Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) /* SPDX-License-Identifier: GPL-2.0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) #ifndef _BCACHE_BTREE_H
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3) #define _BCACHE_BTREE_H
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  * THE BTREE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  * At a high level, bcache's btree is relatively standard b+ tree. All keys and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  * pointers are in the leaves; interior nodes only have pointers to the child
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10)  * nodes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12)  * In the interior nodes, a struct bkey always points to a child btree node, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13)  * the key is the highest key in the child node - except that the highest key in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14)  * an interior node is always MAX_KEY. The size field refers to the size on disk
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15)  * of the child node - this would allow us to have variable sized btree nodes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16)  * (handy for keeping the depth of the btree 1 by expanding just the root).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18)  * Btree nodes are themselves log structured, but this is hidden fairly
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19)  * thoroughly. Btree nodes on disk will in practice have extents that overlap
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20)  * (because they were written at different times), but in memory we never have
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21)  * overlapping extents - when we read in a btree node from disk, the first thing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22)  * we do is resort all the sets of keys with a mergesort, and in the same pass
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23)  * we check for overlapping extents and adjust them appropriately.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25)  * struct btree_op is a central interface to the btree code. It's used for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26)  * specifying read vs. write locking, and the embedded closure is used for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27)  * waiting on IO or reserve memory.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29)  * BTREE CACHE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31)  * Btree nodes are cached in memory; traversing the btree might require reading
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32)  * in btree nodes which is handled mostly transparently.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34)  * bch_btree_node_get() looks up a btree node in the cache and reads it in from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35)  * disk if necessary. This function is almost never called directly though - the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36)  * btree() macro is used to get a btree node, call some function on it, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37)  * unlock the node after the function returns.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39)  * The root is special cased - it's taken out of the cache's lru (thus pinning
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40)  * it in memory), so we can find the root of the btree by just dereferencing a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41)  * pointer instead of looking it up in the cache. This makes locking a bit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42)  * tricky, since the root pointer is protected by the lock in the btree node it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43)  * points to - the btree_root() macro handles this.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45)  * In various places we must be able to allocate memory for multiple btree nodes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46)  * in order to make forward progress. To do this we use the btree cache itself
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47)  * as a reserve; if __get_free_pages() fails, we'll find a node in the btree
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48)  * cache we can reuse. We can't allow more than one thread to be doing this at a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49)  * time, so there's a lock, implemented by a pointer to the btree_op closure -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50)  * this allows the btree_root() macro to implicitly release this lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52)  * BTREE IO:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54)  * Btree nodes never have to be explicitly read in; bch_btree_node_get() handles
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55)  * this.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57)  * For writing, we have two btree_write structs embeddded in struct btree - one
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58)  * write in flight, and one being set up, and we toggle between them.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60)  * Writing is done with a single function -  bch_btree_write() really serves two
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61)  * different purposes and should be broken up into two different functions. When
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62)  * passing now = false, it merely indicates that the node is now dirty - calling
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63)  * it ensures that the dirty keys will be written at some point in the future.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65)  * When passing now = true, bch_btree_write() causes a write to happen
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66)  * "immediately" (if there was already a write in flight, it'll cause the write
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67)  * to happen as soon as the previous write completes). It returns immediately
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68)  * though - but it takes a refcount on the closure in struct btree_op you passed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69)  * to it, so a closure_sync() later can be used to wait for the write to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70)  * complete.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72)  * This is handy because btree_split() and garbage collection can issue writes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73)  * in parallel, reducing the amount of time they have to hold write locks.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75)  * LOCKING:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77)  * When traversing the btree, we may need write locks starting at some level -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78)  * inserting a key into the btree will typically only require a write lock on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79)  * the leaf node.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81)  * This is specified with the lock field in struct btree_op; lock = 0 means we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82)  * take write locks at level <= 0, i.e. only leaf nodes. bch_btree_node_get()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83)  * checks this field and returns the node with the appropriate lock held.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85)  * If, after traversing the btree, the insertion code discovers it has to split
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86)  * then it must restart from the root and take new locks - to do this it changes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87)  * the lock field and returns -EINTR, which causes the btree_root() macro to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88)  * loop.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90)  * Handling cache misses require a different mechanism for upgrading to a write
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91)  * lock. We do cache lookups with only a read lock held, but if we get a cache
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92)  * miss and we wish to insert this data into the cache, we have to insert a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93)  * placeholder key to detect races - otherwise, we could race with a write and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94)  * overwrite the data that was just written to the cache with stale data from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95)  * the backing device.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97)  * For this we use a sequence number that write locks and unlocks increment - to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98)  * insert the check key it unlocks the btree node and then takes a write lock,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99)  * and fails if the sequence number doesn't match.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) #include "bset.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) #include "debug.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) struct btree_write {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 	atomic_t		*journal;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 	/* If btree_split() frees a btree node, it writes a new pointer to that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 	 * btree node indicating it was freed; it takes a refcount on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 	 * c->prio_blocked because we can't write the gens until the new
