Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    1) // SPDX-License-Identifier: GPL-2.0-only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    3)  * Copyright © 2006-2014 Intel Corporation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    5)  * Authors: David Woodhouse <dwmw2@infradead.org>,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    6)  *          Ashok Raj <ashok.raj@intel.com>,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    7)  *          Shaohua Li <shaohua.li@intel.com>,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    8)  *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    9)  *          Fenghua Yu <fenghua.yu@intel.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   10)  *          Joerg Roedel <jroedel@suse.de>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   11)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   12) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   13) #define pr_fmt(fmt)     "DMAR: " fmt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   14) #define dev_fmt(fmt)    pr_fmt(fmt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   15) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   16) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   17) #include <linux/bitmap.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   18) #include <linux/debugfs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   19) #include <linux/export.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   20) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   21) #include <linux/irq.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   22) #include <linux/interrupt.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   23) #include <linux/spinlock.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   24) #include <linux/pci.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   25) #include <linux/dmar.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   26) #include <linux/dma-map-ops.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   27) #include <linux/mempool.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   28) #include <linux/memory.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   29) #include <linux/cpu.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   30) #include <linux/timer.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   31) #include <linux/io.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   32) #include <linux/iova.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   33) #include <linux/iommu.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   34) #include <linux/intel-iommu.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   35) #include <linux/syscore_ops.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   36) #include <linux/tboot.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   37) #include <linux/dmi.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   38) #include <linux/pci-ats.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   39) #include <linux/memblock.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   40) #include <linux/dma-map-ops.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   41) #include <linux/dma-direct.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   42) #include <linux/crash_dump.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   43) #include <linux/numa.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   44) #include <linux/swiotlb.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   45) #include <asm/irq_remapping.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   46) #include <asm/cacheflush.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   47) #include <asm/iommu.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   48) #include <trace/events/intel_iommu.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   49) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   50) #include "../irq_remapping.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   51) #include "pasid.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   52) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   53) #define ROOT_SIZE		VTD_PAGE_SIZE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   54) #define CONTEXT_SIZE		VTD_PAGE_SIZE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   55) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   56) #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   57) #define IS_USB_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_SERIAL_USB)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   58) #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   59) #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   60) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   61) #define IOAPIC_RANGE_START	(0xfee00000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   62) #define IOAPIC_RANGE_END	(0xfeefffff)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   63) #define IOVA_START_ADDR		(0x1000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   64) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   65) #define DEFAULT_DOMAIN_ADDRESS_WIDTH 57
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   66) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   67) #define MAX_AGAW_WIDTH 64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   68) #define MAX_AGAW_PFN_WIDTH	(MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   69) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   70) #define __DOMAIN_MAX_PFN(gaw)  ((((uint64_t)1) << ((gaw) - VTD_PAGE_SHIFT)) - 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   71) #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << (gaw)) - 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   72) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   73) /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   74)    to match. That way, we can use 'unsigned long' for PFNs with impunity. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   75) #define DOMAIN_MAX_PFN(gaw)	((unsigned long) min_t(uint64_t, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   76) 				__DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   77) #define DOMAIN_MAX_ADDR(gaw)	(((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   78) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   79) /* IO virtual address start page frame number */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   80) #define IOVA_START_PFN		(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   81) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   82) #define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   83) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   84) /* page table handling */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   85) #define LEVEL_STRIDE		(9)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   86) #define LEVEL_MASK		(((u64)1 << LEVEL_STRIDE) - 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   87) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   88) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   89)  * This bitmap is used to advertise the page sizes our hardware support
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   90)  * to the IOMMU core, which will then use this information to split
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   91)  * physically contiguous memory regions it is mapping into page sizes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   92)  * that we support.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   93)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   94)  * Traditionally the IOMMU core just handed us the mappings directly,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   95)  * after making sure the size is an order of a 4KiB page and that the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   96)  * mapping has natural alignment.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   97)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   98)  * To retain this behavior, we currently advertise that we support
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   99)  * all page sizes that are an order of 4KiB.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  100)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  101)  * If at some point we'd like to utilize the IOMMU core's new behavior,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  102)  * we could change this to advertise the real page sizes we support.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  103)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  104) #define INTEL_IOMMU_PGSIZES	(~0xFFFUL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  105) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  106) static inline int agaw_to_level(int agaw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  107) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  108) 	return agaw + 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  109) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  110) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  111) static inline int agaw_to_width(int agaw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  112) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  113) 	return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  114) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  115) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  116) static inline int width_to_agaw(int width)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  117) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  118) 	return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  119) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  120) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  121) static inline unsigned int level_to_offset_bits(int level)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  122) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  123) 	return (level - 1) * LEVEL_STRIDE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  124) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  125) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  126) static inline int pfn_level_offset(u64 pfn, int level)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  127) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  128) 	return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  129) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  130) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  131) static inline u64 level_mask(int level)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  132) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  133) 	return -1ULL << level_to_offset_bits(level);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  134) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  135) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  136) static inline u64 level_size(int level)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  137) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  138) 	return 1ULL << level_to_offset_bits(level);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  139) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  140) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  141) static inline u64 align_to_level(u64 pfn, int level)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  142) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  143) 	return (pfn + level_size(level) - 1) & level_mask(level);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  144) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  145) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  146) static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  147) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  148) 	return 1UL << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  149) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  150) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  151) /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  152)    are never going to work. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  153) static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  154) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  155) 	return dma_pfn >> (PAGE_SHIFT - VTD_PAGE_SHIFT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  156) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  157) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  158) static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  159) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  160) 	return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  161) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  162) static inline unsigned long page_to_dma_pfn(struct page *pg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  163) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  164) 	return mm_to_dma_pfn(page_to_pfn(pg));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  165) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  166) static inline unsigned long virt_to_dma_pfn(void *p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  167) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  168) 	return page_to_dma_pfn(virt_to_page(p));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  169) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  170) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  171) /* global iommu list, set NULL for ignored DMAR units */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  172) static struct intel_iommu **g_iommus;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  173) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  174) static void __init check_tylersburg_isoch(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  175) static int rwbf_quirk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  176) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  177) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  178)  * set to 1 to panic kernel if can't successfully enable VT-d
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  179)  * (used when kernel is launched w/ TXT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  180)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  181) static int force_on = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  182) static int intel_iommu_tboot_noforce;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  183) static int no_platform_optin;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  184) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  185) #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  186) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  187) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  188)  * Take a root_entry and return the Lower Context Table Pointer (LCTP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  189)  * if marked present.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  190)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  191) static phys_addr_t root_entry_lctp(struct root_entry *re)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  192) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  193) 	if (!(re->lo & 1))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  194) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  195) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  196) 	return re->lo & VTD_PAGE_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  197) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  198) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  199) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  200)  * Take a root_entry and return the Upper Context Table Pointer (UCTP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  201)  * if marked present.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  202)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  203) static phys_addr_t root_entry_uctp(struct root_entry *re)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  204) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  205) 	if (!(re->hi & 1))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  206) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  207) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  208) 	return re->hi & VTD_PAGE_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  209) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  210) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  211) static inline void context_clear_pasid_enable(struct context_entry *context)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  212) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  213) 	context->lo &= ~(1ULL << 11);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  214) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  215) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  216) static inline bool context_pasid_enabled(struct context_entry *context)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  217) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  218) 	return !!(context->lo & (1ULL << 11));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  219) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  220) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  221) static inline void context_set_copied(struct context_entry *context)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  222) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  223) 	context->hi |= (1ull << 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  224) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  225) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  226) static inline bool context_copied(struct context_entry *context)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  227) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  228) 	return !!(context->hi & (1ULL << 3));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  229) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  230) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  231) static inline bool __context_present(struct context_entry *context)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  232) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  233) 	return (context->lo & 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  234) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  235) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  236) bool context_present(struct context_entry *context)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  237) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  238) 	return context_pasid_enabled(context) ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  239) 	     __context_present(context) :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  240) 	     __context_present(context) && !context_copied(context);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  241) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  242) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  243) static inline void context_set_present(struct context_entry *context)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  244) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  245) 	context->lo |= 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  246) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  247) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  248) static inline void context_set_fault_enable(struct context_entry *context)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  249) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  250) 	context->lo &= (((u64)-1) << 2) | 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  251) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  252) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  253) static inline void context_set_translation_type(struct context_entry *context,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  254) 						unsigned long value)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  255) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  256) 	context->lo &= (((u64)-1) << 4) | 3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  257) 	context->lo |= (value & 3) << 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  258) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  259) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  260) static inline void context_set_address_root(struct context_entry *context,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  261) 					    unsigned long value)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  262) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  263) 	context->lo &= ~VTD_PAGE_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  264) 	context->lo |= value & VTD_PAGE_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  265) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  266) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  267) static inline void context_set_address_width(struct context_entry *context,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  268) 					     unsigned long value)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  269) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  270) 	context->hi |= value & 7;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  271) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  272) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  273) static inline void context_set_domain_id(struct context_entry *context,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  274) 					 unsigned long value)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  275) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  276) 	context->hi |= (value & ((1 << 16) - 1)) << 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  277) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  278) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  279) static inline int context_domain_id(struct context_entry *c)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  280) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  281) 	return((c->hi >> 8) & 0xffff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  282) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  283) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  284) static inline void context_clear_entry(struct context_entry *context)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  285) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  286) 	context->lo = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  287) 	context->hi = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  288) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  289) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  290) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  291)  * This domain is a statically identity mapping domain.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  292)  *	1. This domain creats a static 1:1 mapping to all usable memory.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  293)  * 	2. It maps to each iommu if successful.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  294)  *	3. Each iommu mapps to this domain if successful.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  295)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  296) static struct dmar_domain *si_domain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  297) static int hw_pass_through = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  298) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  299) #define for_each_domain_iommu(idx, domain)			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  300) 	for (idx = 0; idx < g_num_of_iommus; idx++)		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  301) 		if (domain->iommu_refcnt[idx])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  302) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  303) struct dmar_rmrr_unit {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  304) 	struct list_head list;		/* list of rmrr units	*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  305) 	struct acpi_dmar_header *hdr;	/* ACPI header		*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  306) 	u64	base_address;		/* reserved base address*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  307) 	u64	end_address;		/* reserved end address */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  308) 	struct dmar_dev_scope *devices;	/* target devices */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  309) 	int	devices_cnt;		/* target device count */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  310) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  311) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  312) struct dmar_atsr_unit {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  313) 	struct list_head list;		/* list of ATSR units */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  314) 	struct acpi_dmar_header *hdr;	/* ACPI header */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  315) 	struct dmar_dev_scope *devices;	/* target devices */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  316) 	int devices_cnt;		/* target device count */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  317) 	u8 include_all:1;		/* include all ports */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  318) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  319) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  320) static LIST_HEAD(dmar_atsr_units);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  321) static LIST_HEAD(dmar_rmrr_units);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  322) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  323) #define for_each_rmrr_units(rmrr) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  324) 	list_for_each_entry(rmrr, &dmar_rmrr_units, list)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  325) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  326) /* bitmap for indexing intel_iommus */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  327) static int g_num_of_iommus;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  328) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  329) static void domain_exit(struct dmar_domain *domain);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  330) static void domain_remove_dev_info(struct dmar_domain *domain);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  331) static void dmar_remove_one_dev_info(struct device *dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  332) static void __dmar_remove_one_dev_info(struct device_domain_info *info);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  333) static int intel_iommu_attach_device(struct iommu_domain *domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  334) 				     struct device *dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  335) static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  336) 					    dma_addr_t iova);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  337) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  338) #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  339) int dmar_disabled = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  340) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  341) int dmar_disabled = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  342) #endif /* CONFIG_INTEL_IOMMU_DEFAULT_ON */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  343) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  344) #ifdef CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  345) int intel_iommu_sm = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  346) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  347) int intel_iommu_sm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  348) #endif /* CONFIG_INTEL_IOMMU_SCALABLE_MODE_DEFAULT_ON */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  349) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  350) int intel_iommu_enabled = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  351) EXPORT_SYMBOL_GPL(intel_iommu_enabled);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  352) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  353) static int dmar_map_gfx = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  354) static int dmar_forcedac;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  355) static int intel_iommu_strict;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  356) static int intel_iommu_superpage = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  357) static int iommu_identity_mapping;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  358) static int intel_no_bounce;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  359) static int iommu_skip_te_disable;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  360) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  361) #define IDENTMAP_GFX		2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  362) #define IDENTMAP_AZALIA		4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  363) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  364) int intel_iommu_gfx_mapped;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  365) EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  366) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  367) #define DEFER_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-2))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  368) struct device_domain_info *get_domain_info(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  369) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  370) 	struct device_domain_info *info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  371) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  372) 	if (!dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  373) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  374) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  375) 	info = dev_iommu_priv_get(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  376) 	if (unlikely(info == DEFER_DEVICE_DOMAIN_INFO))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  377) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  378) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  379) 	return info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  380) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  381) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  382) DEFINE_SPINLOCK(device_domain_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  383) static LIST_HEAD(device_domain_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  384) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  385) #define device_needs_bounce(d) (!intel_no_bounce && dev_is_pci(d) &&	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  386) 				to_pci_dev(d)->untrusted)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  387) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  388) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  389)  * Iterate over elements in device_domain_list and call the specified
