Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0-only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * Windfarm PowerMac thermal control.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  * Control loops for RackMack3,1 (Xserve G5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  * Copyright (C) 2012 Benjamin Herrenschmidt, IBM Corp.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8) #include <linux/types.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) #include <linux/errno.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) #include <linux/device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) #include <linux/platform_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #include <linux/reboot.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #include <asm/prom.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) #include <asm/smu.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) #include "windfarm.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) #include "windfarm_pid.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #include "windfarm_mpu.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) #define VERSION "1.0"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) #undef DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) #undef LOTSA_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) #ifdef DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) #define DBG(args...)	printk(args)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) #define DBG(args...)	do { } while(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) #ifdef LOTSA_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) #define DBG_LOTS(args...)	printk(args)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) #define DBG_LOTS(args...)	do { } while(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) /* define this to force CPU overtemp to 60 degree, useful for testing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39)  * the overtemp code
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) #undef HACKED_OVERTEMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) /* We currently only handle 2 chips */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) #define NR_CHIPS	2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) #define NR_CPU_FANS	3 * NR_CHIPS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) /* Controls and sensors */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) static struct wf_sensor *sens_cpu_temp[NR_CHIPS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) static struct wf_sensor *sens_cpu_volts[NR_CHIPS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) static struct wf_sensor *sens_cpu_amps[NR_CHIPS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) static struct wf_sensor *backside_temp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) static struct wf_sensor *slots_temp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) static struct wf_sensor *dimms_temp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) static struct wf_control *cpu_fans[NR_CHIPS][3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) static struct wf_control *backside_fan;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) static struct wf_control *slots_fan;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) static struct wf_control *cpufreq_clamp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) /* We keep a temperature history for average calculation of 180s */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) #define CPU_TEMP_HIST_SIZE	180
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) /* PID loop state */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) static const struct mpu_data *cpu_mpu_data[NR_CHIPS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) static struct wf_cpu_pid_state cpu_pid[NR_CHIPS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) static u32 cpu_thist[CPU_TEMP_HIST_SIZE];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) static int cpu_thist_pt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) static s64 cpu_thist_total;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) static s32 cpu_all_tmax = 100 << 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) static struct wf_pid_state backside_pid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) static int backside_tick;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) static struct wf_pid_state slots_pid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) static int slots_tick;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) static int slots_speed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) static struct wf_pid_state dimms_pid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) static int dimms_output_clamp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) static int nr_chips;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) static bool have_all_controls;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) static bool have_all_sensors;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) static bool started;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) static int failure_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) #define FAILURE_SENSOR		1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) #define FAILURE_FAN		2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) #define FAILURE_PERM		4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) #define FAILURE_LOW_OVERTEMP	8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) #define FAILURE_HIGH_OVERTEMP	16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) /* Overtemp values */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) #define LOW_OVER_AVERAGE	0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) #define LOW_OVER_IMMEDIATE	(10 << 16)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) #define LOW_OVER_CLEAR		((-10) << 16)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) #define HIGH_OVER_IMMEDIATE	(14 << 16)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) #define HIGH_OVER_AVERAGE	(10 << 16)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) #define HIGH_OVER_IMMEDIATE	(14 << 16)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) static void cpu_max_all_fans(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 	/* We max all CPU fans in case of a sensor error. We also do the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 	 * cpufreq clamping now, even if it's supposedly done later by the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 	 * generic code anyway, we do it earlier here to react faster
