Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _BCACHE_UTIL_H
#define _BCACHE_UTIL_H
#include <linux/blkdev.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/sched/clock.h>
#include <linux/llist.h>
#include <linux/ratelimit.h>
#include <linux/vmalloc.h>
#include <linux/workqueue.h>
#include <linux/crc64.h>
#include "closure.h"
#define PAGE_SECTORS (PAGE_SIZE / 512)
struct closure;
#ifdef CONFIG_BCACHE_DEBUG
#define EBUG_ON(cond) BUG_ON(cond)
#define atomic_dec_bug(v) BUG_ON(atomic_dec_return(v) < 0)
#define atomic_inc_bug(v, i) BUG_ON(atomic_inc_return(v) <= i)
#else /* DEBUG */
#define EBUG_ON(cond) do { if (cond); } while (0)
#define atomic_dec_bug(v) atomic_dec(v)
#define atomic_inc_bug(v, i) atomic_inc(v)
#endif
#define DECLARE_HEAP(type, name) \
<------>struct { \
<------><------>size_t size, used; \
<------><------>type *data; \
<------>} name
#define init_heap(heap, _size, gfp) \
({ \
<------>size_t _bytes; \
<------>(heap)->used = 0; \
<------>(heap)->size = (_size); \
<------>_bytes = (heap)->size * sizeof(*(heap)->data); \
<------>(heap)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL); \
<------>(heap)->data; \
})
#define free_heap(heap) \
do { \
<------>kvfree((heap)->data); \
<------>(heap)->data = NULL; \
} while (0)
#define heap_swap(h, i, j) swap((h)->data[i], (h)->data[j])
#define heap_sift(h, i, cmp) \
do { \
<------>size_t _r, _j = i; \
<------><------><------><------><------><------><------><------><------>\
<------>for (; _j * 2 + 1 < (h)->used; _j = _r) { \
<------><------>_r = _j * 2 + 1; \
<------><------>if (_r + 1 < (h)->used && \
<------><------> cmp((h)->data[_r], (h)->data[_r + 1])) \
<------><------><------>_r++; \
<------><------><------><------><------><------><------><------><------>\
<------><------>if (cmp((h)->data[_r], (h)->data[_j])) \
<------><------><------>break; \
<------><------>heap_swap(h, _r, _j); \
<------>} \
} while (0)
#define heap_sift_down(h, i, cmp) \
do { \
<------>while (i) { \
<------><------>size_t p = (i - 1) / 2; \
<------><------>if (cmp((h)->data[i], (h)->data[p])) \
<------><------><------>break; \
<------><------>heap_swap(h, i, p); \
<------><------>i = p; \
<------>} \
} while (0)
#define heap_add(h, d, cmp) \
({ \
<------>bool _r = !heap_full(h); \
<------>if (_r) { \
<------><------>size_t _i = (h)->used++; \
<------><------>(h)->data[_i] = d; \
<------><------><------><------><------><------><------><------><------>\
<------><------>heap_sift_down(h, _i, cmp); \
<------><------>heap_sift(h, _i, cmp); \
<------>} \
<------>_r; \
})
#define heap_pop(h, d, cmp) \
({ \
<------>bool _r = (h)->used; \
<------>if (_r) { \
<------><------>(d) = (h)->data[0]; \
<------><------>(h)->used--; \
<------><------>heap_swap(h, 0, (h)->used); \
<------><------>heap_sift(h, 0, cmp); \
<------>} \
<------>_r; \
})
#define heap_peek(h) ((h)->used ? (h)->data[0] : NULL)
#define heap_full(h) ((h)->used == (h)->size)
#define DECLARE_FIFO(type, name) \
<------>struct { \
<------><------>size_t front, back, size, mask; \
<------><------>type *data; \
<------>} name
#define fifo_for_each(c, fifo, iter) \
<------>for (iter = (fifo)->front; \
<------> c = (fifo)->data[iter], iter != (fifo)->back; \
<------> iter = (iter + 1) & (fifo)->mask)
#define __init_fifo(fifo, gfp) \
({ \
<------>size_t _allocated_size, _bytes; \
<------>BUG_ON(!(fifo)->size); \