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  390)  * callback @fn against each element.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  391)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  392) int for_each_device_domain(int (*fn)(struct device_domain_info *info,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  393) 				     void *data), void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  394) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  395) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  396) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  397) 	struct device_domain_info *info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  398) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  399) 	spin_lock_irqsave(&device_domain_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  400) 	list_for_each_entry(info, &device_domain_list, global) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  401) 		ret = fn(info, data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  402) 		if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  403) 			spin_unlock_irqrestore(&device_domain_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  404) 			return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  405) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  406) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  407) 	spin_unlock_irqrestore(&device_domain_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  408) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  409) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  410) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  411) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  412) const struct iommu_ops intel_iommu_ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  413) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  414) static bool translation_pre_enabled(struct intel_iommu *iommu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  415) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  416) 	return (iommu->flags & VTD_FLAG_TRANS_PRE_ENABLED);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  417) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  418) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  419) static void clear_translation_pre_enabled(struct intel_iommu *iommu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  420) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  421) 	iommu->flags &= ~VTD_FLAG_TRANS_PRE_ENABLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  422) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  423) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  424) static void init_translation_status(struct intel_iommu *iommu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  425) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  426) 	u32 gsts;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  427) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  428) 	gsts = readl(iommu->reg + DMAR_GSTS_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  429) 	if (gsts & DMA_GSTS_TES)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  430) 		iommu->flags |= VTD_FLAG_TRANS_PRE_ENABLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  431) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  432) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  433) static int __init intel_iommu_setup(char *str)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  434) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  435) 	if (!str)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  436) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  437) 	while (*str) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  438) 		if (!strncmp(str, "on", 2)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  439) 			dmar_disabled = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  440) 			pr_info("IOMMU enabled\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  441) 		} else if (!strncmp(str, "off", 3)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  442) 			dmar_disabled = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  443) 			no_platform_optin = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  444) 			pr_info("IOMMU disabled\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  445) 		} else if (!strncmp(str, "igfx_off", 8)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  446) 			dmar_map_gfx = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  447) 			pr_info("Disable GFX device mapping\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  448) 		} else if (!strncmp(str, "forcedac", 8)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  449) 			pr_info("Forcing DAC for PCI devices\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  450) 			dmar_forcedac = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  451) 		} else if (!strncmp(str, "strict", 6)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  452) 			pr_info("Disable batched IOTLB flush\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  453) 			intel_iommu_strict = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  454) 		} else if (!strncmp(str, "sp_off", 6)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  455) 			pr_info("Disable supported super page\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  456) 			intel_iommu_superpage = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  457) 		} else if (!strncmp(str, "sm_on", 5)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  458) 			pr_info("Intel-IOMMU: scalable mode supported\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  459) 			intel_iommu_sm = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  460) 		} else if (!strncmp(str, "tboot_noforce", 13)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  461) 			pr_info("Intel-IOMMU: not forcing on after tboot. This could expose security risk for tboot\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  462) 			intel_iommu_tboot_noforce = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  463) 		} else if (!strncmp(str, "nobounce", 8)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  464) 			pr_info("Intel-IOMMU: No bounce buffer. This could expose security risks of DMA attacks\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  465) 			intel_no_bounce = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  466) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  467) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  468) 		str += strcspn(str, ",");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  469) 		while (*str == ',')
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  470) 			str++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  471) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  472) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  473) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  474) __setup("intel_iommu=", intel_iommu_setup);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  475) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  476) static struct kmem_cache *iommu_domain_cache;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  477) static struct kmem_cache *iommu_devinfo_cache;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  478) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  479) static struct dmar_domain* get_iommu_domain(struct intel_iommu *iommu, u16 did)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  480) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  481) 	struct dmar_domain **domains;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  482) 	int idx = did >> 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  483) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  484) 	domains = iommu->domains[idx];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  485) 	if (!domains)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  486) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  487) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  488) 	return domains[did & 0xff];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  489) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  490) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  491) static void set_iommu_domain(struct intel_iommu *iommu, u16 did,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  492) 			     struct dmar_domain *domain)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  493) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  494) 	struct dmar_domain **domains;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  495) 	int idx = did >> 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  496) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  497) 	if (!iommu->domains[idx]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  498) 		size_t size = 256 * sizeof(struct dmar_domain *);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  499) 		iommu->domains[idx] = kzalloc(size, GFP_ATOMIC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  500) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  501) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  502) 	domains = iommu->domains[idx];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  503) 	if (WARN_ON(!domains))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  504) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  505) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  506) 		domains[did & 0xff] = domain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  507) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  508) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  509) void *alloc_pgtable_page(int node)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  510) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  511) 	struct page *page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  512) 	void *vaddr = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  513) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  514) 	page = alloc_pages_node(node, GFP_ATOMIC | __GFP_ZERO, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  515) 	if (page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  516) 		vaddr = page_address(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  517) 	return vaddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  518) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  519) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  520) void free_pgtable_page(void *vaddr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  521) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  522) 	free_page((unsigned long)vaddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  523) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  524) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  525) static inline void *alloc_domain_mem(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  526) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  527) 	return kmem_cache_alloc(iommu_domain_cache, GFP_ATOMIC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  528) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  529) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  530) static void free_domain_mem(void *vaddr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  531) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  532) 	kmem_cache_free(iommu_domain_cache, vaddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  533) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  534) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  535) static inline void * alloc_devinfo_mem(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  536) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  537) 	return kmem_cache_alloc(iommu_devinfo_cache, GFP_ATOMIC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  538) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  539) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  540) static inline void free_devinfo_mem(void *vaddr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  541) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  542) 	kmem_cache_free(iommu_devinfo_cache, vaddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  543) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  544) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  545) static inline int domain_type_is_si(struct dmar_domain *domain)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  546) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  547) 	return domain->flags & DOMAIN_FLAG_STATIC_IDENTITY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  548) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  549) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  550) static inline bool domain_use_first_level(struct dmar_domain *domain)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  551) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  552) 	return domain->flags & DOMAIN_FLAG_USE_FIRST_LEVEL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  553) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  554) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  555) static inline int domain_pfn_supported(struct dmar_domain *domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  556) 				       unsigned long pfn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  557) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  558) 	int addr_width = agaw_to_width(domain->agaw) - VTD_PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  559) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  560) 	return !(addr_width < BITS_PER_LONG && pfn >> addr_width);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  561) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  562) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  563) static int __iommu_calculate_agaw(struct intel_iommu *iommu, int max_gaw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  564) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  565) 	unsigned long sagaw;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  566) 	int agaw = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  567) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  568) 	sagaw = cap_sagaw(iommu->cap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  569) 	for (agaw = width_to_agaw(max_gaw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  570) 	     agaw >= 0; agaw--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  571) 		if (test_bit(agaw, &sagaw))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  572) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  573) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  574) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  575) 	return agaw;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  576) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  577) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  578) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  579)  * Calculate max SAGAW for each iommu.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  580)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  581) int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  582) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  583) 	return __iommu_calculate_agaw(iommu, MAX_AGAW_WIDTH);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  584) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  585) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  586) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  587)  * calculate agaw for each iommu.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  588)  * "SAGAW" may be different across iommus, use a default agaw, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  589)  * get a supported less agaw for iommus that don't support the default agaw.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  590)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  591) int iommu_calculate_agaw(struct intel_iommu *iommu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  592) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  593) 	return __iommu_calculate_agaw(iommu, DEFAULT_DOMAIN_ADDRESS_WIDTH);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  594) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  595) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  596) /* This functionin only returns single iommu in a domain */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  597) struct intel_iommu *domain_get_iommu(struct dmar_domain *domain)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  598) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  599) 	int iommu_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  600) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  601) 	/* si_domain and vm domain should not get here. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  602) 	if (WARN_ON(domain->domain.type != IOMMU_DOMAIN_DMA))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  603) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  604) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  605) 	for_each_domain_iommu(iommu_id, domain)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  606) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  607) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  608) 	if (iommu_id < 0 || iommu_id >= g_num_of_iommus)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  609) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  610) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  611) 	return g_iommus[iommu_id];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  612) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  613) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  614) static inline bool iommu_paging_structure_coherency(struct intel_iommu *iommu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  615) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  616) 	return sm_supported(iommu) ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  617) 			ecap_smpwc(iommu->ecap) : ecap_coherent(iommu->ecap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  618) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  619) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  620) static void domain_update_iommu_coherency(struct dmar_domain *domain)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  621) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  622) 	struct dmar_drhd_unit *drhd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  623) 	struct intel_iommu *iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  624) 	bool found = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  625) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  626) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  627) 	domain->iommu_coherency = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  628) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  629) 	for_each_domain_iommu(i, domain) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  630) 		found = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  631) 		if (!iommu_paging_structure_coherency(g_iommus[i])) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  632) 			domain->iommu_coherency = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  633) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  634) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  635) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  636) 	if (found)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  637) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  638) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  639) 	/* No hardware attached; use lowest common denominator */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  640) 	rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  641) 	for_each_active_iommu(iommu, drhd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  642) 		if (!iommu_paging_structure_coherency(iommu)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  643) 			domain->iommu_coherency = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  644) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  645) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  646) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  647) 	rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  648) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  649) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  650) static int domain_update_iommu_snooping(struct intel_iommu *skip)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  651) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  652) 	struct dmar_drhd_unit *drhd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  653) 	struct intel_iommu *iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  654) 	int ret = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  655) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  656) 	rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  657) 	for_each_active_iommu(iommu, drhd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  658) 		if (iommu != skip) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  659) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  660) 			 * If the hardware is operating in the scalable mode,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  661) 			 * the snooping control is always supported since we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  662) 			 * always set PASID-table-entry.PGSNP bit if the domain
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  663) 			 * is managed outside (UNMANAGED).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  664) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  665) 			if (!sm_supported(iommu) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  666) 			    !ecap_sc_support(iommu->ecap)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  667) 				ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  668) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  669) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  670) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  671) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  672) 	rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  673) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  674) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  675) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  676) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  677) static int domain_update_iommu_superpage(struct dmar_domain *domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  678) 					 struct intel_iommu *skip)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  679) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  680) 	struct dmar_drhd_unit *drhd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  681) 	struct intel_iommu *iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  682) 	int mask = 0x3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  683) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  684) 	if (!intel_iommu_superpage) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  685) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  686) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  687) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  688) 	/* set iommu_superpage to the smallest common denominator */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  689) 	rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  690) 	for_each_active_iommu(iommu, drhd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  691) 		if (iommu != skip) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  692) 			if (domain && domain_use_first_level(domain)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  693) 				if (!cap_fl1gp_support(iommu->cap))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  694) 					mask = 0x1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  695) 			} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  696) 				mask &= cap_super_page_val(iommu->cap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  697) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  698) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  699) 			if (!mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  700) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  701) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  702) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  703) 	rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  704) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  705) 	return fls(mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  706) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  707) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  708) static int domain_update_device_node(struct dmar_domain *domain)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  709) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  710) 	struct device_domain_info *info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  711) 	int nid = NUMA_NO_NODE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  712) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  713) 	assert_spin_locked(&device_domain_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  714) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  715) 	if (list_empty(&domain->devices))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  716) 		return NUMA_NO_NODE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  717) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  718) 	list_for_each_entry(info, &domain->devices, link) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  719) 		if (!info->dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  720) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  721) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  722) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  723) 		 * There could possibly be multiple device numa nodes as devices
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  724) 		 * within the same domain may sit behind different IOMMUs. There
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  725) 		 * isn't perfect answer in such situation, so we select first
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  726) 		 * come first served policy.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  727) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  728) 		nid = dev_to_node(info->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  729) 		if (nid != NUMA_NO_NODE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  730) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  731) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  732) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  733) 	return nid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  734) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  735) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  736) /* Some capabilities may be different across iommus */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  737) static void domain_update_iommu_cap(struct dmar_domain *domain)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  738) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  739) 	domain_update_iommu_coherency(domain);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  740) 	domain->iommu_snooping = domain_update_iommu_snooping(NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  741) 	domain->iommu_superpage = domain_update_iommu_superpage(domain, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  742) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  743) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  744) 	 * If RHSA is missing, we should default to the device numa domain
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  745) 	 * as fall back.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  746) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  747) 	if (domain->nid == NUMA_NO_NODE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  748) 		domain->nid = domain_update_device_node(domain);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  749) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  750) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  751) 	 * First-level translation restricts the input-address to a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  752) 	 * canonical address (i.e., address bits 63:N have the same
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  753) 	 * value as address bit [N-1], where N is 48-bits with 4-level
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  754) 	 * paging and 57-bits with 5-level paging). Hence, skip bit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  755) 	 * [N-1].