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 	if (cpufreq_clamp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 		wf_control_set_max(cpufreq_clamp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 	for (i = 0; i < nr_chips; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 		if (cpu_fans[i][0])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 			wf_control_set_max(cpu_fans[i][0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 		if (cpu_fans[i][1])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 			wf_control_set_max(cpu_fans[i][1]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 		if (cpu_fans[i][2])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 			wf_control_set_max(cpu_fans[i][2]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) static int cpu_check_overtemp(s32 temp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 	int new_state = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 	s32 t_avg, t_old;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 	static bool first = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 	/* First check for immediate overtemps */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 	if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 		new_state |= FAILURE_LOW_OVERTEMP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 		if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 			printk(KERN_ERR "windfarm: Overtemp due to immediate CPU"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 			       " temperature !\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 	if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 		new_state |= FAILURE_HIGH_OVERTEMP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 		if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 			printk(KERN_ERR "windfarm: Critical overtemp due to"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 			       " immediate CPU temperature !\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 	 * The first time around, initialize the array with the first
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 	 * temperature reading
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 	if (first) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 		int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 		cpu_thist_total = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 		for (i = 0; i < CPU_TEMP_HIST_SIZE; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 			cpu_thist[i] = temp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 			cpu_thist_total += temp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 		first = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 	 * We calculate a history of max temperatures and use that for the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 	 * overtemp management
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 	t_old = cpu_thist[cpu_thist_pt];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 	cpu_thist[cpu_thist_pt] = temp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 	cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 	cpu_thist_total -= t_old;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 	cpu_thist_total += temp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 	t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 	DBG_LOTS("  t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 		 FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 	/* Now check for average overtemps */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 	if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 		new_state |= FAILURE_LOW_OVERTEMP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 		if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 			printk(KERN_ERR "windfarm: Overtemp due to average CPU"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 			       " temperature !\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 	if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 		new_state |= FAILURE_HIGH_OVERTEMP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 		if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 			printk(KERN_ERR "windfarm: Critical overtemp due to"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 			       " average CPU temperature !\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 	/* Now handle overtemp conditions. We don't currently use the windfarm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 	 * overtemp handling core as it's not fully suited to the needs of those
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 	 * new machine. This will be fixed later.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 	if (new_state) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 		/* High overtemp -> immediate shutdown */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 		if (new_state & FAILURE_HIGH_OVERTEMP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 			machine_power_off();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 		if ((failure_state & new_state) != new_state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 			cpu_max_all_fans();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 		failure_state |= new_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 	} else if ((failure_state & FAILURE_LOW_OVERTEMP) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 		   (temp < (cpu_all_tmax + LOW_OVER_CLEAR))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 		printk(KERN_ERR "windfarm: Overtemp condition cleared !\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 		failure_state &= ~FAILURE_LOW_OVERTEMP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 	return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) static int read_one_cpu_vals(int cpu, s32 *temp, s32 *power)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 	s32 dtemp, volts, amps;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 	int rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 	/* Get diode temperature */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 	rc = wf_sensor_get(sens_cpu_temp[cpu], &dtemp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 	if (rc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 		DBG("  CPU%d: temp reading error !\n", cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 		return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 	DBG_LOTS("  CPU%d: temp   = %d.%03d\n", cpu, FIX32TOPRINT((dtemp)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 	*temp = dtemp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 	/* Get voltage */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 	rc = wf_sensor_get(sens_cpu_volts[cpu], &volts);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 	if (rc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 		DBG("  CPU%d, volts reading error !\n", cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 		return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 	DBG_LOTS("  CPU%d: volts  = %d.%03d\n", cpu, FIX32TOPRINT((volts)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 	/* Get current */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 	rc = wf_sensor_get(sens_cpu_amps[cpu], &amps);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 	if (rc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 		DBG("  CPU%d, current reading error !\n", cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) 		return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 	DBG_LOTS("  CPU%d: amps   = %d.%03d\n", cpu, FIX32TOPRINT((amps)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 	/* Calculate power */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 	/* Scale voltage and current raw sensor values according to fixed scales
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 	 * obtained in Darwin and calculate power from I and V
