Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0-only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * Activity LED trigger
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  * Copyright (C) 2017 Willy Tarreau <w@1wt.eu>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  * Partially based on Atsushi Nemoto's ledtrig-heartbeat.c.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) #include <linux/kernel_stat.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) #include <linux/leds.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #include <linux/reboot.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) #include <linux/sched.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) #include <linux/timer.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) #include "../leds.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) static int panic_detected;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) struct activity_data {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) 	struct timer_list timer;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) 	struct led_classdev *led_cdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) 	u64 last_used;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) 	u64 last_boot;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) 	int time_left;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) 	int state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) 	int invert;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) static void led_activity_function(struct timer_list *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) 	struct activity_data *activity_data = from_timer(activity_data, t,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) 							 timer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) 	struct led_classdev *led_cdev = activity_data->led_cdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) 	unsigned int target;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) 	unsigned int usage;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) 	int delay;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) 	u64 curr_used;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) 	u64 curr_boot;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) 	s32 diff_used;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) 	s32 diff_boot;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) 	int cpus;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) 	if (test_and_clear_bit(LED_BLINK_BRIGHTNESS_CHANGE, &led_cdev->work_flags))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) 		led_cdev->blink_brightness = led_cdev->new_blink_brightness;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) 	if (unlikely(panic_detected)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) 		/* full brightness in case of panic */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) 		led_set_brightness_nosleep(led_cdev, led_cdev->blink_brightness);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) 	cpus = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) 	curr_used = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 	for_each_possible_cpu(i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) 		struct kernel_cpustat kcpustat;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) 		kcpustat_cpu_fetch(&kcpustat, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 		curr_used += kcpustat.cpustat[CPUTIME_USER]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 			  +  kcpustat.cpustat[CPUTIME_NICE]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) 			  +  kcpustat.cpustat[CPUTIME_SYSTEM]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) 			  +  kcpustat.cpustat[CPUTIME_SOFTIRQ]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 			  +  kcpustat.cpustat[CPUTIME_IRQ];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) 		cpus++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) 	/* We come here every 100ms in the worst case, so that's 100M ns of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 	 * cumulated time. By dividing by 2^16, we get the time resolution
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 	 * down to 16us, ensuring we won't overflow 32-bit computations below
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 	 * even up to 3k CPUs, while keeping divides cheap on smaller systems.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 	curr_boot = ktime_get_boottime_ns() * cpus;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 	diff_boot = (curr_boot - activity_data->last_boot) >> 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 	diff_used = (curr_used - activity_data->last_used) >> 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 	activity_data->last_boot = curr_boot;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 	activity_data->last_used = curr_used;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 	if (diff_boot <= 0 || diff_used < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 		usage = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 	else if (diff_used >= diff_boot)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 		usage = 100;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 		usage = 100 * diff_used / diff_boot;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 	 * Now we know the total boot_time multiplied by the number of CPUs, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 	 * the total idle+wait time for all CPUs. We'll compare how they evolved
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 	 * since last call. The % of overall CPU usage is :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 	 *      1 - delta_idle / delta_boot
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 	 * What we want is that when the CPU usage is zero, the LED must blink
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 	 * slowly with very faint flashes that are detectable but not disturbing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 	 * (typically 10ms every second, or 10ms ON, 990ms OFF). Then we want
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 	 * blinking frequency to increase up to the point where the load is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 	 * enough to saturate one core in multi-core systems or 50% in single
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 	 * core systems. At this point it should reach 10 Hz with a 10/90 duty
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 	 * cycle (10ms ON, 90ms OFF). After this point, the blinking frequency
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 	 * remains stable (10 Hz) and only the duty cycle increases to report
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 	 * the activity, up to the point where we have 90ms ON, 10ms OFF when
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 	 * all cores are saturated. It's important that the LED never stays in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 	 * a steady state so that it's easy to distinguish an idle or saturated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 	 * machine from a hung one.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 	 * This gives us :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 	 *   - a target CPU usage of min(50%, 100%/#CPU) for a 10% duty cycle
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 	 *     (10ms ON, 90ms OFF)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 	 *   - below target :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 	 *      ON_ms  = 10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 	 *      OFF_ms = 90 + (1 - usage/target) * 900
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 	 *   - above target :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 	 *      ON_ms  = 10 + (usage-target)/(100%-target) * 80
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 	 *      OFF_ms = 90 - (usage-target)/(100%-target) * 80