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  756) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  757) 	if (domain_use_first_level(domain))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  758) 		domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  759) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  760) 		domain->domain.geometry.aperture_end = __DOMAIN_MAX_ADDR(domain->gaw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  761) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  762) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  763) struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  764) 					 u8 devfn, int alloc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  765) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  766) 	struct root_entry *root = &iommu->root_entry[bus];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  767) 	struct context_entry *context;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  768) 	u64 *entry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  769) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  770) 	entry = &root->lo;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  771) 	if (sm_supported(iommu)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  772) 		if (devfn >= 0x80) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  773) 			devfn -= 0x80;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  774) 			entry = &root->hi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  775) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  776) 		devfn *= 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  777) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  778) 	if (*entry & 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  779) 		context = phys_to_virt(*entry & VTD_PAGE_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  780) 	else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  781) 		unsigned long phy_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  782) 		if (!alloc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  783) 			return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  784) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  785) 		context = alloc_pgtable_page(iommu->node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  786) 		if (!context)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  787) 			return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  788) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  789) 		__iommu_flush_cache(iommu, (void *)context, CONTEXT_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  790) 		phy_addr = virt_to_phys((void *)context);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  791) 		*entry = phy_addr | 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  792) 		__iommu_flush_cache(iommu, entry, sizeof(*entry));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  793) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  794) 	return &context[devfn];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  795) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  796) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  797) static bool attach_deferred(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  798) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  799) 	return dev_iommu_priv_get(dev) == DEFER_DEVICE_DOMAIN_INFO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  800) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  801) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  802) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  803)  * is_downstream_to_pci_bridge - test if a device belongs to the PCI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  804)  *				 sub-hierarchy of a candidate PCI-PCI bridge
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  805)  * @dev: candidate PCI device belonging to @bridge PCI sub-hierarchy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  806)  * @bridge: the candidate PCI-PCI bridge
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  807)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  808)  * Return: true if @dev belongs to @bridge PCI sub-hierarchy, else false.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  809)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  810) static bool
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  811) is_downstream_to_pci_bridge(struct device *dev, struct device *bridge)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  812) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  813) 	struct pci_dev *pdev, *pbridge;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  814) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  815) 	if (!dev_is_pci(dev) || !dev_is_pci(bridge))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  816) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  817) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  818) 	pdev = to_pci_dev(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  819) 	pbridge = to_pci_dev(bridge);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  820) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  821) 	if (pbridge->subordinate &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  822) 	    pbridge->subordinate->number <= pdev->bus->number &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  823) 	    pbridge->subordinate->busn_res.end >= pdev->bus->number)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  824) 		return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  825) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  826) 	return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  827) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  828) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  829) static bool quirk_ioat_snb_local_iommu(struct pci_dev *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  830) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  831) 	struct dmar_drhd_unit *drhd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  832) 	u32 vtbar;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  833) 	int rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  834) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  835) 	/* We know that this device on this chipset has its own IOMMU.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  836) 	 * If we find it under a different IOMMU, then the BIOS is lying
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  837) 	 * to us. Hope that the IOMMU for this device is actually
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  838) 	 * disabled, and it needs no translation...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  839) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  840) 	rc = pci_bus_read_config_dword(pdev->bus, PCI_DEVFN(0, 0), 0xb0, &vtbar);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  841) 	if (rc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  842) 		/* "can't" happen */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  843) 		dev_info(&pdev->dev, "failed to run vt-d quirk\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  844) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  845) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  846) 	vtbar &= 0xffff0000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  847) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  848) 	/* we know that the this iommu should be at offset 0xa000 from vtbar */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  849) 	drhd = dmar_find_matched_drhd_unit(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  850) 	if (!drhd || drhd->reg_base_addr - vtbar != 0xa000) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  851) 		pr_warn_once(FW_BUG "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  852) 		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  853) 		return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  854) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  855) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  856) 	return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  857) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  858) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  859) static bool iommu_is_dummy(struct intel_iommu *iommu, struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  860) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  861) 	if (!iommu || iommu->drhd->ignored)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  862) 		return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  863) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  864) 	if (dev_is_pci(dev)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  865) 		struct pci_dev *pdev = to_pci_dev(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  866) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  867) 		if (pdev->vendor == PCI_VENDOR_ID_INTEL &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  868) 		    pdev->device == PCI_DEVICE_ID_INTEL_IOAT_SNB &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  869) 		    quirk_ioat_snb_local_iommu(pdev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  870) 			return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  871) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  872) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  873) 	return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  874) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  875) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  876) struct intel_iommu *device_to_iommu(struct device *dev, u8 *bus, u8 *devfn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  877) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  878) 	struct dmar_drhd_unit *drhd = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  879) 	struct pci_dev *pdev = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  880) 	struct intel_iommu *iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  881) 	struct device *tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  882) 	u16 segment = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  883) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  884) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  885) 	if (!dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  886) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  887) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  888) 	if (dev_is_pci(dev)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  889) 		struct pci_dev *pf_pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  890) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  891) 		pdev = pci_real_dma_dev(to_pci_dev(dev));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  892) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  893) 		/* VFs aren't listed in scope tables; we need to look up
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  894) 		 * the PF instead to find the IOMMU. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  895) 		pf_pdev = pci_physfn(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  896) 		dev = &pf_pdev->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  897) 		segment = pci_domain_nr(pdev->bus);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  898) 	} else if (has_acpi_companion(dev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  899) 		dev = &ACPI_COMPANION(dev)->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  900) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  901) 	rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  902) 	for_each_iommu(iommu, drhd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  903) 		if (pdev && segment != drhd->segment)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  904) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  905) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  906) 		for_each_active_dev_scope(drhd->devices,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  907) 					  drhd->devices_cnt, i, tmp) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  908) 			if (tmp == dev) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  909) 				/* For a VF use its original BDF# not that of the PF
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  910) 				 * which we used for the IOMMU lookup. Strictly speaking
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  911) 				 * we could do this for all PCI devices; we only need to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  912) 				 * get the BDF# from the scope table for ACPI matches. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  913) 				if (pdev && pdev->is_virtfn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  914) 					goto got_pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  915) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  916) 				if (bus && devfn) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  917) 					*bus = drhd->devices[i].bus;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  918) 					*devfn = drhd->devices[i].devfn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  919) 				}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  920) 				goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  921) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  922) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  923) 			if (is_downstream_to_pci_bridge(dev, tmp))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  924) 				goto got_pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  925) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  926) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  927) 		if (pdev && drhd->include_all) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  928) 		got_pdev:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  929) 			if (bus && devfn) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  930) 				*bus = pdev->bus->number;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  931) 				*devfn = pdev->devfn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  932) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  933) 			goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  934) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  935) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  936) 	iommu = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  937)  out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  938) 	if (iommu_is_dummy(iommu, dev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  939) 		iommu = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  940) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  941) 	rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  942) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  943) 	return iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  944) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  945) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  946) static void domain_flush_cache(struct dmar_domain *domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  947) 			       void *addr, int size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  948) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  949) 	if (!domain->iommu_coherency)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  950) 		clflush_cache_range(addr, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  951) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  952) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  953) static int device_context_mapped(struct intel_iommu *iommu, u8 bus, u8 devfn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  954) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  955) 	struct context_entry *context;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  956) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  957) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  958) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  959) 	spin_lock_irqsave(&iommu->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  960) 	context = iommu_context_addr(iommu, bus, devfn, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  961) 	if (context)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  962) 		ret = context_present(context);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  963) 	spin_unlock_irqrestore(&iommu->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  964) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  965) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  966) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  967) static void free_context_table(struct intel_iommu *iommu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  968) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  969) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  970) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  971) 	struct context_entry *context;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  972) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  973) 	spin_lock_irqsave(&iommu->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  974) 	if (!iommu->root_entry) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  975) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  976) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  977) 	for (i = 0; i < ROOT_ENTRY_NR; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  978) 		context = iommu_context_addr(iommu, i, 0, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  979) 		if (context)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  980) 			free_pgtable_page(context);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  981) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  982) 		if (!sm_supported(iommu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  983) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  984) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  985) 		context = iommu_context_addr(iommu, i, 0x80, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  986) 		if (context)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  987) 			free_pgtable_page(context);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  988) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  989) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  990) 	free_pgtable_page(iommu->root_entry);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  991) 	iommu->root_entry = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  992) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  993) 	spin_unlock_irqrestore(&iommu->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  994) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  995) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  996) static struct dma_pte *pfn_to_dma_pte(struct dmar_domain *domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  997) 				      unsigned long pfn, int *target_level)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  998) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  999) 	struct dma_pte *parent, *pte;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) 	int level = agaw_to_level(domain->agaw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) 	int offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) 	BUG_ON(!domain->pgd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005) 	if (!domain_pfn_supported(domain, pfn))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) 		/* Address beyond IOMMU's addressing capabilities. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) 	parent = domain->pgd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011) 	while (1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012) 		void *tmp_page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014) 		offset = pfn_level_offset(pfn, level);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) 		pte = &parent[offset];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016) 		if (!*target_level && (dma_pte_superpage(pte) || !dma_pte_present(pte)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018) 		if (level == *target_level)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021) 		if (!dma_pte_present(pte)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022) 			uint64_t pteval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) 			tmp_page = alloc_pgtable_page(domain->nid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) 			if (!tmp_page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027) 				return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029) 			domain_flush_cache(domain, tmp_page, VTD_PAGE_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030) 			pteval = ((uint64_t)virt_to_dma_pfn(tmp_page) << VTD_PAGE_SHIFT) | DMA_PTE_READ | DMA_PTE_WRITE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031) 			if (domain_use_first_level(domain)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032) 				pteval |= DMA_FL_PTE_XD | DMA_FL_PTE_US;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033) 				if (domain->domain.type == IOMMU_DOMAIN_DMA)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) 					pteval |= DMA_FL_PTE_ACCESS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036) 			if (cmpxchg64(&pte->val, 0ULL, pteval))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037) 				/* Someone else set it while we were thinking; use theirs. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038) 				free_pgtable_page(tmp_page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039) 			else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040) 				domain_flush_cache(domain, pte, sizeof(*pte));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042) 		if (level == 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045) 		parent = phys_to_virt(dma_pte_addr(pte));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046) 		level--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049) 	if (!*target_level)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050) 		*target_level = level;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052) 	return pte;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055) /* return address's pte at specific level */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056) static struct dma_pte *dma_pfn_level_pte(struct dmar_domain *domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057) 					 unsigned long pfn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058) 					 int level, int *large_page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060) 	struct dma_pte *parent, *pte;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) 	int total = agaw_to_level(domain->agaw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) 	int offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) 	parent = domain->pgd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) 	while (level <= total) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) 		offset = pfn_level_offset(pfn, total);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) 		pte = &parent[offset];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) 		if (level == total)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) 			return pte;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) 		if (!dma_pte_present(pte)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) 			*large_page = total;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) 		if (dma_pte_superpage(pte)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) 			*large_page = total;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078) 			return pte;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) 		parent = phys_to_virt(dma_pte_addr(pte));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) 		total--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) 	return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) /* clear last level pte, a tlb flush should be followed */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088) static void dma_pte_clear_range(struct dmar_domain *domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) 				unsigned long start_pfn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090) 				unsigned long last_pfn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) 	unsigned int large_page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) 	struct dma_pte *first_pte, *pte;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) 	BUG_ON(!domain_pfn_supported(domain, start_pfn));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096) 	BUG_ON(!domain_pfn_supported(domain, last_pfn));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097) 	BUG_ON(start_pfn > last_pfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099) 	/* we don't need lock here; nobody else touches the iova range */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101) 		large_page = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102) 		first_pte = pte = dma_pfn_level_pte(domain, start_pfn, 1, &large_page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103) 		if (!pte) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104) 			start_pfn = align_to_level(start_pfn + 1, large_page + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) 		do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108) 			dma_clear_pte(pte);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109) 			start_pfn += lvl_to_nr_pages(large_page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110) 			pte++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111) 		} while (start_pfn <= last_pfn && !first_pte_in_page(pte));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) 		domain_flush_cache(domain, first_pte,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114) 				   (void *)pte - (void *)first_pte);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116) 	} while (start_pfn && start_pfn <= last_pfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119) static void dma_pte_free_level(struct dmar_domain *domain, int level,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) 			       int retain_level, struct dma_pte *pte,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) 			       unsigned long pfn, unsigned long start_pfn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122) 			       unsigned long last_pfn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124) 	pfn = max(start_pfn, pfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125) 	pte = &pte[pfn_level_offset(pfn, level)];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128) 		unsigned long level_pfn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129) 		struct dma_pte *level_pte;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131) 		if (!dma_pte_present(pte) || dma_pte_superpage(pte))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132) 			goto next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134) 		level_pfn = pfn & level_mask(level);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135) 		level_pte = phys_to_virt(dma_pte_addr(pte));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137) 		if (level > 2) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138) 			dma_pte_free_level(domain, level - 1, retain_level,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139) 					   level_pte, level_pfn, start_pfn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140) 					   last_pfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144) 		 * Free the page table if we're below the level we want to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145) 		 * retain and the range covers the entire table.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147) 		if (level < retain_level && !(start_pfn > level_pfn ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148) 		      last_pfn < level_pfn + level_size(level) - 1)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149) 			dma_clear_pte(pte);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150) 			domain_flush_cache(domain, pte, sizeof(*pte));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151) 			free_pgtable_page(level_pte);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153) next:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154) 		pfn += level_size(level);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155) 	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159)  * clear last level (leaf) ptes and free page table pages below the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160)  * level we wish to keep intact.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1162) static void dma_pte_free_pagetable(struct dmar_domain *domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1163) 				   unsigned long start_pfn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1164) 				   unsigned long last_pfn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1165) 				   int retain_level)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1166) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1167) 	BUG_ON(!domain_pfn_supported(domain, start_pfn));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1168) 	BUG_ON(!domain_pfn_supported(domain, last_pfn));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1169) 	BUG_ON(start_pfn > last_pfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1170) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1171) 	dma_pte_clear_range(domain, start_pfn, last_pfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1172) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1173) 	/* We don't need lock here; nobody else touches the iova range */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1174) 	dma_pte_free_level(domain, agaw_to_level(domain->agaw), retain_level,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1175) 			   domain->pgd, 0, start_pfn, last_pfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1176) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1177) 	/* free pgd */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1178) 	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1179) 		free_pgtable_page(domain->pgd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1180) 		domain->pgd = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1181) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1182) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1183) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1184) /* When a page at a given level is being unlinked from its parent, we don't
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1185)    need to *modify* it at all. All we need to do is make a list of all the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1186)    pages which can be freed just as soon as we've flushed the IOTLB and we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1187)    know the hardware page-walk will no longer touch them.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1188)    The 'pte' argument is the *parent* PTE, pointing to the page that is to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1189)    be freed. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1190) static struct page *dma_pte_list_pagetables(struct dmar_domain *domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1191) 					    int level, struct dma_pte *pte,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1192) 					    struct page *freelist)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1193) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1194) 	struct page *pg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1195) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1196) 	pg = pfn_to_page(dma_pte_addr(pte) >> PAGE_SHIFT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1197) 	pg->freelist = freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1198) 	freelist = pg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1199) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1200) 	if (level == 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1201) 		return freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1202) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1203) 	pte = page_address(pg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1204) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1205) 		if (dma_pte_present(pte) && !dma_pte_superpage(pte))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1206) 			freelist = dma_pte_list_pagetables(domain, level - 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1207) 							   pte, freelist);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1208) 		pte++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1209) 	} while (!first_pte_in_page(pte));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1210) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1211) 	return freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1212) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1213) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1214) static struct page *dma_pte_clear_level(struct dmar_domain *domain, int level,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1215) 					struct dma_pte *pte, unsigned long pfn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1216) 					unsigned long start_pfn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1217) 					unsigned long last_pfn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1218) 					struct page *freelist)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1219) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1220) 	struct dma_pte *first_pte = NULL, *last_pte = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1221) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1222) 	pfn = max(start_pfn, pfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1223) 	pte = &pte[pfn_level_offset(pfn, level)];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1224) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1225) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1226) 		unsigned long level_pfn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1227) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1228) 		if (!dma_pte_present(pte))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1229) 			goto next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1230) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1231) 		level_pfn = pfn & level_mask(level);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1232) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1233) 		/* If range covers entire pagetable, free it */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1234) 		if (start_pfn <= level_pfn &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1235) 		    last_pfn >= level_pfn + level_size(level) - 1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1236) 			/* These suborbinate page tables are going away entirely. Don't