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 	*power = (((u64)volts) * ((u64)amps)) >> 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 	DBG_LOTS("  CPU%d: power  = %d.%03d\n", cpu, FIX32TOPRINT((*power)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) static void cpu_fans_tick(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 	int err, cpu, i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 	s32 speed, temp, power, t_max = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 	DBG_LOTS("* cpu fans_tick_split()\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 	for (cpu = 0; cpu < nr_chips; ++cpu) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 		struct wf_cpu_pid_state *sp = &cpu_pid[cpu];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 		/* Read current speed */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 		wf_control_get(cpu_fans[cpu][0], &sp->target);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 		err = read_one_cpu_vals(cpu, &temp, &power);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 		if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 			failure_state |= FAILURE_SENSOR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 			cpu_max_all_fans();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 			return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 		/* Keep track of highest temp */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 		t_max = max(t_max, temp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 		/* Handle possible overtemps */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 		if (cpu_check_overtemp(t_max))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 			return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 		/* Run PID */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) 		wf_cpu_pid_run(sp, power, temp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) 		DBG_LOTS("  CPU%d: target = %d RPM\n", cpu, sp->target);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 		/* Apply DIMMs clamp */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 		speed = max(sp->target, dimms_output_clamp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) 		/* Apply result to all cpu fans */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 		for (i = 0; i < 3; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 			err = wf_control_set(cpu_fans[cpu][i], speed);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 			if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) 				pr_warn("wf_rm31: Fan %s reports error %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 					cpu_fans[cpu][i]->name, err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 				failure_state |= FAILURE_FAN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) /* Implementation... */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) static int cpu_setup_pid(int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 	struct wf_cpu_pid_param pid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 	const struct mpu_data *mpu = cpu_mpu_data[cpu];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 	s32 tmax, ttarget, ptarget;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 	int fmin, fmax, hsize;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 	/* Get PID params from the appropriate MPU EEPROM */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 	tmax = mpu->tmax << 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 	ttarget = mpu->ttarget << 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 	ptarget = ((s32)(mpu->pmaxh - mpu->padjmax)) << 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 	DBG("wf_72: CPU%d ttarget = %d.%03d, tmax = %d.%03d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 	    cpu, FIX32TOPRINT(ttarget), FIX32TOPRINT(tmax));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 	/* We keep a global tmax for overtemp calculations */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 	if (tmax < cpu_all_tmax)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 		cpu_all_tmax = tmax;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 	/* Set PID min/max by using the rear fan min/max */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) 	fmin = wf_control_get_min(cpu_fans[cpu][0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 	fmax = wf_control_get_max(cpu_fans[cpu][0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) 	DBG("wf_72: CPU%d max RPM range = [%d..%d]\n", cpu, fmin, fmax);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) 	/* History size */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) 	hsize = min_t(int, mpu->tguardband, WF_PID_MAX_HISTORY);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) 	DBG("wf_72: CPU%d history size = %d\n", cpu, hsize);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) 	/* Initialize PID loop */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) 	pid.interval	= 1;	/* seconds */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) 	pid.history_len = hsize;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) 	pid.gd		= mpu->pid_gd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 	pid.gp		= mpu->pid_gp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 	pid.gr		= mpu->pid_gr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) 	pid.tmax	= tmax;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 	pid.ttarget	= ttarget;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 	pid.pmaxadj	= ptarget;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 	pid.min		= fmin;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 	pid.max		= fmax;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 	wf_cpu_pid_init(&cpu_pid[cpu], &pid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) 	cpu_pid[cpu].target = 4000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 	
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) /* Backside/U3 fan */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) static const struct wf_pid_param backside_param = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) 	.interval	= 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) 	.history_len	= 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) 	.gd		= 0x00500000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) 	.gp		= 0x0004cccc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) 	.gr		= 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 	.itarget	= 70 << 16,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) 	.additive	= 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) 	.min		= 20,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) 	.max		= 100,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) /* DIMMs temperature (clamp the backside fan) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) static const struct wf_pid_param dimms_param = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) 	.interval	= 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 	.history_len	= 20,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) 	.gd		= 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) 	.gp		= 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) 	.gr		= 0x06553600,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) 	.itarget	= 50 << 16,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) 	.additive	= 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 	.min		= 4000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) 	.max		= 14000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) static void backside_fan_tick(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 	s32 temp, dtemp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) 	int speed, dspeed, fan_min;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) 	if (!backside_fan || !backside_temp || !dimms_temp || !backside_tick)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) 	if (--backside_tick > 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) 	backside_tick = backside_pid.param.interval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) 	DBG_LOTS("* backside fans tick\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) 	/* Update fan speed from actual fans */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) 	err = wf_control_get(backside_fan, &speed);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) 	if (!err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) 		backside_pid.target = speed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 	err = wf_sensor_get(backside_temp, &temp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) 	if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 		printk(KERN_WARNING "windfarm: U3 temp sensor error %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) 		       err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) 		failure_state |= FAILURE_SENSOR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) 		wf_control_set_max(backside_fan);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) 	speed = wf_pid_run(&backside_pid, temp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) 	DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) 		 FIX32TOPRINT(temp), speed);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) 	err = wf_sensor_get(dimms_temp, &dtemp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) 	if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) 		printk(KERN_WARNING "windfarm: DIMMs temp sensor error %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) 		       err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) 		failure_state |= FAILURE_SENSOR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) 		wf_control_set_max(backside_fan);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) 	dspeed = wf_pid_run(&dimms_pid, dtemp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) 	dimms_output_clamp = dspeed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) 	fan_min = (dspeed * 100) / 14000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) 	fan_min = max(fan_min, backside_param.min);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) 	speed = max(speed, fan_min);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) 	err = wf_control_set(backside_fan, speed);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) 	if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) 		printk(KERN_WARNING "windfarm: backside fan error %d\n", err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) 		failure_state |= FAILURE_FAN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) static void backside_setup_pid(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) 	/* first time initialize things */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) 	s32 fmin = wf_control_get_min(backside_fan);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) 	s32 fmax = wf_control_get_max(backside_fan);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) 	struct wf_pid_param param;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) 	param = backside_param;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) 	param.min = max(param.min, fmin);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) 	param.max = min(param.max, fmax);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) 	wf_pid_init(&backside_pid, &param);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) 	param = dimms_param;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) 	wf_pid_init(&dimms_pid, &param);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) 	backside_tick = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) 	pr_info("wf_rm31: Backside control loop started.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) /* Slots fan */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) static const struct wf_pid_param slots_param = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) 	.interval	= 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) 	.history_len	= 20,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) 	.gd		= 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) 	.gp		= 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) 	.gr		= 0x00100000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) 	.itarget	= 3200000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) 	.additive	= 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) 	.min		= 20,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) 	.max		= 100,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) static void slots_fan_tick(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) 	s32 temp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) 	int speed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) 	if (!slots_fan || !slots_temp || !slots_tick)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) 	if (--slots_tick > 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) 	slots_tick = slots_pid.param.interval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) 	DBG_LOTS("* slots fans tick\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) 	err = wf_sensor_get(slots_temp, &temp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) 	if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) 		pr_warn("wf_rm31: slots temp sensor error %d\n", err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) 		failure_state |= FAILURE_SENSOR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) 		wf_control_set_max(slots_fan);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) 	speed = wf_pid_run(&slots_pid, temp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) 	DBG_LOTS("slots PID temp=%d.%.3d speed=%d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) 		 FIX32TOPRINT(temp), speed);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) 	slots_speed = speed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) 	err = wf_control_set(slots_fan, speed);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) 	if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) 		printk(KERN_WARNING "windfarm: slots bay fan error %d\n", err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) 		failure_state |= FAILURE_FAN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) static void slots_setup_pid(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) 	/* first time initialize things */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) 	s32 fmin = wf_control_get_min(slots_fan);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) 	s32 fmax = wf_control_get_max(slots_fan);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) 	struct wf_pid_param param = slots_param;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) 	param.min = max(param.min, fmin);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) 	param.max = min(param.max, fmax);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) 	wf_pid_init(&slots_pid, &param);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) 	slots_tick = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) 	pr_info("wf_rm31: Slots control loop started.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) static void set_fail_state(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) 	cpu_max_all_fans();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) 	if (backside_fan)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) 		wf_control_set_max(backside_fan);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) 	if (slots_fan)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) 		wf_control_set_max(slots_fan);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) static void rm31_tick(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) 	int i, last_failure;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) 	if (!started) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) 		started = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) 		printk(KERN_INFO "windfarm: CPUs control loops started.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) 		for (i = 0; i < nr_chips; ++i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) 			if (cpu_setup_pid(i) < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) 				failure_state = FAILURE_PERM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) 				set_fail_state();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) 		DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) 		backside_setup_pid();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) 		slots_setup_pid();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) #ifdef HACKED_OVERTEMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) 		cpu_all_tmax = 60 << 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) 	/* Permanent failure, bail out */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) 	if (failure_state & FAILURE_PERM)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) 	 * Clear all failure bits except low overtemp which will be eventually
