dax_synchronous_capable, NULL))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2126) set_dax_synchronous(t->md->dax_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2127) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2128) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2129) blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2130)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2131) if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2132) dax_write_cache(t->md->dax_dev, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2133)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2134) /* Ensure that all underlying devices are non-rotational. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2135) if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2136) blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2137) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2138) blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2139)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2140) if (!dm_table_supports_write_same(t))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2141) q->limits.max_write_same_sectors = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2142) if (!dm_table_supports_write_zeroes(t))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2143) q->limits.max_write_zeroes_sectors = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2144)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2145) dm_table_verify_integrity(t);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2146)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2147) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2148) * Some devices don't use blk_integrity but still want stable pages
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2149) * because they do their own checksumming.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2150) * If any underlying device requires stable pages, a table must require
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2151) * them as well. Only targets that support iterate_devices are considered:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2152) * don't want error, zero, etc to require stable pages.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2153) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2154) if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2155) blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2156) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2157) blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2158)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2159) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2160) * Determine whether or not this queue's I/O timings contribute
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2161) * to the entropy pool, Only request-based targets use this.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2162) * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2163) * have it set.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2164) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2165) if (blk_queue_add_random(q) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2166) dm_table_any_dev_attr(t, device_is_not_random, NULL))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2167) blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2168)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2169) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2170) * For a zoned target, the number of zones should be updated for the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2171) * correct value to be exposed in sysfs queue/nr_zones. For a BIO based
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2172) * target, this is all that is needed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2173) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2174) #ifdef CONFIG_BLK_DEV_ZONED
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2175) if (blk_queue_is_zoned(q)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2176) WARN_ON_ONCE(queue_is_mq(q));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2177) q->nr_zones = blkdev_nr_zones(t->md->disk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2178) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2179) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2180)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2181) dm_update_keyslot_manager(q, t);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2182) blk_queue_update_readahead(q);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2183) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2184)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2185) unsigned int dm_table_get_num_targets(struct dm_table *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2186) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2187) return t->num_targets;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2188) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2189)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2190) struct list_head *dm_table_get_devices(struct dm_table *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2191) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2192) return &t->devices;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2193) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2194)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2195) fmode_t dm_table_get_mode(struct dm_table *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2196) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2197) return t->mode;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2198) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2199) EXPORT_SYMBOL(dm_table_get_mode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2200)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2201) enum suspend_mode {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2202) PRESUSPEND,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2203) PRESUSPEND_UNDO,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2204) POSTSUSPEND,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2205) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2206)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2207) static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2208) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2209) int i = t->num_targets;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2210) struct dm_target *ti = t->targets;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2211)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2212) lockdep_assert_held(&t->md->suspend_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2213)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2214) while (i--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2215) switch (mode) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2216) case PRESUSPEND:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2217) if (ti->type->presuspend)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2218) ti->type->presuspend(ti);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2219) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2220) case PRESUSPEND_UNDO:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2221) if (ti->type->presuspend_undo)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2222) ti->type->presuspend_undo(ti);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2223) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2224) case POSTSUSPEND:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2225) if (ti->type->postsuspend)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2226) ti->type->postsuspend(ti);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2227) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2228) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2229) ti++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2230) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2231) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2232)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2233) void dm_table_presuspend_targets(struct dm_table *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2234) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2235) if (!t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2236) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2237)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2238) suspend_targets(t, PRESUSPEND);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2239) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2240)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2241) void dm_table_presuspend_undo_targets(struct dm_table *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2242) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2243) if (!t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2244) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2245)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2246) suspend_targets(t, PRESUSPEND_UNDO);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2247) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2248)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2249) void dm_table_postsuspend_targets(struct dm_table *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2250) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2251) if (!t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2252) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2253)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2254) suspend_targets(t, POSTSUSPEND);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2255) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2256)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2257) int dm_table_resume_targets(struct dm_table *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2258) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2259) int i, r = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2260)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2261) lockdep_assert_held(&t->md->suspend_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2262)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2263) for (i = 0; i < t->num_targets; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2264) struct dm_target *ti = t->targets + i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2265)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2266) if (!ti->type->preresume)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2267) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2268)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2269) r = ti->type->preresume(ti);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2270) if (r) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2271) DMERR("%s: %s: preresume failed, error = %d",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2272) dm_device_name(t->md), ti->type->name, r);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2273) return r;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2274) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2275) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2276)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2277) for (i = 0; i < t->num_targets; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2278) struct dm_target *ti = t->targets + i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2279)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2280) if (ti->type->resume)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2281) ti->type->resume(ti);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2282) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2283)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2284) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2285) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2286)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2287) struct mapped_device *dm_table_get_md(struct dm_table *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2288) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2289) return t->md;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2290) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2291) EXPORT_SYMBOL(dm_table_get_md);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2292)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2293) const char *dm_table_device_name(struct dm_table *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2294) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2295) return dm_device_name(t->md);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2296) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2297) EXPORT_SYMBOL_GPL(dm_table_device_name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2298)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2299) void dm_table_run_md_queue_async(struct dm_table *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2300) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2301) if (!dm_table_request_based(t))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2302) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2303)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2304) if (t->md->queue)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2305) blk_mq_run_hw_queues(t->md->queue, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2306) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2307) EXPORT_SYMBOL(dm_table_run_md_queue_async);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2308)