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1237) 			   bother to clear them; we're just going to *free* them. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1238) 			if (level > 1 && !dma_pte_superpage(pte))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1239) 				freelist = dma_pte_list_pagetables(domain, level - 1, pte, freelist);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1240) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1241) 			dma_clear_pte(pte);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1242) 			if (!first_pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1243) 				first_pte = pte;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1244) 			last_pte = pte;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1245) 		} else if (level > 1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1246) 			/* Recurse down into a level that isn't *entirely* obsolete */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1247) 			freelist = dma_pte_clear_level(domain, level - 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1248) 						       phys_to_virt(dma_pte_addr(pte)),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1249) 						       level_pfn, start_pfn, last_pfn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1250) 						       freelist);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1251) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1252) next:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1253) 		pfn += level_size(level);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1254) 	} while (!first_pte_in_page(++pte) && pfn <= last_pfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1255) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1256) 	if (first_pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1257) 		domain_flush_cache(domain, first_pte,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1258) 				   (void *)++last_pte - (void *)first_pte);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1259) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1260) 	return freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1261) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1262) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1263) /* We can't just free the pages because the IOMMU may still be walking
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1264)    the page tables, and may have cached the intermediate levels. The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1265)    pages can only be freed after the IOTLB flush has been done. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1266) static struct page *domain_unmap(struct dmar_domain *domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1267) 				 unsigned long start_pfn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1268) 				 unsigned long last_pfn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1269) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1270) 	struct page *freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1271) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1272) 	BUG_ON(!domain_pfn_supported(domain, start_pfn));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1273) 	BUG_ON(!domain_pfn_supported(domain, last_pfn));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1274) 	BUG_ON(start_pfn > last_pfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1275) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1276) 	/* we don't need lock here; nobody else touches the iova range */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1277) 	freelist = dma_pte_clear_level(domain, agaw_to_level(domain->agaw),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1278) 				       domain->pgd, 0, start_pfn, last_pfn, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1279) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1280) 	/* free pgd */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1281) 	if (start_pfn == 0 && last_pfn == DOMAIN_MAX_PFN(domain->gaw)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1282) 		struct page *pgd_page = virt_to_page(domain->pgd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1283) 		pgd_page->freelist = freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1284) 		freelist = pgd_page;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1285) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1286) 		domain->pgd = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1287) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1288) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1289) 	return freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1290) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1291) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1292) static void dma_free_pagelist(struct page *freelist)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1293) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1294) 	struct page *pg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1295) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1296) 	while ((pg = freelist)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1297) 		freelist = pg->freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1298) 		free_pgtable_page(page_address(pg));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1299) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1300) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1301) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1302) static void iova_entry_free(unsigned long data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1303) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1304) 	struct page *freelist = (struct page *)data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1305) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1306) 	dma_free_pagelist(freelist);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1307) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1308) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1309) /* iommu handling */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1310) static int iommu_alloc_root_entry(struct intel_iommu *iommu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1311) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1312) 	struct root_entry *root;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1313) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1314) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1315) 	root = (struct root_entry *)alloc_pgtable_page(iommu->node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1316) 	if (!root) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1317) 		pr_err("Allocating root entry for %s failed\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1318) 			iommu->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1319) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1320) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1321) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1322) 	__iommu_flush_cache(iommu, root, ROOT_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1323) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1324) 	spin_lock_irqsave(&iommu->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1325) 	iommu->root_entry = root;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1326) 	spin_unlock_irqrestore(&iommu->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1327) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1328) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1329) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1330) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1331) static void iommu_set_root_entry(struct intel_iommu *iommu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1332) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1333) 	u64 addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1334) 	u32 sts;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1335) 	unsigned long flag;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1336) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1337) 	addr = virt_to_phys(iommu->root_entry);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1338) 	if (sm_supported(iommu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1339) 		addr |= DMA_RTADDR_SMT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1340) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1341) 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1342) 	dmar_writeq(iommu->reg + DMAR_RTADDR_REG, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1343) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1344) 	writel(iommu->gcmd | DMA_GCMD_SRTP, iommu->reg + DMAR_GCMD_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1345) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1346) 	/* Make sure hardware complete it */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1347) 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1348) 		      readl, (sts & DMA_GSTS_RTPS), sts);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1349) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1350) 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1351) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1352) 	iommu->flush.flush_context(iommu, 0, 0, 0, DMA_CCMD_GLOBAL_INVL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1353) 	if (sm_supported(iommu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1354) 		qi_flush_pasid_cache(iommu, 0, QI_PC_GLOBAL, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1355) 	iommu->flush.flush_iotlb(iommu, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1356) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1357) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1358) void iommu_flush_write_buffer(struct intel_iommu *iommu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1359) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1360) 	u32 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1361) 	unsigned long flag;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1362) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1363) 	if (!rwbf_quirk && !cap_rwbf(iommu->cap))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1364) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1365) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1366) 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1367) 	writel(iommu->gcmd | DMA_GCMD_WBF, iommu->reg + DMAR_GCMD_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1368) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1369) 	/* Make sure hardware complete it */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1370) 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1371) 		      readl, (!(val & DMA_GSTS_WBFS)), val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1372) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1373) 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1374) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1375) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1376) /* return value determine if we need a write buffer flush */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1377) static void __iommu_flush_context(struct intel_iommu *iommu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1378) 				  u16 did, u16 source_id, u8 function_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1379) 				  u64 type)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1380) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1381) 	u64 val = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1382) 	unsigned long flag;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1383) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1384) 	switch (type) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1385) 	case DMA_CCMD_GLOBAL_INVL:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1386) 		val = DMA_CCMD_GLOBAL_INVL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1387) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1388) 	case DMA_CCMD_DOMAIN_INVL:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1389) 		val = DMA_CCMD_DOMAIN_INVL|DMA_CCMD_DID(did);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1390) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1391) 	case DMA_CCMD_DEVICE_INVL:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1392) 		val = DMA_CCMD_DEVICE_INVL|DMA_CCMD_DID(did)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1393) 			| DMA_CCMD_SID(source_id) | DMA_CCMD_FM(function_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1394) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1395) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1396) 		BUG();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1397) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1398) 	val |= DMA_CCMD_ICC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1399) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1400) 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1401) 	dmar_writeq(iommu->reg + DMAR_CCMD_REG, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1402) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1403) 	/* Make sure hardware complete it */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1404) 	IOMMU_WAIT_OP(iommu, DMAR_CCMD_REG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1405) 		dmar_readq, (!(val & DMA_CCMD_ICC)), val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1406) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1407) 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1408) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1409) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1410) /* return value determine if we need a write buffer flush */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1411) static void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1412) 				u64 addr, unsigned int size_order, u64 type)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1413) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1414) 	int tlb_offset = ecap_iotlb_offset(iommu->ecap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1415) 	u64 val = 0, val_iva = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1416) 	unsigned long flag;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1417) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1418) 	switch (type) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1419) 	case DMA_TLB_GLOBAL_FLUSH:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1420) 		/* global flush doesn't need set IVA_REG */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1421) 		val = DMA_TLB_GLOBAL_FLUSH|DMA_TLB_IVT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1422) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1423) 	case DMA_TLB_DSI_FLUSH:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1424) 		val = DMA_TLB_DSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1425) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1426) 	case DMA_TLB_PSI_FLUSH:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1427) 		val = DMA_TLB_PSI_FLUSH|DMA_TLB_IVT|DMA_TLB_DID(did);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1428) 		/* IH bit is passed in as part of address */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1429) 		val_iva = size_order | addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1430) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1431) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1432) 		BUG();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1433) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1434) 	/* Note: set drain read/write */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1435) #if 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1436) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1437) 	 * This is probably to be super secure.. Looks like we can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1438) 	 * ignore it without any impact.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1439) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1440) 	if (cap_read_drain(iommu->cap))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1441) 		val |= DMA_TLB_READ_DRAIN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1442) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1443) 	if (cap_write_drain(iommu->cap))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1444) 		val |= DMA_TLB_WRITE_DRAIN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1445) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1446) 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1447) 	/* Note: Only uses first TLB reg currently */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1448) 	if (val_iva)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1449) 		dmar_writeq(iommu->reg + tlb_offset, val_iva);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1450) 	dmar_writeq(iommu->reg + tlb_offset + 8, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1451) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1452) 	/* Make sure hardware complete it */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1453) 	IOMMU_WAIT_OP(iommu, tlb_offset + 8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1454) 		dmar_readq, (!(val & DMA_TLB_IVT)), val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1455) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1456) 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1457) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1458) 	/* check IOTLB invalidation granularity */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1459) 	if (DMA_TLB_IAIG(val) == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1460) 		pr_err("Flush IOTLB failed\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1461) 	if (DMA_TLB_IAIG(val) != DMA_TLB_IIRG(type))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1462) 		pr_debug("TLB flush request %Lx, actual %Lx\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1463) 			(unsigned long long)DMA_TLB_IIRG(type),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1464) 			(unsigned long long)DMA_TLB_IAIG(val));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1465) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1466) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1467) static struct device_domain_info *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1468) iommu_support_dev_iotlb (struct dmar_domain *domain, struct intel_iommu *iommu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1469) 			 u8 bus, u8 devfn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1470) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1471) 	struct device_domain_info *info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1472) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1473) 	assert_spin_locked(&device_domain_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1474) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1475) 	if (!iommu->qi)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1476) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1477) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1478) 	list_for_each_entry(info, &domain->devices, link)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1479) 		if (info->iommu == iommu && info->bus == bus &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1480) 		    info->devfn == devfn) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1481) 			if (info->ats_supported && info->dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1482) 				return info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1483) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1484) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1485) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1486) 	return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1487) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1488) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1489) static void domain_update_iotlb(struct dmar_domain *domain)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1490) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1491) 	struct device_domain_info *info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1492) 	bool has_iotlb_device = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1493) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1494) 	assert_spin_locked(&device_domain_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1495) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1496) 	list_for_each_entry(info, &domain->devices, link) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1497) 		struct pci_dev *pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1498) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1499) 		if (!info->dev || !dev_is_pci(info->dev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1500) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1501) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1502) 		pdev = to_pci_dev(info->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1503) 		if (pdev->ats_enabled) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1504) 			has_iotlb_device = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1505) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1506) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1507) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1508) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1509) 	domain->has_iotlb_device = has_iotlb_device;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1510) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1511) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1512) static void iommu_enable_dev_iotlb(struct device_domain_info *info)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1513) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1514) 	struct pci_dev *pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1515) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1516) 	assert_spin_locked(&device_domain_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1517) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1518) 	if (!info || !dev_is_pci(info->dev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1519) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1520) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1521) 	pdev = to_pci_dev(info->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1522) 	/* For IOMMU that supports device IOTLB throttling (DIT), we assign
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1523) 	 * PFSID to the invalidation desc of a VF such that IOMMU HW can gauge
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1524) 	 * queue depth at PF level. If DIT is not set, PFSID will be treated as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1525) 	 * reserved, which should be set to 0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1526) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1527) 	if (!ecap_dit(info->iommu->ecap))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1528) 		info->pfsid = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1529) 	else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1530) 		struct pci_dev *pf_pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1531) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1532) 		/* pdev will be returned if device is not a vf */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1533) 		pf_pdev = pci_physfn(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1534) 		info->pfsid = pci_dev_id(pf_pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1535) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1536) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1537) #ifdef CONFIG_INTEL_IOMMU_SVM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1538) 	/* The PCIe spec, in its wisdom, declares that the behaviour of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1539) 	   the device if you enable PASID support after ATS support is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1540) 	   undefined. So always enable PASID support on devices which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1541) 	   have it, even if we can't yet know if we're ever going to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1542) 	   use it. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1543) 	if (info->pasid_supported && !pci_enable_pasid(pdev, info->pasid_supported & ~1))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1544) 		info->pasid_enabled = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1545) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1546) 	if (info->pri_supported &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1547) 	    (info->pasid_enabled ? pci_prg_resp_pasid_required(pdev) : 1)  &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1548) 	    !pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1549) 		info->pri_enabled = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1550) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1551) 	if (info->ats_supported && pci_ats_page_aligned(pdev) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1552) 	    !pci_enable_ats(pdev, VTD_PAGE_SHIFT)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1553) 		info->ats_enabled = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1554) 		domain_update_iotlb(info->domain);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1555) 		info->ats_qdep = pci_ats_queue_depth(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1556) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1557) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1558) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1559) static void iommu_disable_dev_iotlb(struct device_domain_info *info)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1560) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1561) 	struct pci_dev *pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1562) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1563) 	assert_spin_locked(&device_domain_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1564) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1565) 	if (!dev_is_pci(info->dev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1566) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1567) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1568) 	pdev = to_pci_dev(info->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1569) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1570) 	if (info->ats_enabled) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1571) 		pci_disable_ats(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1572) 		info->ats_enabled = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1573) 		domain_update_iotlb(info->domain);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1574) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1575) #ifdef CONFIG_INTEL_IOMMU_SVM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1576) 	if (info->pri_enabled) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1577) 		pci_disable_pri(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1578) 		info->pri_enabled = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1579) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1580) 	if (info->pasid_enabled) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1581) 		pci_disable_pasid(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1582) 		info->pasid_enabled = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1583) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1584) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1585) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1586) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1587) static void iommu_flush_dev_iotlb(struct dmar_domain *domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1588) 				  u64 addr, unsigned mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1589) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1590) 	u16 sid, qdep;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1591) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1592) 	struct device_domain_info *info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1593) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1594) 	if (!domain->has_iotlb_device)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1595) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1596) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1597) 	spin_lock_irqsave(&device_domain_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1598) 	list_for_each_entry(info, &domain->devices, link) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1599) 		if (!info->ats_enabled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1600) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1601) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1602) 		sid = info->bus << 8 | info->devfn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1603) 		qdep = info->ats_qdep;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1604) 		qi_flush_dev_iotlb(info->iommu, sid, info->pfsid,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1605) 				qdep, addr, mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1606) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1607) 	spin_unlock_irqrestore(&device_domain_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1608) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1609) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1610) static void domain_flush_piotlb(struct intel_iommu *iommu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1611) 				struct dmar_domain *domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1612) 				u64 addr, unsigned long npages, bool ih)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1613) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1614) 	u16 did = domain->iommu_did[iommu->seq_id];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1615) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1616) 	if (domain->default_pasid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1617) 		qi_flush_piotlb(iommu, did, domain->default_pasid,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1618) 				addr, npages, ih);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1619) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1620) 	if (!list_empty(&domain->devices))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1621) 		qi_flush_piotlb(iommu, did, PASID_RID2PASID, addr, npages, ih);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1622) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1623) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1624) static void iommu_flush_iotlb_psi(struct intel_iommu *iommu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1625) 				  struct dmar_domain *domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1626) 				  unsigned long pfn, unsigned int pages,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1627) 				  int ih, int map)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1628) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1629) 	unsigned int mask = ilog2(__roundup_pow_of_two(pages));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1630) 	uint64_t addr = (uint64_t)pfn << VTD_PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1631) 	u16 did = domain->iommu_did[iommu->seq_id];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1632) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1633) 	BUG_ON(pages == 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1634) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1635) 	if (ih)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1636) 		ih = 1 << 6;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1637) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1638) 	if (domain_use_first_level(domain)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1639) 		domain_flush_piotlb(iommu, domain, addr, pages, ih);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1640) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1641) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1642) 		 * Fallback to domain selective flush if no PSI support or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1643) 		 * the size is too big. PSI requires page size to be 2 ^ x,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1644) 		 * and the base address is naturally aligned to the size.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1645) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1646) 		if (!cap_pgsel_inv(iommu->cap) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1647) 		    mask > cap_max_amask_val(iommu->cap))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1648) 			iommu->flush.flush_iotlb(iommu, did, 0, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1649) 							DMA_TLB_DSI_FLUSH);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1650) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1651) 			iommu->flush.flush_iotlb(iommu, did, addr | ih, mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1652) 							DMA_TLB_PSI_FLUSH);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1653) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1654) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1655) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1656) 	 * In caching mode, changes of pages from non-present to present require