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) 	 * cleared by the control loop itself
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) 	last_failure = failure_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) 	failure_state &= FAILURE_LOW_OVERTEMP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) 	backside_fan_tick();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) 	slots_fan_tick();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) 	/* We do CPUs last because they can be clamped high by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) 	 * DIMM temperature
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) 	cpu_fans_tick();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) 	DBG_LOTS("  last_failure: 0x%x, failure_state: %x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) 		 last_failure, failure_state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) 	/* Check for failures. Any failure causes cpufreq clamping */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) 	if (failure_state && last_failure == 0 && cpufreq_clamp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) 		wf_control_set_max(cpufreq_clamp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) 	if (failure_state == 0 && last_failure && cpufreq_clamp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) 		wf_control_set_min(cpufreq_clamp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) 	/* That's it for now, we might want to deal with other failures
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) 	 * differently in the future though
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) static void rm31_new_control(struct wf_control *ct)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) 	bool all_controls;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) 	if (!strcmp(ct->name, "cpu-fan-a-0"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) 		cpu_fans[0][0] = ct;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) 	else if (!strcmp(ct->name, "cpu-fan-b-0"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) 		cpu_fans[0][1] = ct;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) 	else if (!strcmp(ct->name, "cpu-fan-c-0"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) 		cpu_fans[0][2] = ct;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) 	else if (!strcmp(ct->name, "cpu-fan-a-1"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) 		cpu_fans[1][0] = ct;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) 	else if (!strcmp(ct->name, "cpu-fan-b-1"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) 		cpu_fans[1][1] = ct;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) 	else if (!strcmp(ct->name, "cpu-fan-c-1"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) 		cpu_fans[1][2] = ct;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) 	else if (!strcmp(ct->name, "backside-fan"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) 		backside_fan = ct;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) 	else if (!strcmp(ct->name, "slots-fan"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) 		slots_fan = ct;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) 	else if (!strcmp(ct->name, "cpufreq-clamp"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) 		cpufreq_clamp = ct;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) 	all_controls =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) 		cpu_fans[0][0] &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) 		cpu_fans[0][1] &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) 		cpu_fans[0][2] &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) 		backside_fan &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) 		slots_fan;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) 	if (nr_chips > 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) 		all_controls &=
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) 			cpu_fans[1][0] &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) 			cpu_fans[1][1] &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600) 			cpu_fans[1][2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) 	have_all_controls = all_controls;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) static void rm31_new_sensor(struct wf_sensor *sr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) 	bool all_sensors;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) 	if (!strcmp(sr->name, "cpu-diode-temp-0"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) 		sens_cpu_temp[0] = sr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611) 	else if (!strcmp(sr->name, "cpu-diode-temp-1"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) 		sens_cpu_temp[1] = sr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) 	else if (!strcmp(sr->name, "cpu-voltage-0"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614) 		sens_cpu_volts[0] = sr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615) 	else if (!strcmp(sr->name, "cpu-voltage-1"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616) 		sens_cpu_volts[1] = sr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) 	else if (!strcmp(sr->name, "cpu-current-0"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618) 		sens_cpu_amps[0] = sr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619) 	else if (!strcmp(sr->name, "cpu-current-1"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620) 		sens_cpu_amps[1] = sr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621) 	else if (!strcmp(sr->name, "backside-temp"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622) 		backside_temp = sr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623) 	else if (!strcmp(sr->name, "slots-temp"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624) 		slots_temp = sr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625) 	else if (!strcmp(sr->name, "dimms-temp"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626) 		dimms_temp = sr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628) 	all_sensors =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629) 		sens_cpu_temp[0] &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630) 		sens_cpu_volts[0] &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631) 		sens_cpu_amps[0] &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632) 		backside_temp &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633) 		slots_temp &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634) 		dimms_temp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635) 	if (nr_chips > 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636) 		all_sensors &=