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 	 * pointer is on disk. This allows btree_write_endio() to release the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 	 * refcount that btree_split() took.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 	int			prio_blocked;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) struct btree {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 	/* Hottest entries first */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 	struct hlist_node	hash;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 	/* Key/pointer for this btree node */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 	BKEY_PADDED(key);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 	unsigned long		seq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 	struct rw_semaphore	lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 	struct cache_set	*c;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 	struct btree		*parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 	struct mutex		write_lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 	unsigned long		flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 	uint16_t		written;	/* would be nice to kill */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 	uint8_t			level;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 	struct btree_keys	keys;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 	/* For outstanding btree writes, used as a lock - protects write_idx */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 	struct closure		io;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 	struct semaphore	io_mutex;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 	struct list_head	list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 	struct delayed_work	work;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 	struct btree_write	writes[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 	struct bio		*bio;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) #define BTREE_FLAG(flag)						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) static inline bool btree_node_ ## flag(struct btree *b)			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) {	return test_bit(BTREE_NODE_ ## flag, &b->flags); }		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) static inline void set_btree_node_ ## flag(struct btree *b)		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) {	set_bit(BTREE_NODE_ ## flag, &b->flags); }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) enum btree_flags {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 	BTREE_NODE_io_error,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 	BTREE_NODE_dirty,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 	BTREE_NODE_write_idx,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 	BTREE_NODE_journal_flush,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) BTREE_FLAG(io_error);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) BTREE_FLAG(dirty);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) BTREE_FLAG(write_idx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) BTREE_FLAG(journal_flush);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) static inline struct btree_write *btree_current_write(struct btree *b)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 	return b->writes + btree_node_write_idx(b);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) static inline struct btree_write *btree_prev_write(struct btree *b)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 	return b->writes + (btree_node_write_idx(b) ^ 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) static inline struct bset *btree_bset_first(struct btree *b)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 	return b->keys.set->data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) static inline struct bset *btree_bset_last(struct btree *b)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 	return bset_tree_last(&b->keys)->data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) static inline unsigned int bset_block_offset(struct btree *b, struct bset *i)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 	return bset_sector_offset(&b->keys, i) >> b->c->block_bits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) static inline void set_gc_sectors(struct cache_set *c)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 	atomic_set(&c->sectors_to_gc, c->cache->sb.bucket_size * c->nbuckets / 16);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) void bkey_put(struct cache_set *c, struct bkey *k);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) /* Looping macros */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) #define for_each_cached_btree(b, c, iter)				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 	for (iter = 0;							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 	     iter < ARRAY_SIZE((c)->bucket_hash);			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 	     iter++)							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 		hlist_for_each_entry_rcu((b), (c)->bucket_hash + iter, hash)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) /* Recursing down the btree */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) struct btree_op {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 	/* for waiting on btree reserve in btree_split() */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 	wait_queue_entry_t		wait;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 	/* Btree level at which we start taking write locks */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 	short			lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 	unsigned int		insert_collision:1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) struct btree_check_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) struct btree_check_info {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 	struct btree_check_state	*state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 	struct task_struct		*thread;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 	int				result;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) #define BCH_BTR_CHKTHREAD_MAX	64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) struct btree_check_state {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 	struct cache_set		*c;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 	int				total_threads;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 	int				key_idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 	spinlock_t			idx_lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 	atomic_t			started;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 	atomic_t			enough;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 	wait_queue_head_t		wait;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 	struct btree_check_info		infos[BCH_BTR_CHKTHREAD_MAX];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) static inline void bch_btree_op_init(struct btree_op *op, int write_lock_level)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 	memset(op, 0, sizeof(struct btree_op));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 	init_wait(&op->wait);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 	op->lock = write_lock_level;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) static inline void rw_lock(bool w, struct btree *b, int level)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 	w ? down_write_nested(&b->lock, level + 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 	  : down_read_nested(&b->lock, level + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 	if (w)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 		b->seq++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) static inline void rw_unlock(bool w, struct btree *b)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 	if (w)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 		b->seq++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 	(w ? up_write : up_read)(&b->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) void bch_btree_node_read_done(struct btree *b);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) void __bch_btree_node_write(struct btree *b, struct closure *parent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) void bch_btree_node_write(struct btree *b, struct closure *parent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) void bch_btree_set_root(struct btree *b);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) struct btree *__bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 				     int level, bool wait,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 				     struct btree *parent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 				 struct bkey *k, int level, bool write,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) 				 struct btree *parent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 			       struct bkey *check_key);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) int bch_btree_insert(struct cache_set *c, struct keylist *keys,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 		     atomic_t *journal_ref, struct bkey *replace_key);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) int bch_gc_thread_start(struct cache_set *c);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) void bch_initial_gc_finish(struct cache_set *c);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) void bch_moving_gc(struct cache_set *c);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) int bch_btree_check(struct cache_set *c);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) static inline void wake_up_gc(struct cache_set *c)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 	wake_up(&c->gc_wait);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) static inline void force_wake_up_gc(struct cache_set *c)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 	 * Garbage collection thread only works when sectors_to_gc < 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 	 * calling wake_up_gc() won't start gc thread if sectors_to_gc is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 	 * not a nagetive value.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 	 * Therefore sectors_to_gc is set to -1 here, before waking up