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1657) 	 * flush. However, device IOTLB doesn't need to be flushed in this case.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1658) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1659) 	if (!cap_caching_mode(iommu->cap) || !map)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1660) 		iommu_flush_dev_iotlb(domain, addr, mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1661) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1662) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1663) /* Notification for newly created mappings */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1664) static inline void __mapping_notify_one(struct intel_iommu *iommu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1665) 					struct dmar_domain *domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1666) 					unsigned long pfn, unsigned int pages)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1667) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1668) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1669) 	 * It's a non-present to present mapping. Only flush if caching mode
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1670) 	 * and second level.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1671) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1672) 	if (cap_caching_mode(iommu->cap) && !domain_use_first_level(domain))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1673) 		iommu_flush_iotlb_psi(iommu, domain, pfn, pages, 0, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1674) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1675) 		iommu_flush_write_buffer(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1676) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1677) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1678) static void iommu_flush_iova(struct iova_domain *iovad)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1679) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1680) 	struct dmar_domain *domain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1681) 	int idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1682) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1683) 	domain = container_of(iovad, struct dmar_domain, iovad);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1684) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1685) 	for_each_domain_iommu(idx, domain) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1686) 		struct intel_iommu *iommu = g_iommus[idx];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1687) 		u16 did = domain->iommu_did[iommu->seq_id];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1688) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1689) 		if (domain_use_first_level(domain))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1690) 			domain_flush_piotlb(iommu, domain, 0, -1, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1691) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1692) 			iommu->flush.flush_iotlb(iommu, did, 0, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1693) 						 DMA_TLB_DSI_FLUSH);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1694) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1695) 		if (!cap_caching_mode(iommu->cap))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1696) 			iommu_flush_dev_iotlb(get_iommu_domain(iommu, did),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1697) 					      0, MAX_AGAW_PFN_WIDTH);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1698) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1699) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1700) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1701) static void iommu_disable_protect_mem_regions(struct intel_iommu *iommu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1702) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1703) 	u32 pmen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1704) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1705) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1706) 	if (!cap_plmr(iommu->cap) && !cap_phmr(iommu->cap))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1707) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1708) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1709) 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1710) 	pmen = readl(iommu->reg + DMAR_PMEN_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1711) 	pmen &= ~DMA_PMEN_EPM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1712) 	writel(pmen, iommu->reg + DMAR_PMEN_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1713) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1714) 	/* wait for the protected region status bit to clear */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1715) 	IOMMU_WAIT_OP(iommu, DMAR_PMEN_REG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1716) 		readl, !(pmen & DMA_PMEN_PRS), pmen);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1717) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1718) 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1719) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1720) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1721) static void iommu_enable_translation(struct intel_iommu *iommu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1722) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1723) 	u32 sts;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1724) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1725) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1726) 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1727) 	iommu->gcmd |= DMA_GCMD_TE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1728) 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1729) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1730) 	/* Make sure hardware complete it */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1731) 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1732) 		      readl, (sts & DMA_GSTS_TES), sts);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1733) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1734) 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1735) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1736) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1737) static void iommu_disable_translation(struct intel_iommu *iommu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1738) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1739) 	u32 sts;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1740) 	unsigned long flag;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1741) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1742) 	if (iommu_skip_te_disable && iommu->drhd->gfx_dedicated &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1743) 	    (cap_read_drain(iommu->cap) || cap_write_drain(iommu->cap)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1744) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1745) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1746) 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1747) 	iommu->gcmd &= ~DMA_GCMD_TE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1748) 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1749) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1750) 	/* Make sure hardware complete it */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1751) 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1752) 		      readl, (!(sts & DMA_GSTS_TES)), sts);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1753) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1754) 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1755) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1756) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1757) static int iommu_init_domains(struct intel_iommu *iommu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1758) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1759) 	u32 ndomains, nlongs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1760) 	size_t size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1761) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1762) 	ndomains = cap_ndoms(iommu->cap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1763) 	pr_debug("%s: Number of Domains supported <%d>\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1764) 		 iommu->name, ndomains);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1765) 	nlongs = BITS_TO_LONGS(ndomains);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1766) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1767) 	spin_lock_init(&iommu->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1768) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1769) 	iommu->domain_ids = kcalloc(nlongs, sizeof(unsigned long), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1770) 	if (!iommu->domain_ids) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1771) 		pr_err("%s: Allocating domain id array failed\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1772) 		       iommu->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1773) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1774) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1775) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1776) 	size = (ALIGN(ndomains, 256) >> 8) * sizeof(struct dmar_domain **);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1777) 	iommu->domains = kzalloc(size, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1778) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1779) 	if (iommu->domains) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1780) 		size = 256 * sizeof(struct dmar_domain *);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1781) 		iommu->domains[0] = kzalloc(size, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1782) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1783) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1784) 	if (!iommu->domains || !iommu->domains[0]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1785) 		pr_err("%s: Allocating domain array failed\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1786) 		       iommu->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1787) 		kfree(iommu->domain_ids);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1788) 		kfree(iommu->domains);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1789) 		iommu->domain_ids = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1790) 		iommu->domains    = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1791) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1792) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1793) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1794) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1795) 	 * If Caching mode is set, then invalid translations are tagged
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1796) 	 * with domain-id 0, hence we need to pre-allocate it. We also
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1797) 	 * use domain-id 0 as a marker for non-allocated domain-id, so
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1798) 	 * make sure it is not used for a real domain.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1799) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1800) 	set_bit(0, iommu->domain_ids);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1801) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1802) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1803) 	 * Vt-d spec rev3.0 (section 6.2.3.1) requires that each pasid
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1804) 	 * entry for first-level or pass-through translation modes should
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1805) 	 * be programmed with a domain id different from those used for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1806) 	 * second-level or nested translation. We reserve a domain id for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1807) 	 * this purpose.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1808) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1809) 	if (sm_supported(iommu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1810) 		set_bit(FLPT_DEFAULT_DID, iommu->domain_ids);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1811) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1812) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1813) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1814) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1815) static void disable_dmar_iommu(struct intel_iommu *iommu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1816) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1817) 	struct device_domain_info *info, *tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1818) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1819) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1820) 	if (!iommu->domains || !iommu->domain_ids)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1821) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1822) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1823) 	spin_lock_irqsave(&device_domain_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1824) 	list_for_each_entry_safe(info, tmp, &device_domain_list, global) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1825) 		if (info->iommu != iommu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1826) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1827) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1828) 		if (!info->dev || !info->domain)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1829) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1830) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1831) 		__dmar_remove_one_dev_info(info);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1832) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1833) 	spin_unlock_irqrestore(&device_domain_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1834) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1835) 	if (iommu->gcmd & DMA_GCMD_TE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1836) 		iommu_disable_translation(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1837) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1838) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1839) static void free_dmar_iommu(struct intel_iommu *iommu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1840) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1841) 	if ((iommu->domains) && (iommu->domain_ids)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1842) 		int elems = ALIGN(cap_ndoms(iommu->cap), 256) >> 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1843) 		int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1844) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1845) 		for (i = 0; i < elems; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1846) 			kfree(iommu->domains[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1847) 		kfree(iommu->domains);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1848) 		kfree(iommu->domain_ids);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1849) 		iommu->domains = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1850) 		iommu->domain_ids = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1851) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1852) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1853) 	g_iommus[iommu->seq_id] = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1854) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1855) 	/* free context mapping */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1856) 	free_context_table(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1857) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1858) #ifdef CONFIG_INTEL_IOMMU_SVM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1859) 	if (pasid_supported(iommu)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1860) 		if (ecap_prs(iommu->ecap))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1861) 			intel_svm_finish_prq(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1862) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1863) 	if (vccap_pasid(iommu->vccap))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1864) 		ioasid_unregister_allocator(&iommu->pasid_allocator);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1865) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1866) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1867) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1868) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1869) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1870)  * Check and return whether first level is used by default for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1871)  * DMA translation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1872)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1873) static bool first_level_by_default(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1874) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1875) 	struct dmar_drhd_unit *drhd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1876) 	struct intel_iommu *iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1877) 	static int first_level_support = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1878) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1879) 	if (likely(first_level_support != -1))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1880) 		return first_level_support;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1881) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1882) 	first_level_support = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1883) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1884) 	rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1885) 	for_each_active_iommu(iommu, drhd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1886) 		if (!sm_supported(iommu) || !ecap_flts(iommu->ecap)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1887) 			first_level_support = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1888) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1889) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1890) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1891) 	rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1892) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1893) 	return first_level_support;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1894) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1895) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1896) static struct dmar_domain *alloc_domain(int flags)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1897) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1898) 	struct dmar_domain *domain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1899) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1900) 	domain = alloc_domain_mem();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1901) 	if (!domain)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1902) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1903) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1904) 	memset(domain, 0, sizeof(*domain));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1905) 	domain->nid = NUMA_NO_NODE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1906) 	domain->flags = flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1907) 	if (first_level_by_default())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1908) 		domain->flags |= DOMAIN_FLAG_USE_FIRST_LEVEL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1909) 	domain->has_iotlb_device = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1910) 	INIT_LIST_HEAD(&domain->devices);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1911) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1912) 	return domain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1913) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1914) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1915) /* Must be called with iommu->lock */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1916) static int domain_attach_iommu(struct dmar_domain *domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1917) 			       struct intel_iommu *iommu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1918) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1919) 	unsigned long ndomains;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1920) 	int num;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1921) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1922) 	assert_spin_locked(&device_domain_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1923) 	assert_spin_locked(&iommu->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1924) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1925) 	domain->iommu_refcnt[iommu->seq_id] += 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1926) 	domain->iommu_count += 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1927) 	if (domain->iommu_refcnt[iommu->seq_id] == 1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1928) 		ndomains = cap_ndoms(iommu->cap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1929) 		num      = find_first_zero_bit(iommu->domain_ids, ndomains);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1930) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1931) 		if (num >= ndomains) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1932) 			pr_err("%s: No free domain ids\n", iommu->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1933) 			domain->iommu_refcnt[iommu->seq_id] -= 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1934) 			domain->iommu_count -= 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1935) 			return -ENOSPC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1936) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1937) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1938) 		set_bit(num, iommu->domain_ids);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1939) 		set_iommu_domain(iommu, num, domain);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1940) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1941) 		domain->iommu_did[iommu->seq_id] = num;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1942) 		domain->nid			 = iommu->node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1943) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1944) 		domain_update_iommu_cap(domain);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1945) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1946) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1947) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1948) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1949) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1950) static int domain_detach_iommu(struct dmar_domain *domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1951) 			       struct intel_iommu *iommu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1952) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1953) 	int num, count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1954) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1955) 	assert_spin_locked(&device_domain_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1956) 	assert_spin_locked(&iommu->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1957) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1958) 	domain->iommu_refcnt[iommu->seq_id] -= 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1959) 	count = --domain->iommu_count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1960) 	if (domain->iommu_refcnt[iommu->seq_id] == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1961) 		num = domain->iommu_did[iommu->seq_id];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1962) 		clear_bit(num, iommu->domain_ids);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1963) 		set_iommu_domain(iommu, num, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1964) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1965) 		domain_update_iommu_cap(domain);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1966) 		domain->iommu_did[iommu->seq_id] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1967) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1968) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1969) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1970) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1971) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1972) static struct iova_domain reserved_iova_list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1973) static struct lock_class_key reserved_rbtree_key;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1974) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1975) static int dmar_init_reserved_ranges(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1976) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1977) 	struct pci_dev *pdev = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1978) 	struct iova *iova;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1979) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1980) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1981) 	init_iova_domain(&reserved_iova_list, VTD_PAGE_SIZE, IOVA_START_PFN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1982) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1983) 	lockdep_set_class(&reserved_iova_list.iova_rbtree_lock,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1984) 		&reserved_rbtree_key);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1985) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1986) 	/* IOAPIC ranges shouldn't be accessed by DMA */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1987) 	iova = reserve_iova(&reserved_iova_list, IOVA_PFN(IOAPIC_RANGE_START),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1988) 		IOVA_PFN(IOAPIC_RANGE_END));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1989) 	if (!iova) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1990) 		pr_err("Reserve IOAPIC range failed\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1991) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1992) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1993) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1994) 	/* Reserve all PCI MMIO to avoid peer-to-peer access */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1995) 	for_each_pci_dev(pdev) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1996) 		struct resource *r;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1997) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1998) 		for (i = 0; i < PCI_NUM_RESOURCES; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1999) 			r = &pdev->resource[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2000) 			if (!r->flags || !(r->flags & IORESOURCE_MEM))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2001) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2002) 			iova = reserve_iova(&reserved_iova_list,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2003) 					    IOVA_PFN(r->start),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2004) 					    IOVA_PFN(r->end));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2005) 			if (!iova) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2006) 				pci_err(pdev, "Reserve iova for %pR failed\n", r);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2007) 				return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2008) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2009) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2010) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2011) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2012) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2013) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2014) static inline int guestwidth_to_adjustwidth(int gaw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2015) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2016) 	int agaw;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2017) 	int r = (gaw - 12) % 9;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2018) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2019) 	if (r == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2020) 		agaw = gaw;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2021) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2022) 		agaw = gaw + 9 - r;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2023) 	if (agaw > 64)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2024) 		agaw = 64;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2025) 	return agaw;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2026) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2027) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2028) static void domain_exit(struct dmar_domain *domain)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2029) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2030) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2031) 	/* Remove associated devices and clear attached or cached domains */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2032) 	domain_remove_dev_info(domain);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2033) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2034) 	/* destroy iovas */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2035) 	if (domain->domain.type == IOMMU_DOMAIN_DMA)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2036) 		put_iova_domain(&domain->iovad);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2037) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2038) 	if (domain->pgd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2039) 		struct page *freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2040) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2041) 		freelist = domain_unmap(domain, 0, DOMAIN_MAX_PFN(domain->gaw));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2042) 		dma_free_pagelist(freelist);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2043) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2044) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2045) 	free_domain_mem(domain);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2046) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2047) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2048) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2049)  * Get the PASID directory size for scalable mode context entry.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2050)  * Value of X in the PDTS field of a scalable mode context entry