<------><------><------><------><------><------><------><------><------>\
<------>_allocated_size = roundup_pow_of_two((fifo)->size + 1); \
<------>_bytes = _allocated_size * sizeof(*(fifo)->data); \
<------><------><------><------><------><------><------><------><------>\
<------>(fifo)->mask = _allocated_size - 1; \
<------>(fifo)->front = (fifo)->back = 0; \
<------><------><------><------><------><------><------><------><------>\
<------>(fifo)->data = kvmalloc(_bytes, (gfp) & GFP_KERNEL); \
<------>(fifo)->data; \
})
#define init_fifo_exact(fifo, _size, gfp) \
({ \
<------>(fifo)->size = (_size); \
<------>__init_fifo(fifo, gfp); \
})
#define init_fifo(fifo, _size, gfp) \
({ \
<------>(fifo)->size = (_size); \
<------>if ((fifo)->size > 4) \
<------><------>(fifo)->size = roundup_pow_of_two((fifo)->size) - 1; \
<------>__init_fifo(fifo, gfp); \
})
#define free_fifo(fifo) \
do { \
<------>kvfree((fifo)->data); \
<------>(fifo)->data = NULL; \
} while (0)
#define fifo_used(fifo) (((fifo)->back - (fifo)->front) & (fifo)->mask)
#define fifo_free(fifo) ((fifo)->size - fifo_used(fifo))
#define fifo_empty(fifo) (!fifo_used(fifo))
#define fifo_full(fifo) (!fifo_free(fifo))
#define fifo_front(fifo) ((fifo)->data[(fifo)->front])
#define fifo_back(fifo) \
<------>((fifo)->data[((fifo)->back - 1) & (fifo)->mask])
#define fifo_idx(fifo, p) (((p) - &fifo_front(fifo)) & (fifo)->mask)
#define fifo_push_back(fifo, i) \
({ \
<------>bool _r = !fifo_full((fifo)); \
<------>if (_r) { \
<------><------>(fifo)->data[(fifo)->back++] = (i); \
<------><------>(fifo)->back &= (fifo)->mask; \
<------>} \
<------>_r; \
})
#define fifo_pop_front(fifo, i) \
({ \
<------>bool _r = !fifo_empty((fifo)); \
<------>if (_r) { \
<------><------>(i) = (fifo)->data[(fifo)->front++]; \
<------><------>(fifo)->front &= (fifo)->mask; \
<------>} \
<------>_r; \
})
#define fifo_push_front(fifo, i) \
({ \
<------>bool _r = !fifo_full((fifo)); \
<------>if (_r) { \
<------><------>--(fifo)->front; \
<------><------>(fifo)->front &= (fifo)->mask; \
<------><------>(fifo)->data[(fifo)->front] = (i); \
<------>} \
<------>_r; \
})
#define fifo_pop_back(fifo, i) \
({ \
<------>bool _r = !fifo_empty((fifo)); \
<------>if (_r) { \
<------><------>--(fifo)->back; \
<------><------>(fifo)->back &= (fifo)->mask; \
<------><------>(i) = (fifo)->data[(fifo)->back] \
<------>} \
<------>_r; \
})
#define fifo_push(fifo, i) fifo_push_back(fifo, (i))
#define fifo_pop(fifo, i) fifo_pop_front(fifo, (i))
#define fifo_swap(l, r) \
do { \
<------>swap((l)->front, (r)->front); \
<------>swap((l)->back, (r)->back); \
<------>swap((l)->size, (r)->size); \
<------>swap((l)->mask, (r)->mask); \
<------>swap((l)->data, (r)->data); \
} while (0)
#define fifo_move(dest, src) \
do { \
<------>typeof(*((dest)->data)) _t; \
<------>while (!fifo_full(dest) && \
<------> fifo_pop(src, _t)) \
<------><------>fifo_push(dest, _t); \
} while (0)
/*
* Simple array based allocator - preallocates a number of elements and you can
* never allocate more than that, also has no locking.
*
* Handy because if you know you only need a fixed number of elements you don't
* have to worry about memory allocation failure, and sometimes a mempool isn't
* what you want.
*
* We treat the free elements as entries in a singly linked list, and the
* freelist as a stack - allocating and freeing push and pop off the freelist.