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637) 			sens_cpu_temp[1] &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638) 			sens_cpu_volts[1] &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639) 			sens_cpu_amps[1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641) 	have_all_sensors = all_sensors;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644) static int rm31_wf_notify(struct notifier_block *self,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 645) 			  unsigned long event, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 646) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 647) 	switch (event) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 648) 	case WF_EVENT_NEW_SENSOR:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 649) 		rm31_new_sensor(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 650) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 651) 	case WF_EVENT_NEW_CONTROL:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 652) 		rm31_new_control(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 653) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 654) 	case WF_EVENT_TICK:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 655) 		if (have_all_controls && have_all_sensors)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 656) 			rm31_tick();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 657) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 658) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 659) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 660) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 661) static struct notifier_block rm31_events = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 662) 	.notifier_call = rm31_wf_notify,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 663) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 664) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 665) static int wf_rm31_probe(struct platform_device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 666) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 667) 	wf_register_client(&rm31_events);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 668) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 669) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 670) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 671) static int wf_rm31_remove(struct platform_device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 672) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 673) 	wf_unregister_client(&rm31_events);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 674) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 675) 	/* should release all sensors and controls */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 676) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 677) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 678) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 679) static struct platform_driver wf_rm31_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 680) 	.probe	= wf_rm31_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 681) 	.remove	= wf_rm31_remove,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 682) 	.driver	= {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 683) 		.name = "windfarm",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 684) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 685) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 686) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 687) static int __init wf_rm31_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 688) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 689) 	struct device_node *cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 690) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 691) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 692) 	if (!of_machine_is_compatible("RackMac3,1"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 693) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 694) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 695) 	/* Count the number of CPU cores */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 696) 	nr_chips = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 697) 	for_each_node_by_type(cpu, "cpu")
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 698) 		++nr_chips;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 699) 	if (nr_chips > NR_CHIPS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 700) 		nr_chips = NR_CHIPS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 701) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 702) 	pr_info("windfarm: Initializing for desktop G5 with %d chips\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 703) 		nr_chips);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 704) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 705) 	/* Get MPU data for each CPU */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 706) 	for (i = 0; i < nr_chips; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 707) 		cpu_mpu_data[i] = wf_get_mpu(i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 708) 		if (!cpu_mpu_data[i]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 709) 			pr_err("wf_rm31: Failed to find MPU data for CPU %d\n", i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 710) 			return -ENXIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 711) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 712) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 713) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 714) #ifdef MODULE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 715) 	request_module("windfarm_fcu_controls");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 716) 	request_module("windfarm_lm75_sensor");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 717) 	request_module("windfarm_lm87_sensor");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 718) 	request_module("windfarm_ad7417_sensor");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 719) 	request_module("windfarm_max6690_sensor");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 720) 	request_module("windfarm_cpufreq_clamp");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 721) #endif /* MODULE */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 722) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 723) 	platform_driver_register(&wf_rm31_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 724) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 725) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 726) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 727) static void __exit wf_rm31_exit(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 728) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 729) 	platform_driver_unregister(&wf_rm31_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 730) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 731) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 732) module_init(wf_rm31_init);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 733) module_exit(wf_rm31_exit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 734) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 735) MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 736) MODULE_DESCRIPTION("Thermal control for Xserve G5");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 737) MODULE_LICENSE("GPL");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 738) MODULE_ALIAS("platform:windfarm");