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2051)  * indicates PASID directory with 2^(X + 7) entries.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2052)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2053) static inline unsigned long context_get_sm_pds(struct pasid_table *table)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2054) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2055) 	int pds, max_pde;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2056) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2057) 	max_pde = table->max_pasid >> PASID_PDE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2058) 	pds = find_first_bit((unsigned long *)&max_pde, MAX_NR_PASID_BITS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2059) 	if (pds < 7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2060) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2061) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2062) 	return pds - 7;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2063) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2064) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2065) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2066)  * Set the RID_PASID field of a scalable mode context entry. The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2067)  * IOMMU hardware will use the PASID value set in this field for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2068)  * DMA translations of DMA requests without PASID.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2069)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2070) static inline void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2071) context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2072) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2073) 	context->hi |= pasid & ((1 << 20) - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2074) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2075) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2076) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2077)  * Set the DTE(Device-TLB Enable) field of a scalable mode context
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2078)  * entry.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2079)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2080) static inline void context_set_sm_dte(struct context_entry *context)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2081) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2082) 	context->lo |= (1 << 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2083) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2084) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2085) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2086)  * Set the PRE(Page Request Enable) field of a scalable mode context
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2087)  * entry.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2088)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2089) static inline void context_set_sm_pre(struct context_entry *context)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2090) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2091) 	context->lo |= (1 << 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2092) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2093) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2094) /* Convert value to context PASID directory size field coding. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2095) #define context_pdts(pds)	(((pds) & 0x7) << 9)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2096) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2097) static int domain_context_mapping_one(struct dmar_domain *domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2098) 				      struct intel_iommu *iommu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2099) 				      struct pasid_table *table,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2100) 				      u8 bus, u8 devfn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2101) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2102) 	u16 did = domain->iommu_did[iommu->seq_id];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2103) 	int translation = CONTEXT_TT_MULTI_LEVEL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2104) 	struct device_domain_info *info = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2105) 	struct context_entry *context;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2106) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2107) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2108) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2109) 	WARN_ON(did == 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2110) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2111) 	if (hw_pass_through && domain_type_is_si(domain))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2112) 		translation = CONTEXT_TT_PASS_THROUGH;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2113) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2114) 	pr_debug("Set context mapping for %02x:%02x.%d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2115) 		bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2116) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2117) 	BUG_ON(!domain->pgd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2118) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2119) 	spin_lock_irqsave(&device_domain_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2120) 	spin_lock(&iommu->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2121) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2122) 	ret = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2123) 	context = iommu_context_addr(iommu, bus, devfn, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2124) 	if (!context)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2125) 		goto out_unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2126) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2127) 	ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2128) 	if (context_present(context))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2129) 		goto out_unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2130) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2131) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2132) 	 * For kdump cases, old valid entries may be cached due to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2133) 	 * in-flight DMA and copied pgtable, but there is no unmapping
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2134) 	 * behaviour for them, thus we need an explicit cache flush for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2135) 	 * the newly-mapped device. For kdump, at this point, the device
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2136) 	 * is supposed to finish reset at its driver probe stage, so no
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2137) 	 * in-flight DMA will exist, and we don't need to worry anymore
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2138) 	 * hereafter.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2139) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2140) 	if (context_copied(context)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2141) 		u16 did_old = context_domain_id(context);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2142) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2143) 		if (did_old < cap_ndoms(iommu->cap)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2144) 			iommu->flush.flush_context(iommu, did_old,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2145) 						   (((u16)bus) << 8) | devfn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2146) 						   DMA_CCMD_MASK_NOBIT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2147) 						   DMA_CCMD_DEVICE_INVL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2148) 			iommu->flush.flush_iotlb(iommu, did_old, 0, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2149) 						 DMA_TLB_DSI_FLUSH);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2150) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2151) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2152) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2153) 	context_clear_entry(context);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2154) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2155) 	if (sm_supported(iommu)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2156) 		unsigned long pds;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2157) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2158) 		WARN_ON(!table);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2159) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2160) 		/* Setup the PASID DIR pointer: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2161) 		pds = context_get_sm_pds(table);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2162) 		context->lo = (u64)virt_to_phys(table->table) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2163) 				context_pdts(pds);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2164) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2165) 		/* Setup the RID_PASID field: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2166) 		context_set_sm_rid2pasid(context, PASID_RID2PASID);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2167) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2168) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2169) 		 * Setup the Device-TLB enable bit and Page request
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2170) 		 * Enable bit:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2171) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2172) 		info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2173) 		if (info && info->ats_supported)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2174) 			context_set_sm_dte(context);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2175) 		if (info && info->pri_supported)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2176) 			context_set_sm_pre(context);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2177) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2178) 		struct dma_pte *pgd = domain->pgd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2179) 		int agaw;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2180) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2181) 		context_set_domain_id(context, did);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2182) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2183) 		if (translation != CONTEXT_TT_PASS_THROUGH) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2184) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2185) 			 * Skip top levels of page tables for iommu which has
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2186) 			 * less agaw than default. Unnecessary for PT mode.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2187) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2188) 			for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2189) 				ret = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2190) 				pgd = phys_to_virt(dma_pte_addr(pgd));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2191) 				if (!dma_pte_present(pgd))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2192) 					goto out_unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2193) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2194) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2195) 			info = iommu_support_dev_iotlb(domain, iommu, bus, devfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2196) 			if (info && info->ats_supported)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2197) 				translation = CONTEXT_TT_DEV_IOTLB;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2198) 			else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2199) 				translation = CONTEXT_TT_MULTI_LEVEL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2200) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2201) 			context_set_address_root(context, virt_to_phys(pgd));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2202) 			context_set_address_width(context, agaw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2203) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2204) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2205) 			 * In pass through mode, AW must be programmed to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2206) 			 * indicate the largest AGAW value supported by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2207) 			 * hardware. And ASR is ignored by hardware.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2208) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2209) 			context_set_address_width(context, iommu->msagaw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2210) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2211) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2212) 		context_set_translation_type(context, translation);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2213) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2214) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2215) 	context_set_fault_enable(context);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2216) 	context_set_present(context);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2217) 	if (!ecap_coherent(iommu->ecap))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2218) 		clflush_cache_range(context, sizeof(*context));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2219) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2220) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2221) 	 * It's a non-present to present mapping. If hardware doesn't cache
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2222) 	 * non-present entry we only need to flush the write-buffer. If the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2223) 	 * _does_ cache non-present entries, then it does so in the special
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2224) 	 * domain #0, which we have to flush:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2225) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2226) 	if (cap_caching_mode(iommu->cap)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2227) 		iommu->flush.flush_context(iommu, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2228) 					   (((u16)bus) << 8) | devfn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2229) 					   DMA_CCMD_MASK_NOBIT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2230) 					   DMA_CCMD_DEVICE_INVL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2231) 		iommu->flush.flush_iotlb(iommu, did, 0, 0, DMA_TLB_DSI_FLUSH);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2232) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2233) 		iommu_flush_write_buffer(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2234) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2235) 	iommu_enable_dev_iotlb(info);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2236) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2237) 	ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2238) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2239) out_unlock:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2240) 	spin_unlock(&iommu->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2241) 	spin_unlock_irqrestore(&device_domain_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2242) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2243) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2244) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2245) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2246) struct domain_context_mapping_data {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2247) 	struct dmar_domain *domain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2248) 	struct intel_iommu *iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2249) 	struct pasid_table *table;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2250) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2251) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2252) static int domain_context_mapping_cb(struct pci_dev *pdev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2253) 				     u16 alias, void *opaque)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2254) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2255) 	struct domain_context_mapping_data *data = opaque;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2256) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2257) 	return domain_context_mapping_one(data->domain, data->iommu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2258) 					  data->table, PCI_BUS_NUM(alias),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2259) 					  alias & 0xff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2260) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2261) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2262) static int
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2263) domain_context_mapping(struct dmar_domain *domain, struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2264) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2265) 	struct domain_context_mapping_data data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2266) 	struct pasid_table *table;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2267) 	struct intel_iommu *iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2268) 	u8 bus, devfn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2269) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2270) 	iommu = device_to_iommu(dev, &bus, &devfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2271) 	if (!iommu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2272) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2273) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2274) 	table = intel_pasid_get_table(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2275) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2276) 	if (!dev_is_pci(dev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2277) 		return domain_context_mapping_one(domain, iommu, table,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2278) 						  bus, devfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2279) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2280) 	data.domain = domain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2281) 	data.iommu = iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2282) 	data.table = table;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2283) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2284) 	return pci_for_each_dma_alias(to_pci_dev(dev),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2285) 				      &domain_context_mapping_cb, &data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2286) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2287) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2288) static int domain_context_mapped_cb(struct pci_dev *pdev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2289) 				    u16 alias, void *opaque)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2290) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2291) 	struct intel_iommu *iommu = opaque;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2292) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2293) 	return !device_context_mapped(iommu, PCI_BUS_NUM(alias), alias & 0xff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2294) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2295) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2296) static int domain_context_mapped(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2297) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2298) 	struct intel_iommu *iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2299) 	u8 bus, devfn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2300) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2301) 	iommu = device_to_iommu(dev, &bus, &devfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2302) 	if (!iommu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2303) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2304) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2305) 	if (!dev_is_pci(dev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2306) 		return device_context_mapped(iommu, bus, devfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2307) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2308) 	return !pci_for_each_dma_alias(to_pci_dev(dev),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2309) 				       domain_context_mapped_cb, iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2310) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2311) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2312) /* Returns a number of VTD pages, but aligned to MM page size */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2313) static inline unsigned long aligned_nrpages(unsigned long host_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2314) 					    size_t size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2315) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2316) 	host_addr &= ~PAGE_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2317) 	return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2318) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2319) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2320) /* Return largest possible superpage level for a given mapping */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2321) static inline int hardware_largepage_caps(struct dmar_domain *domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2322) 					  unsigned long iov_pfn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2323) 					  unsigned long phy_pfn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2324) 					  unsigned long pages)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2325) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2326) 	int support, level = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2327) 	unsigned long pfnmerge;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2328) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2329) 	support = domain->iommu_superpage;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2330) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2331) 	/* To use a large page, the virtual *and* physical addresses
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2332) 	   must be aligned to 2MiB/1GiB/etc. Lower bits set in either
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2333) 	   of them will mean we have to use smaller pages. So just
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2334) 	   merge them and check both at once. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2335) 	pfnmerge = iov_pfn | phy_pfn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2336) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2337) 	while (support && !(pfnmerge & ~VTD_STRIDE_MASK)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2338) 		pages >>= VTD_STRIDE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2339) 		if (!pages)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2340) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2341) 		pfnmerge >>= VTD_STRIDE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2342) 		level++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2343) 		support--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2344) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2345) 	return level;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2346) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2347) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2348) static int __domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2349) 			    struct scatterlist *sg, unsigned long phys_pfn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2350) 			    unsigned long nr_pages, int prot)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2351) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2352) 	struct dma_pte *first_pte = NULL, *pte = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2353) 	phys_addr_t pteval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2354) 	unsigned long sg_res = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2355) 	unsigned int largepage_lvl = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2356) 	unsigned long lvl_pages = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2357) 	u64 attr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2358) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2359) 	BUG_ON(!domain_pfn_supported(domain, iov_pfn + nr_pages - 1));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2360) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2361) 	if ((prot & (DMA_PTE_READ|DMA_PTE_WRITE)) == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2362) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2363) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2364) 	attr = prot & (DMA_PTE_READ | DMA_PTE_WRITE | DMA_PTE_SNP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2365) 	attr |= DMA_FL_PTE_PRESENT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2366) 	if (domain_use_first_level(domain)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2367) 		attr |= DMA_FL_PTE_XD | DMA_FL_PTE_US;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2368) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2369) 		if (domain->domain.type == IOMMU_DOMAIN_DMA) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2370) 			attr |= DMA_FL_PTE_ACCESS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2371) 			if (prot & DMA_PTE_WRITE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2372) 				attr |= DMA_FL_PTE_DIRTY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2373) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2374) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2375) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2376) 	if (!sg) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2377) 		sg_res = nr_pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2378) 		pteval = ((phys_addr_t)phys_pfn << VTD_PAGE_SHIFT) | attr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2379) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2380) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2381) 	while (nr_pages > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2382) 		uint64_t tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2383) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2384) 		if (!sg_res) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2385) 			unsigned int pgoff = sg->offset & ~PAGE_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2386) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2387) 			sg_res = aligned_nrpages(sg->offset, sg->length);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2388) 			sg->dma_address = ((dma_addr_t)iov_pfn << VTD_PAGE_SHIFT) + pgoff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2389) 			sg->dma_length = sg->length;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2390) 			pteval = (sg_phys(sg) - pgoff) | attr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2391) 			phys_pfn = pteval >> VTD_PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2392) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2393) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2394) 		if (!pte) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2395) 			largepage_lvl = hardware_largepage_caps(domain, iov_pfn, phys_pfn, sg_res);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2396) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2397) 			first_pte = pte = pfn_to_dma_pte(domain, iov_pfn, &largepage_lvl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2398) 			if (!pte)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2399) 				return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2400) 			/* It is large page*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2401) 			if (largepage_lvl > 1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2402) 				unsigned long nr_superpages, end_pfn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2403) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2404) 				pteval |= DMA_PTE_LARGE_PAGE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2405) 				lvl_pages = lvl_to_nr_pages(largepage_lvl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2406) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2407) 				nr_superpages = sg_res / lvl_pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2408) 				end_pfn = iov_pfn + nr_superpages * lvl_pages - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2409) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2410) 				/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2411) 				 * Ensure that old small page tables are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2412) 				 * removed to make room for superpage(s).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2413) 				 * We're adding new large pages, so make sure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2414) 				 * we don't remove their parent tables.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2415) 				 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2416) 				dma_pte_free_pagetable(domain, iov_pfn, end_pfn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2417) 						       largepage_lvl + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2418) 			} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2419) 				pteval &= ~(uint64_t)DMA_PTE_LARGE_PAGE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2420) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2421) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2422) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2423) 		/* We don't need lock here, nobody else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2424) 		 * touches the iova range