*/
#define DECLARE_ARRAY_ALLOCATOR(type, name, size) \
<------>struct { \
<------><------>type *freelist; \
<------><------>type data[size]; \
<------>} name
#define array_alloc(array) \
({ \
<------>typeof((array)->freelist) _ret = (array)->freelist; \
<------><------><------><------><------><------><------><------><------>\
<------>if (_ret) \
<------><------>(array)->freelist = *((typeof((array)->freelist) *) _ret);\
<------><------><------><------><------><------><------><------><------>\
<------>_ret; \
})
#define array_free(array, ptr) \
do { \
<------>typeof((array)->freelist) _ptr = ptr; \
<------><------><------><------><------><------><------><------><------>\
<------>*((typeof((array)->freelist) *) _ptr) = (array)->freelist; \
<------>(array)->freelist = _ptr; \
} while (0)
#define array_allocator_init(array) \
do { \
<------>typeof((array)->freelist) _i; \
<------><------><------><------><------><------><------><------><------>\
<------>BUILD_BUG_ON(sizeof((array)->data[0]) < sizeof(void *)); \
<------>(array)->freelist = NULL; \
<------><------><------><------><------><------><------><------><------>\
<------>for (_i = (array)->data; \
<------> _i < (array)->data + ARRAY_SIZE((array)->data); \
<------> _i++) \
<------><------>array_free(array, _i); \
} while (0)
#define array_freelist_empty(array) ((array)->freelist == NULL)
#define ANYSINT_MAX(t) \
<------>((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1)
int bch_strtoint_h(const char *cp, int *res);
int bch_strtouint_h(const char *cp, unsigned int *res);
int bch_strtoll_h(const char *cp, long long *res);
int bch_strtoull_h(const char *cp, unsigned long long *res);
static inline int bch_strtol_h(const char *cp, long *res)
{
#if BITS_PER_LONG == 32
<------>return bch_strtoint_h(cp, (int *) res);
#else
<------>return bch_strtoll_h(cp, (long long *) res);
#endif
}
static inline int bch_strtoul_h(const char *cp, long *res)
{
#if BITS_PER_LONG == 32
<------>return bch_strtouint_h(cp, (unsigned int *) res);
#else
<------>return bch_strtoull_h(cp, (unsigned long long *) res);
#endif
}
#define strtoi_h(cp, res) \
<------>(__builtin_types_compatible_p(typeof(*res), int) \
<------>? bch_strtoint_h(cp, (void *) res) \
<------>: __builtin_types_compatible_p(typeof(*res), long) \
<------>? bch_strtol_h(cp, (void *) res) \
<------>: __builtin_types_compatible_p(typeof(*res), long long) \
<------>? bch_strtoll_h(cp, (void *) res) \
<------>: __builtin_types_compatible_p(typeof(*res), unsigned int) \
<------>? bch_strtouint_h(cp, (void *) res) \
<------>: __builtin_types_compatible_p(typeof(*res), unsigned long) \
<------>? bch_strtoul_h(cp, (void *) res) \
<------>: __builtin_types_compatible_p(typeof(*res), unsigned long long)\
<------>? bch_strtoull_h(cp, (void *) res) : -EINVAL)
#define strtoul_safe(cp, var) \
({ \
<------>unsigned long _v; \
<------>int _r = kstrtoul(cp, 10, &_v); \
<------>if (!_r) \
<------><------>var = _v; \
<------>_r; \
})
#define strtoul_safe_clamp(cp, var, min, max) \
({ \
<------>unsigned long _v; \
<------>int _r = kstrtoul(cp, 10, &_v); \
<------>if (!_r) \
<------><------>var = clamp_t(typeof(var), _v, min, max); \
<------>_r; \
})
#define snprint(buf, size, var) \
<------>snprintf(buf, size, \
<------><------>__builtin_types_compatible_p(typeof(var), int) \
<------><------> ? "%i\n" : \
<------><------>__builtin_types_compatible_p(typeof(var), unsigned int) \
<------><------> ? "%u\n" : \
<------><------>__builtin_types_compatible_p(typeof(var), long) \
<------><------> ? "%li\n" : \
<------><------>__builtin_types_compatible_p(typeof(var), unsigned long)\
<------><------> ? "%lu\n" : \
<------><------>__builtin_types_compatible_p(typeof(var), int64_t) \
<------><------> ? "%lli\n" : \
<------><------>__builtin_types_compatible_p(typeof(var), uint64_t) \
<------><------> ? "%llu\n" : \