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 	 * gc thread by calling wake_up_gc(). Then gc_should_run() will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 	 * give a chance to permit gc thread to run. "Give a chance" means
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 	 * before going into gc_should_run(), there is still possibility
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 	 * that c->sectors_to_gc being set to other positive value. So
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 	 * this routine won't 100% make sure gc thread will be woken up
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 	 * to run.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 	atomic_set(&c->sectors_to_gc, -1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 	wake_up_gc(c);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310)  * These macros are for recursing down the btree - they handle the details of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311)  * locking and looking up nodes in the cache for you. They're best treated as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312)  * mere syntax when reading code that uses them.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314)  * op->lock determines whether we take a read or a write lock at a given depth.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315)  * If you've got a read lock and find that you need a write lock (i.e. you're
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316)  * going to have to split), set op->lock and return -EINTR; btree_root() will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317)  * call you again and you'll have the correct lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321)  * btree - recurse down the btree on a specified key
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322)  * @fn:		function to call, which will be passed the child node
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323)  * @key:	key to recurse on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324)  * @b:		parent btree node
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325)  * @op:		pointer to struct btree_op
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) #define bcache_btree(fn, key, b, op, ...)				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) ({									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 	int _r, l = (b)->level - 1;					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 	bool _w = l <= (op)->lock;					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 	struct btree *_child = bch_btree_node_get((b)->c, op, key, l,	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) 						  _w, b);		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 	if (!IS_ERR(_child)) {						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) 		_r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__);	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 		rw_unlock(_w, _child);					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) 	} else								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) 		_r = PTR_ERR(_child);					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) 	_r;								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) })
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342)  * btree_root - call a function on the root of the btree
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343)  * @fn:		function to call, which will be passed the child node
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344)  * @c:		cache set
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345)  * @op:		pointer to struct btree_op
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) #define bcache_btree_root(fn, c, op, ...)				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) ({									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) 	int _r = -EINTR;						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) 	do {								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) 		struct btree *_b = (c)->root;				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) 		bool _w = insert_lock(op, _b);				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) 		rw_lock(_w, _b, _b->level);				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) 		if (_b == (c)->root &&					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 		    _w == insert_lock(op, _b)) {			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) 			_r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__);	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) 		}							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) 		rw_unlock(_w, _b);					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) 		bch_cannibalize_unlock(c);                              \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) 		if (_r == -EINTR)                                       \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 			schedule();                                     \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) 	} while (_r == -EINTR);                                         \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) 									\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) 	finish_wait(&(c)->btree_cache_wait, &(op)->wait);               \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) 	_r;                                                             \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) })
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) #define MAP_DONE	0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) #define MAP_CONTINUE	1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) #define MAP_ALL_NODES	0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) #define MAP_LEAF_NODES	1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) #define MAP_END_KEY	1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) typedef int (btree_map_nodes_fn)(struct btree_op *b_op, struct btree *b);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) 			  struct bkey *from, btree_map_nodes_fn *fn, int flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) static inline int bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) 				      struct bkey *from, btree_map_nodes_fn *fn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) 	return __bch_btree_map_nodes(op, c, from, fn, MAP_ALL_NODES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) static inline int bch_btree_map_leaf_nodes(struct btree_op *op,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) 					   struct cache_set *c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) 					   struct bkey *from,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) 					   btree_map_nodes_fn *fn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) 	return __bch_btree_map_nodes(op, c, from, fn, MAP_LEAF_NODES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) typedef int (btree_map_keys_fn)(struct btree_op *op, struct btree *b,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) 				struct bkey *k);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) 		       struct bkey *from, btree_map_keys_fn *fn, int flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) 			       struct bkey *from, btree_map_keys_fn *fn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) 			       int flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) typedef bool (keybuf_pred_fn)(struct keybuf *buf, struct bkey *k);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) void bch_keybuf_init(struct keybuf *buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) 		       struct bkey *end, keybuf_pred_fn *pred);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) 				  struct bkey *end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) struct keybuf_key *bch_keybuf_next(struct keybuf *buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) 					  struct keybuf *buf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) 					  struct bkey *end,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) 					  keybuf_pred_fn *pred);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) void bch_update_bucket_in_use(struct cache_set *c, struct gc_stat *stats);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) #endif