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2425) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2426) 		tmp = cmpxchg64_local(&pte->val, 0ULL, pteval);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2427) 		if (tmp) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2428) 			static int dumps = 5;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2429) 			pr_crit("ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2430) 				iov_pfn, tmp, (unsigned long long)pteval);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2431) 			if (dumps) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2432) 				dumps--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2433) 				debug_dma_dump_mappings(NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2434) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2435) 			WARN_ON(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2436) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2437) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2438) 		lvl_pages = lvl_to_nr_pages(largepage_lvl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2439) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2440) 		BUG_ON(nr_pages < lvl_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2441) 		BUG_ON(sg_res < lvl_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2442) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2443) 		nr_pages -= lvl_pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2444) 		iov_pfn += lvl_pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2445) 		phys_pfn += lvl_pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2446) 		pteval += lvl_pages * VTD_PAGE_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2447) 		sg_res -= lvl_pages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2448) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2449) 		/* If the next PTE would be the first in a new page, then we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2450) 		   need to flush the cache on the entries we've just written.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2451) 		   And then we'll need to recalculate 'pte', so clear it and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2452) 		   let it get set again in the if (!pte) block above.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2453) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2454) 		   If we're done (!nr_pages) we need to flush the cache too.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2455) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2456) 		   Also if we've been setting superpages, we may need to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2457) 		   recalculate 'pte' and switch back to smaller pages for the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2458) 		   end of the mapping, if the trailing size is not enough to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2459) 		   use another superpage (i.e. sg_res < lvl_pages). */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2460) 		pte++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2461) 		if (!nr_pages || first_pte_in_page(pte) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2462) 		    (largepage_lvl > 1 && sg_res < lvl_pages)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2463) 			domain_flush_cache(domain, first_pte,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2464) 					   (void *)pte - (void *)first_pte);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2465) 			pte = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2466) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2467) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2468) 		if (!sg_res && nr_pages)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2469) 			sg = sg_next(sg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2470) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2471) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2472) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2473) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2474) static int domain_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2475) 			  struct scatterlist *sg, unsigned long phys_pfn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2476) 			  unsigned long nr_pages, int prot)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2477) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2478) 	int iommu_id, ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2479) 	struct intel_iommu *iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2480) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2481) 	/* Do the real mapping first */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2482) 	ret = __domain_mapping(domain, iov_pfn, sg, phys_pfn, nr_pages, prot);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2483) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2484) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2485) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2486) 	for_each_domain_iommu(iommu_id, domain) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2487) 		iommu = g_iommus[iommu_id];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2488) 		__mapping_notify_one(iommu, domain, iov_pfn, nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2489) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2490) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2491) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2492) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2493) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2494) static inline int domain_sg_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2495) 				    struct scatterlist *sg, unsigned long nr_pages,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2496) 				    int prot)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2497) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2498) 	return domain_mapping(domain, iov_pfn, sg, 0, nr_pages, prot);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2499) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2500) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2501) static inline int domain_pfn_mapping(struct dmar_domain *domain, unsigned long iov_pfn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2502) 				     unsigned long phys_pfn, unsigned long nr_pages,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2503) 				     int prot)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2504) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2505) 	return domain_mapping(domain, iov_pfn, NULL, phys_pfn, nr_pages, prot);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2506) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2507) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2508) static void domain_context_clear_one(struct intel_iommu *iommu, u8 bus, u8 devfn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2509) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2510) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2511) 	struct context_entry *context;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2512) 	u16 did_old;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2513) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2514) 	if (!iommu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2515) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2516) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2517) 	spin_lock_irqsave(&iommu->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2518) 	context = iommu_context_addr(iommu, bus, devfn, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2519) 	if (!context) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2520) 		spin_unlock_irqrestore(&iommu->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2521) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2522) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2523) 	did_old = context_domain_id(context);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2524) 	context_clear_entry(context);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2525) 	__iommu_flush_cache(iommu, context, sizeof(*context));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2526) 	spin_unlock_irqrestore(&iommu->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2527) 	iommu->flush.flush_context(iommu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2528) 				   did_old,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2529) 				   (((u16)bus) << 8) | devfn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2530) 				   DMA_CCMD_MASK_NOBIT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2531) 				   DMA_CCMD_DEVICE_INVL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2532) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2533) 	if (sm_supported(iommu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2534) 		qi_flush_pasid_cache(iommu, did_old, QI_PC_ALL_PASIDS, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2535) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2536) 	iommu->flush.flush_iotlb(iommu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2537) 				 did_old,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2538) 				 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2539) 				 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2540) 				 DMA_TLB_DSI_FLUSH);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2541) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2542) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2543) static inline void unlink_domain_info(struct device_domain_info *info)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2544) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2545) 	assert_spin_locked(&device_domain_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2546) 	list_del(&info->link);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2547) 	list_del(&info->global);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2548) 	if (info->dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2549) 		dev_iommu_priv_set(info->dev, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2550) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2551) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2552) static void domain_remove_dev_info(struct dmar_domain *domain)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2553) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2554) 	struct device_domain_info *info, *tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2555) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2556) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2557) 	spin_lock_irqsave(&device_domain_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2558) 	list_for_each_entry_safe(info, tmp, &domain->devices, link)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2559) 		__dmar_remove_one_dev_info(info);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2560) 	spin_unlock_irqrestore(&device_domain_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2561) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2562) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2563) struct dmar_domain *find_domain(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2564) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2565) 	struct device_domain_info *info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2566) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2567) 	if (unlikely(!dev || !dev->iommu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2568) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2569) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2570) 	if (unlikely(attach_deferred(dev)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2571) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2572) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2573) 	/* No lock here, assumes no domain exit in normal case */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2574) 	info = get_domain_info(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2575) 	if (likely(info))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2576) 		return info->domain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2577) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2578) 	return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2579) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2580) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2581) static void do_deferred_attach(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2582) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2583) 	struct iommu_domain *domain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2584) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2585) 	dev_iommu_priv_set(dev, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2586) 	domain = iommu_get_domain_for_dev(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2587) 	if (domain)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2588) 		intel_iommu_attach_device(domain, dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2589) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2590) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2591) static inline struct device_domain_info *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2592) dmar_search_domain_by_dev_info(int segment, int bus, int devfn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2593) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2594) 	struct device_domain_info *info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2595) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2596) 	list_for_each_entry(info, &device_domain_list, global)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2597) 		if (info->segment == segment && info->bus == bus &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2598) 		    info->devfn == devfn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2599) 			return info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2600) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2601) 	return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2602) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2603) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2604) static int domain_setup_first_level(struct intel_iommu *iommu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2605) 				    struct dmar_domain *domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2606) 				    struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2607) 				    u32 pasid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2608) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2609) 	struct dma_pte *pgd = domain->pgd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2610) 	int agaw, level;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2611) 	int flags = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2612) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2613) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2614) 	 * Skip top levels of page tables for iommu which has
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2615) 	 * less agaw than default. Unnecessary for PT mode.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2616) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2617) 	for (agaw = domain->agaw; agaw > iommu->agaw; agaw--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2618) 		pgd = phys_to_virt(dma_pte_addr(pgd));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2619) 		if (!dma_pte_present(pgd))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2620) 			return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2621) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2622) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2623) 	level = agaw_to_level(agaw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2624) 	if (level != 4 && level != 5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2625) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2626) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2627) 	if (pasid != PASID_RID2PASID)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2628) 		flags |= PASID_FLAG_SUPERVISOR_MODE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2629) 	if (level == 5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2630) 		flags |= PASID_FLAG_FL5LP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2631) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2632) 	if (domain->domain.type == IOMMU_DOMAIN_UNMANAGED)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2633) 		flags |= PASID_FLAG_PAGE_SNOOP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2634) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2635) 	return intel_pasid_setup_first_level(iommu, dev, (pgd_t *)pgd, pasid,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2636) 					     domain->iommu_did[iommu->seq_id],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2637) 					     flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2638) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2639) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2640) static bool dev_is_real_dma_subdevice(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2641) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2642) 	return dev && dev_is_pci(dev) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2643) 	       pci_real_dma_dev(to_pci_dev(dev)) != to_pci_dev(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2644) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2645) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2646) static struct dmar_domain *dmar_insert_one_dev_info(struct intel_iommu *iommu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2647) 						    int bus, int devfn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2648) 						    struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2649) 						    struct dmar_domain *domain)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2650) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2651) 	struct dmar_domain *found = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2652) 	struct device_domain_info *info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2653) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2654) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2655) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2656) 	info = alloc_devinfo_mem();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2657) 	if (!info)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2658) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2659) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2660) 	if (!dev_is_real_dma_subdevice(dev)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2661) 		info->bus = bus;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2662) 		info->devfn = devfn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2663) 		info->segment = iommu->segment;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2664) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2665) 		struct pci_dev *pdev = to_pci_dev(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2666) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2667) 		info->bus = pdev->bus->number;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2668) 		info->devfn = pdev->devfn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2669) 		info->segment = pci_domain_nr(pdev->bus);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2670) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2671) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2672) 	info->ats_supported = info->pasid_supported = info->pri_supported = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2673) 	info->ats_enabled = info->pasid_enabled = info->pri_enabled = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2674) 	info->ats_qdep = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2675) 	info->dev = dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2676) 	info->domain = domain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2677) 	info->iommu = iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2678) 	info->pasid_table = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2679) 	info->auxd_enabled = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2680) 	INIT_LIST_HEAD(&info->auxiliary_domains);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2681) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2682) 	if (dev && dev_is_pci(dev)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2683) 		struct pci_dev *pdev = to_pci_dev(info->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2684) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2685) 		if (ecap_dev_iotlb_support(iommu->ecap) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2686) 		    pci_ats_supported(pdev) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2687) 		    dmar_find_matched_atsr_unit(pdev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2688) 			info->ats_supported = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2689) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2690) 		if (sm_supported(iommu)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2691) 			if (pasid_supported(iommu)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2692) 				int features = pci_pasid_features(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2693) 				if (features >= 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2694) 					info->pasid_supported = features | 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2695) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2696) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2697) 			if (info->ats_supported && ecap_prs(iommu->ecap) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2698) 			    pci_pri_supported(pdev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2699) 				info->pri_supported = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2700) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2701) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2702) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2703) 	spin_lock_irqsave(&device_domain_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2704) 	if (dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2705) 		found = find_domain(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2706) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2707) 	if (!found) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2708) 		struct device_domain_info *info2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2709) 		info2 = dmar_search_domain_by_dev_info(info->segment, info->bus,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2710) 						       info->devfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2711) 		if (info2) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2712) 			found      = info2->domain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2713) 			info2->dev = dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2714) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2715) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2716) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2717) 	if (found) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2718) 		spin_unlock_irqrestore(&device_domain_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2719) 		free_devinfo_mem(info);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2720) 		/* Caller must free the original domain */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2721) 		return found;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2722) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2723) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2724) 	spin_lock(&iommu->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2725) 	ret = domain_attach_iommu(domain, iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2726) 	spin_unlock(&iommu->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2727) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2728) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2729) 		spin_unlock_irqrestore(&device_domain_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2730) 		free_devinfo_mem(info);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2731) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2732) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2733) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2734) 	list_add(&info->link, &domain->devices);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2735) 	list_add(&info->global, &device_domain_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2736) 	if (dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2737) 		dev_iommu_priv_set(dev, info);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2738) 	spin_unlock_irqrestore(&device_domain_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2739) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2740) 	/* PASID table is mandatory for a PCI device in scalable mode. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2741) 	if (dev && dev_is_pci(dev) && sm_supported(iommu)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2742) 		ret = intel_pasid_alloc_table(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2743) 		if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2744) 			dev_err(dev, "PASID table allocation failed\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2745) 			dmar_remove_one_dev_info(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2746) 			return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2747) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2748) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2749) 		/* Setup the PASID entry for requests without PASID: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2750) 		spin_lock_irqsave(&iommu->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2751) 		if (hw_pass_through && domain_type_is_si(domain))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2752) 			ret = intel_pasid_setup_pass_through(iommu, domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2753) 					dev, PASID_RID2PASID);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2754) 		else if (domain_use_first_level(domain))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2755) 			ret = domain_setup_first_level(iommu, domain, dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2756) 					PASID_RID2PASID);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2757) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2758) 			ret = intel_pasid_setup_second_level(iommu, domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2759) 					dev, PASID_RID2PASID);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2760) 		spin_unlock_irqrestore(&iommu->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2761) 		if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2762) 			dev_err(dev, "Setup RID2PASID failed\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2763) 			dmar_remove_one_dev_info(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2764) 			return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2765) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2766) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2767) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2768) 	if (dev && domain_context_mapping(domain, dev)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2769) 		dev_err(dev, "Domain context map failed\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2770) 		dmar_remove_one_dev_info(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2771) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2772) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2773) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2774) 	return domain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2775) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2776) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2777) static int iommu_domain_identity_map(struct dmar_domain *domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2778) 				     unsigned long first_vpfn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2779) 				     unsigned long last_vpfn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2780) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2781) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2782) 	 * RMRR range might have overlap with physical memory range,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2783) 	 * clear it first
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2784) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2785) 	dma_pte_clear_range(domain, first_vpfn, last_vpfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2786) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2787) 	return __domain_mapping(domain, first_vpfn, NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2788) 				first_vpfn, last_vpfn - first_vpfn + 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2789) 				DMA_PTE_READ|DMA_PTE_WRITE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2790) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2791) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2792) static int md_domain_init(struct dmar_domain *domain, int guest_width);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2793) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2794) static int __init si_domain_init(int hw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2795) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2796) 	struct dmar_rmrr_unit *rmrr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2797) 	struct device *dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2798) 	int i, nid, ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2799) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2800) 	si_domain = alloc_domain(DOMAIN_FLAG_STATIC_IDENTITY);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2801) 	if (!si_domain)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2802) 		return -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2803) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2804) 	if (md_domain_init(si_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2805) 		domain_exit(si_domain);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2806) 		return -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2807) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2808) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2809) 	if (hw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2810) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2811) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2812) 	for_each_online_node(nid) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2813) 		unsigned long start_pfn, end_pfn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2814) 		int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2815) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2816) 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2817) 			ret = iommu_domain_identity_map(si_domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2818) 					mm_to_dma_pfn(start_pfn),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2819) 					mm_to_dma_pfn(end_pfn));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2820) 			if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2821) 				return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2822) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2823) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2824) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2825) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2826) 	 * Identity map the RMRRs so that devices with RMRRs could also use
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2827) 	 * the si_domain.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2828) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2829) 	for_each_rmrr_units(rmrr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2830) 		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2831) 					  i, dev) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2832) 			unsigned long long start = rmrr->base_address;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2833) 			unsigned long long end = rmrr->end_address;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2834) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2835) 			if (WARN_ON(end < start ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2836) 				    end >> agaw_to_width(si_domain->agaw)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2837) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2838) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2839) 			ret = iommu_domain_identity_map(si_domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2840) 					mm_to_dma_pfn(start >> PAGE_SHIFT),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2841) 					mm_to_dma_pfn(end >> PAGE_SHIFT));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2842) 			if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2843) 				return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2844) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2845) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2846) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2847) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2848) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2849) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2850) static int domain_add_dev_info(struct dmar_domain *domain, struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2851) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2852) 	struct dmar_domain *ndomain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2853) 	struct intel_iommu *iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2854) 	u8 bus, devfn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2855) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2856) 	iommu = device_to_iommu(dev, &bus, &devfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2857) 	if (!iommu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2858) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2859) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2860) 	ndomain = dmar_insert_one_dev_info(iommu, bus, devfn, dev, domain);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2861) 	if (ndomain != domain)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2862) 		return -EBUSY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2863) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2864) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2865) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2866) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2867) static bool device_has_rmrr(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2868) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2869) 	struct dmar_rmrr_unit *rmrr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2870) 	struct device *tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2871) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2872) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2873) 	rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2874) 	for_each_rmrr_units(rmrr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2875) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2876) 		 * Return TRUE if this RMRR contains the device that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2877) 		 * is passed in.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2878) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2879) 		for_each_active_dev_scope(rmrr->devices,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2880) 					  rmrr->devices_cnt, i, tmp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2881) 			if (tmp == dev ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2882) 			    is_downstream_to_pci_bridge(dev, tmp)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2883) 				rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2884) 				return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2885) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2886) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2887) 	rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2888) 	return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2889) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2890) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2891) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2892)  * device_rmrr_is_relaxable - Test whether the RMRR of this device