<------><------>__builtin_types_compatible_p(typeof(var), const char *) \
<------><------> ? "%s\n" : "%i\n", var)
ssize_t bch_hprint(char *buf, int64_t v);
bool bch_is_zero(const char *p, size_t n);
int bch_parse_uuid(const char *s, char *uuid);
struct time_stats {
<------>spinlock_t lock;
<------>/*
<------> * all fields are in nanoseconds, averages are ewmas stored left shifted
<------> * by 8
<------> */
<------>uint64_t max_duration;
<------>uint64_t average_duration;
<------>uint64_t average_frequency;
<------>uint64_t last;
};
void bch_time_stats_update(struct time_stats *stats, uint64_t time);
static inline unsigned int local_clock_us(void)
{
<------>return local_clock() >> 10;
}
#define NSEC_PER_ns 1L
#define NSEC_PER_us NSEC_PER_USEC
#define NSEC_PER_ms NSEC_PER_MSEC
#define NSEC_PER_sec NSEC_PER_SEC
#define __print_time_stat(stats, name, stat, units) \
<------>sysfs_print(name ## _ ## stat ## _ ## units, \
<------><------> div_u64((stats)->stat >> 8, NSEC_PER_ ## units))
#define sysfs_print_time_stats(stats, name, \
<------><------><------> frequency_units, \
<------><------><------> duration_units) \
do { \
<------>__print_time_stat(stats, name, \
<------><------><------> average_frequency, frequency_units); \
<------>__print_time_stat(stats, name, \
<------><------><------> average_duration, duration_units); \
<------>sysfs_print(name ## _ ##max_duration ## _ ## duration_units, \
<------><------><------>div_u64((stats)->max_duration, \
<------><------><------><------>NSEC_PER_ ## duration_units)); \
<------><------><------><------><------><------><------><------><------>\
<------>sysfs_print(name ## _last_ ## frequency_units, (stats)->last \
<------><------> ? div_s64(local_clock() - (stats)->last, \
<------><------><------> NSEC_PER_ ## frequency_units) \
<------><------> : -1LL); \
} while (0)
#define sysfs_time_stats_attribute(name, \
<------><------><------><------> frequency_units, \
<------><------><------><------> duration_units) \
read_attribute(name ## _average_frequency_ ## frequency_units); \
read_attribute(name ## _average_duration_ ## duration_units); \
read_attribute(name ## _max_duration_ ## duration_units); \
read_attribute(name ## _last_ ## frequency_units)
#define sysfs_time_stats_attribute_list(name, \
<------><------><------><------><------>frequency_units, \
<------><------><------><------><------>duration_units) \
&sysfs_ ## name ## _average_frequency_ ## frequency_units, \
&sysfs_ ## name ## _average_duration_ ## duration_units, \
&sysfs_ ## name ## _max_duration_ ## duration_units, \
&sysfs_ ## name ## _last_ ## frequency_units,
#define ewma_add(ewma, val, weight, factor) \
({ \
<------>(ewma) *= (weight) - 1; \
<------>(ewma) += (val) << factor; \
<------>(ewma) /= (weight); \
<------>(ewma) >> factor; \
})
struct bch_ratelimit {
<------>/* Next time we want to do some work, in nanoseconds */
<------>uint64_t next;
<------>/*
<------> * Rate at which we want to do work, in units per second
<------> * The units here correspond to the units passed to bch_next_delay()
<------> */
<------>atomic_long_t rate;
};
static inline void bch_ratelimit_reset(struct bch_ratelimit *d)
{
<------>d->next = local_clock();
}
uint64_t bch_next_delay(struct bch_ratelimit *d, uint64_t done);
#define __DIV_SAFE(n, d, zero) \
({ \
<------>typeof(n) _n = (n); \
<------>typeof(d) _d = (d); \
<------>_d ? _n / _d : zero; \
})
#define DIV_SAFE(n, d) __DIV_SAFE(n, d, 0)
#define container_of_or_null(ptr, type, member) \
({ \
<------>typeof(ptr) _ptr = ptr; \
<------>_ptr ? container_of(_ptr, type, member) : NULL; \
})
#define RB_INSERT(root, new, member, cmp) \
({ \
<------>__label__ dup; \
<------>struct rb_node **n = &(root)->rb_node, *parent = NULL; \
<------>typeof(new) this; \
<------>int res, ret = -1; \