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 	 * In order to keep a good responsiveness, we cap the sleep time to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 	 * 100 ms and keep track of the sleep time left. This allows us to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 	 * quickly change it if needed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 	activity_data->time_left -= 100;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 	if (activity_data->time_left <= 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 		activity_data->time_left = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 		activity_data->state = !activity_data->state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 		led_set_brightness_nosleep(led_cdev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 			(activity_data->state ^ activity_data->invert) ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 			led_cdev->blink_brightness : LED_OFF);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 	target = (cpus > 1) ? (100 / cpus) : 50;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 	if (usage < target)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 		delay = activity_data->state ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 			10 :                        /* ON  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 			990 - 900 * usage / target; /* OFF */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 		delay = activity_data->state ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 			10 + 80 * (usage - target) / (100 - target) : /* ON  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 			90 - 80 * (usage - target) / (100 - target);  /* OFF */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 	if (!activity_data->time_left || delay <= activity_data->time_left)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 		activity_data->time_left = delay;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 	delay = min_t(int, activity_data->time_left, 100);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 	mod_timer(&activity_data->timer, jiffies + msecs_to_jiffies(delay));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) static ssize_t led_invert_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154)                                struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 	struct activity_data *activity_data = led_trigger_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 	return sprintf(buf, "%u\n", activity_data->invert);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) static ssize_t led_invert_store(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162)                                 struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163)                                 const char *buf, size_t size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 	struct activity_data *activity_data = led_trigger_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 	unsigned long state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 	ret = kstrtoul(buf, 0, &state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 	activity_data->invert = !!state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 	return size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) static DEVICE_ATTR(invert, 0644, led_invert_show, led_invert_store);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) static struct attribute *activity_led_attrs[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 	&dev_attr_invert.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 	NULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) ATTRIBUTE_GROUPS(activity_led);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) static int activity_activate(struct led_classdev *led_cdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 	struct activity_data *activity_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 	activity_data = kzalloc(sizeof(*activity_data), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 	if (!activity_data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 	led_set_trigger_data(led_cdev, activity_data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 	activity_data->led_cdev = led_cdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 	timer_setup(&activity_data->timer, led_activity_function, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 	if (!led_cdev->blink_brightness)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 		led_cdev->blink_brightness = led_cdev->max_brightness;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 	led_activity_function(&activity_data->timer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 	set_bit(LED_BLINK_SW, &led_cdev->work_flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) static void activity_deactivate(struct led_classdev *led_cdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 	struct activity_data *activity_data = led_get_trigger_data(led_cdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 	del_timer_sync(&activity_data->timer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 	kfree(activity_data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 	clear_bit(LED_BLINK_SW, &led_cdev->work_flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) static struct led_trigger activity_led_trigger = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 	.name       = "activity",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 	.activate   = activity_activate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 	.deactivate = activity_deactivate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 	.groups     = activity_led_groups,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) static int activity_reboot_notifier(struct notifier_block *nb,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223)                                     unsigned long code, void *unused)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 	led_trigger_unregister(&activity_led_trigger);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 	return NOTIFY_DONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) static int activity_panic_notifier(struct notifier_block *nb,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230)                                    unsigned long code, void *unused)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 	panic_detected = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 	return NOTIFY_DONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) static struct notifier_block activity_reboot_nb = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 	.notifier_call = activity_reboot_notifier,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) static struct notifier_block activity_panic_nb = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 	.notifier_call = activity_panic_notifier,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) static int __init activity_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) 	int rc = led_trigger_register(&activity_led_trigger);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 	if (!rc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 		atomic_notifier_chain_register(&panic_notifier_list,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 					       &activity_panic_nb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 		register_reboot_notifier(&activity_reboot_nb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 	return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) static void __exit activity_exit(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 	unregister_reboot_notifier(&activity_reboot_nb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 	atomic_notifier_chain_unregister(&panic_notifier_list,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 					 &activity_panic_nb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 	led_trigger_unregister(&activity_led_trigger);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) module_init(activity_init);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) module_exit(activity_exit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) MODULE_AUTHOR("Willy Tarreau <w@1wt.eu>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) MODULE_DESCRIPTION("Activity LED trigger");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) MODULE_LICENSE("GPL v2");