<------><------><------><------><------><------><------><------><------>\
<------>while (*n) { \
<------><------>parent = *n; \
<------><------>this = container_of(*n, typeof(*(new)), member); \
<------><------>res = cmp(new, this); \
<------><------>if (!res) \
<------><------><------>goto dup; \
<------><------>n = res < 0 \
<------><------><------>? &(*n)->rb_left \
<------><------><------>: &(*n)->rb_right; \
<------>} \
<------><------><------><------><------><------><------><------><------>\
<------>rb_link_node(&(new)->member, parent, n); \
<------>rb_insert_color(&(new)->member, root); \
<------>ret = 0; \
dup: \
<------>ret; \
})
#define RB_SEARCH(root, search, member, cmp) \
({ \
<------>struct rb_node *n = (root)->rb_node; \
<------>typeof(&(search)) this, ret = NULL; \
<------>int res; \
<------><------><------><------><------><------><------><------><------>\
<------>while (n) { \
<------><------>this = container_of(n, typeof(search), member); \
<------><------>res = cmp(&(search), this); \
<------><------>if (!res) { \
<------><------><------>ret = this; \
<------><------><------>break; \
<------><------>} \
<------><------>n = res < 0 \
<------><------><------>? n->rb_left \
<------><------><------>: n->rb_right; \
<------>} \
<------>ret; \
})
#define RB_GREATER(root, search, member, cmp) \
({ \
<------>struct rb_node *n = (root)->rb_node; \
<------>typeof(&(search)) this, ret = NULL; \
<------>int res; \
<------><------><------><------><------><------><------><------><------>\
<------>while (n) { \
<------><------>this = container_of(n, typeof(search), member); \
<------><------>res = cmp(&(search), this); \
<------><------>if (res < 0) { \
<------><------><------>ret = this; \
<------><------><------>n = n->rb_left; \
<------><------>} else \
<------><------><------>n = n->rb_right; \
<------>} \
<------>ret; \
})
#define RB_FIRST(root, type, member) \
<------>container_of_or_null(rb_first(root), type, member)
#define RB_LAST(root, type, member) \
<------>container_of_or_null(rb_last(root), type, member)
#define RB_NEXT(ptr, member) \
<------>container_of_or_null(rb_next(&(ptr)->member), typeof(*ptr), member)
#define RB_PREV(ptr, member) \
<------>container_of_or_null(rb_prev(&(ptr)->member), typeof(*ptr), member)
static inline uint64_t bch_crc64(const void *p, size_t len)
{
<------>uint64_t crc = 0xffffffffffffffffULL;
<------>crc = crc64_be(crc, p, len);
<------>return crc ^ 0xffffffffffffffffULL;
}
static inline uint64_t bch_crc64_update(uint64_t crc,
<------><------><------><------><------>const void *p,
<------><------><------><------><------>size_t len)
{
<------>crc = crc64_be(crc, p, len);
<------>return crc;
}
/*
* A stepwise-linear pseudo-exponential. This returns 1 << (x >>
* frac_bits), with the less-significant bits filled in by linear
* interpolation.
*
* This can also be interpreted as a floating-point number format,
* where the low frac_bits are the mantissa (with implicit leading
* 1 bit), and the more significant bits are the exponent.
* The return value is 1.mantissa * 2^exponent.
*
* The way this is used, fract_bits is 6 and the largest possible
* input is CONGESTED_MAX-1 = 1023 (exponent 16, mantissa 0x1.fc),
* so the maximum output is 0x1fc00.
*/
static inline unsigned int fract_exp_two(unsigned int x,
<------><------><------><------><------> unsigned int fract_bits)
{
<------>unsigned int mantissa = 1 << fract_bits; /* Implicit bit */
<------>mantissa += x & (mantissa - 1);
<------>x >>= fract_bits; /* The exponent */
<------>/* Largest intermediate value 0x7f0000 */
<------>return mantissa << x >> fract_bits;
}
void bch_bio_map(struct bio *bio, void *base);
int bch_bio_alloc_pages(struct bio *bio, gfp_t gfp_mask);
static inline sector_t bdev_sectors(struct block_device *bdev)
{
<------>return bdev->bd_inode->i_size >> 9;
}
#endif /* _BCACHE_UTIL_H */