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2893)  * is relaxable (ie. is allowed to be not enforced under some conditions)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2894)  * @dev: device handle
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2895)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2896)  * We assume that PCI USB devices with RMRRs have them largely
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2897)  * for historical reasons and that the RMRR space is not actively used post
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2898)  * boot.  This exclusion may change if vendors begin to abuse it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2899)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2900)  * The same exception is made for graphics devices, with the requirement that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2901)  * any use of the RMRR regions will be torn down before assigning the device
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2902)  * to a guest.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2903)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2904)  * Return: true if the RMRR is relaxable, false otherwise
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2905)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2906) static bool device_rmrr_is_relaxable(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2907) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2908) 	struct pci_dev *pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2909) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2910) 	if (!dev_is_pci(dev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2911) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2912) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2913) 	pdev = to_pci_dev(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2914) 	if (IS_USB_DEVICE(pdev) || IS_GFX_DEVICE(pdev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2915) 		return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2916) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2917) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2918) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2919) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2920) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2921)  * There are a couple cases where we need to restrict the functionality of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2922)  * devices associated with RMRRs.  The first is when evaluating a device for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2923)  * identity mapping because problems exist when devices are moved in and out
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2924)  * of domains and their respective RMRR information is lost.  This means that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2925)  * a device with associated RMRRs will never be in a "passthrough" domain.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2926)  * The second is use of the device through the IOMMU API.  This interface
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2927)  * expects to have full control of the IOVA space for the device.  We cannot
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2928)  * satisfy both the requirement that RMRR access is maintained and have an
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2929)  * unencumbered IOVA space.  We also have no ability to quiesce the device's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2930)  * use of the RMRR space or even inform the IOMMU API user of the restriction.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2931)  * We therefore prevent devices associated with an RMRR from participating in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2932)  * the IOMMU API, which eliminates them from device assignment.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2933)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2934)  * In both cases, devices which have relaxable RMRRs are not concerned by this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2935)  * restriction. See device_rmrr_is_relaxable comment.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2936)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2937) static bool device_is_rmrr_locked(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2938) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2939) 	if (!device_has_rmrr(dev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2940) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2941) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2942) 	if (device_rmrr_is_relaxable(dev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2943) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2944) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2945) 	return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2946) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2947) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2948) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2949)  * Return the required default domain type for a specific device.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2950)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2951)  * @dev: the device in query
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2952)  * @startup: true if this is during early boot
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2953)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2954)  * Returns:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2955)  *  - IOMMU_DOMAIN_DMA: device requires a dynamic mapping domain
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2956)  *  - IOMMU_DOMAIN_IDENTITY: device requires an identical mapping domain
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2957)  *  - 0: both identity and dynamic domains work for this device
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2958)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2959) static int device_def_domain_type(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2960) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2961) 	if (dev_is_pci(dev)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2962) 		struct pci_dev *pdev = to_pci_dev(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2963) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2964) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2965) 		 * Prevent any device marked as untrusted from getting
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2966) 		 * placed into the statically identity mapping domain.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2967) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2968) 		if (pdev->untrusted)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2969) 			return IOMMU_DOMAIN_DMA;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2970) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2971) 		if ((iommu_identity_mapping & IDENTMAP_AZALIA) && IS_AZALIA(pdev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2972) 			return IOMMU_DOMAIN_IDENTITY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2973) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2974) 		if ((iommu_identity_mapping & IDENTMAP_GFX) && IS_GFX_DEVICE(pdev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2975) 			return IOMMU_DOMAIN_IDENTITY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2976) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2977) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2978) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2979) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2980) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2981) static void intel_iommu_init_qi(struct intel_iommu *iommu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2982) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2983) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2984) 	 * Start from the sane iommu hardware state.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2985) 	 * If the queued invalidation is already initialized by us
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2986) 	 * (for example, while enabling interrupt-remapping) then
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2987) 	 * we got the things already rolling from a sane state.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2988) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2989) 	if (!iommu->qi) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2990) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2991) 		 * Clear any previous faults.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2992) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2993) 		dmar_fault(-1, iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2994) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2995) 		 * Disable queued invalidation if supported and already enabled
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2996) 		 * before OS handover.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2997) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2998) 		dmar_disable_qi(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2999) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3000) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3001) 	if (dmar_enable_qi(iommu)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3002) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3003) 		 * Queued Invalidate not enabled, use Register Based Invalidate
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3004) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3005) 		iommu->flush.flush_context = __iommu_flush_context;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3006) 		iommu->flush.flush_iotlb = __iommu_flush_iotlb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3007) 		pr_info("%s: Using Register based invalidation\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3008) 			iommu->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3009) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3010) 		iommu->flush.flush_context = qi_flush_context;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3011) 		iommu->flush.flush_iotlb = qi_flush_iotlb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3012) 		pr_info("%s: Using Queued invalidation\n", iommu->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3013) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3014) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3015) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3016) static int copy_context_table(struct intel_iommu *iommu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3017) 			      struct root_entry *old_re,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3018) 			      struct context_entry **tbl,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3019) 			      int bus, bool ext)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3020) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3021) 	int tbl_idx, pos = 0, idx, devfn, ret = 0, did;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3022) 	struct context_entry *new_ce = NULL, ce;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3023) 	struct context_entry *old_ce = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3024) 	struct root_entry re;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3025) 	phys_addr_t old_ce_phys;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3026) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3027) 	tbl_idx = ext ? bus * 2 : bus;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3028) 	memcpy(&re, old_re, sizeof(re));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3029) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3030) 	for (devfn = 0; devfn < 256; devfn++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3031) 		/* First calculate the correct index */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3032) 		idx = (ext ? devfn * 2 : devfn) % 256;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3033) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3034) 		if (idx == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3035) 			/* First save what we may have and clean up */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3036) 			if (new_ce) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3037) 				tbl[tbl_idx] = new_ce;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3038) 				__iommu_flush_cache(iommu, new_ce,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3039) 						    VTD_PAGE_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3040) 				pos = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3041) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3042) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3043) 			if (old_ce)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3044) 				memunmap(old_ce);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3045) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3046) 			ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3047) 			if (devfn < 0x80)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3048) 				old_ce_phys = root_entry_lctp(&re);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3049) 			else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3050) 				old_ce_phys = root_entry_uctp(&re);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3051) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3052) 			if (!old_ce_phys) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3053) 				if (ext && devfn == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3054) 					/* No LCTP, try UCTP */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3055) 					devfn = 0x7f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3056) 					continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3057) 				} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3058) 					goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3059) 				}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3060) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3061) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3062) 			ret = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3063) 			old_ce = memremap(old_ce_phys, PAGE_SIZE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3064) 					MEMREMAP_WB);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3065) 			if (!old_ce)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3066) 				goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3067) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3068) 			new_ce = alloc_pgtable_page(iommu->node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3069) 			if (!new_ce)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3070) 				goto out_unmap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3071) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3072) 			ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3073) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3074) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3075) 		/* Now copy the context entry */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3076) 		memcpy(&ce, old_ce + idx, sizeof(ce));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3077) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3078) 		if (!__context_present(&ce))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3079) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3080) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3081) 		did = context_domain_id(&ce);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3082) 		if (did >= 0 && did < cap_ndoms(iommu->cap))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3083) 			set_bit(did, iommu->domain_ids);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3084) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3085) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3086) 		 * We need a marker for copied context entries. This
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3087) 		 * marker needs to work for the old format as well as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3088) 		 * for extended context entries.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3089) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3090) 		 * Bit 67 of the context entry is used. In the old
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3091) 		 * format this bit is available to software, in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3092) 		 * extended format it is the PGE bit, but PGE is ignored
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3093) 		 * by HW if PASIDs are disabled (and thus still
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3094) 		 * available).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3095) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3096) 		 * So disable PASIDs first and then mark the entry
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3097) 		 * copied. This means that we don't copy PASID
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3098) 		 * translations from the old kernel, but this is fine as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3099) 		 * faults there are not fatal.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3100) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3101) 		context_clear_pasid_enable(&ce);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3102) 		context_set_copied(&ce);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3103) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3104) 		new_ce[idx] = ce;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3105) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3106) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3107) 	tbl[tbl_idx + pos] = new_ce;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3108) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3109) 	__iommu_flush_cache(iommu, new_ce, VTD_PAGE_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3110) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3111) out_unmap:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3112) 	memunmap(old_ce);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3113) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3114) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3115) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3116) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3117) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3118) static int copy_translation_tables(struct intel_iommu *iommu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3119) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3120) 	struct context_entry **ctxt_tbls;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3121) 	struct root_entry *old_rt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3122) 	phys_addr_t old_rt_phys;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3123) 	int ctxt_table_entries;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3124) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3125) 	u64 rtaddr_reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3126) 	int bus, ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3127) 	bool new_ext, ext;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3128) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3129) 	rtaddr_reg = dmar_readq(iommu->reg + DMAR_RTADDR_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3130) 	ext        = !!(rtaddr_reg & DMA_RTADDR_RTT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3131) 	new_ext    = !!ecap_ecs(iommu->ecap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3132) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3133) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3134) 	 * The RTT bit can only be changed when translation is disabled,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3135) 	 * but disabling translation means to open a window for data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3136) 	 * corruption. So bail out and don't copy anything if we would
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3137) 	 * have to change the bit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3138) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3139) 	if (new_ext != ext)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3140) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3141) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3142) 	old_rt_phys = rtaddr_reg & VTD_PAGE_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3143) 	if (!old_rt_phys)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3144) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3145) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3146) 	old_rt = memremap(old_rt_phys, PAGE_SIZE, MEMREMAP_WB);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3147) 	if (!old_rt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3148) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3149) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3150) 	/* This is too big for the stack - allocate it from slab */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3151) 	ctxt_table_entries = ext ? 512 : 256;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3152) 	ret = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3153) 	ctxt_tbls = kcalloc(ctxt_table_entries, sizeof(void *), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3154) 	if (!ctxt_tbls)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3155) 		goto out_unmap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3156) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3157) 	for (bus = 0; bus < 256; bus++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3158) 		ret = copy_context_table(iommu, &old_rt[bus],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3159) 					 ctxt_tbls, bus, ext);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3160) 		if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3161) 			pr_err("%s: Failed to copy context table for bus %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3162) 				iommu->name, bus);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3163) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3164) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3165) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3166) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3167) 	spin_lock_irqsave(&iommu->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3168) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3169) 	/* Context tables are copied, now write them to the root_entry table */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3170) 	for (bus = 0; bus < 256; bus++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3171) 		int idx = ext ? bus * 2 : bus;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3172) 		u64 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3173) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3174) 		if (ctxt_tbls[idx]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3175) 			val = virt_to_phys(ctxt_tbls[idx]) | 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3176) 			iommu->root_entry[bus].lo = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3177) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3178) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3179) 		if (!ext || !ctxt_tbls[idx + 1])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3180) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3181) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3182) 		val = virt_to_phys(ctxt_tbls[idx + 1]) | 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3183) 		iommu->root_entry[bus].hi = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3184) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3185) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3186) 	spin_unlock_irqrestore(&iommu->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3187) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3188) 	kfree(ctxt_tbls);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3189) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3190) 	__iommu_flush_cache(iommu, iommu->root_entry, PAGE_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3191) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3192) 	ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3193) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3194) out_unmap:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3195) 	memunmap(old_rt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3196) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3197) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3198) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3199) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3200) #ifdef CONFIG_INTEL_IOMMU_SVM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3201) static ioasid_t intel_vcmd_ioasid_alloc(ioasid_t min, ioasid_t max, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3202) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3203) 	struct intel_iommu *iommu = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3204) 	ioasid_t ioasid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3205) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3206) 	if (!iommu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3207) 		return INVALID_IOASID;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3208) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3209) 	 * VT-d virtual command interface always uses the full 20 bit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3210) 	 * PASID range. Host can partition guest PASID range based on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3211) 	 * policies but it is out of guest's control.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3212) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3213) 	if (min < PASID_MIN || max > intel_pasid_max_id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3214) 		return INVALID_IOASID;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3215) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3216) 	if (vcmd_alloc_pasid(iommu, &ioasid))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3217) 		return INVALID_IOASID;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3218) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3219) 	return ioasid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3220) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3221) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3222) static void intel_vcmd_ioasid_free(ioasid_t ioasid, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3223) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3224) 	struct intel_iommu *iommu = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3225) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3226) 	if (!iommu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3227) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3228) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3229) 	 * Sanity check the ioasid owner is done at upper layer, e.g. VFIO
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3230) 	 * We can only free the PASID when all the devices are unbound.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3231) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3232) 	if (ioasid_find(NULL, ioasid, NULL)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3233) 		pr_alert("Cannot free active IOASID %d\n", ioasid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3234) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3235) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3236) 	vcmd_free_pasid(iommu, ioasid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3237) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3238) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3239) static void register_pasid_allocator(struct intel_iommu *iommu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3240) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3241) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3242) 	 * If we are running in the host, no need for custom allocator
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3243) 	 * in that PASIDs are allocated from the host system-wide.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3244) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3245) 	if (!cap_caching_mode(iommu->cap))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3246) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3247) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3248) 	if (!sm_supported(iommu)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3249) 		pr_warn("VT-d Scalable Mode not enabled, no PASID allocation\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3250) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3251) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3252) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3253) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3254) 	 * Register a custom PASID allocator if we are running in a guest,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3255) 	 * guest PASID must be obtained via virtual command interface.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3256) 	 * There can be multiple vIOMMUs in each guest but only one allocator
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3257) 	 * is active. All vIOMMU allocators will eventually be calling the same
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3258) 	 * host allocator.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3259) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3260) 	if (!vccap_pasid(iommu->vccap))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3261) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3262) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3263) 	pr_info("Register custom PASID allocator\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3264) 	iommu->pasid_allocator.alloc = intel_vcmd_ioasid_alloc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3265) 	iommu->pasid_allocator.free = intel_vcmd_ioasid_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3266) 	iommu->pasid_allocator.pdata = (void *)iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3267) 	if (ioasid_register_allocator(&iommu->pasid_allocator)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3268) 		pr_warn("Custom PASID allocator failed, scalable mode disabled\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3269) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3270) 		 * Disable scalable mode on this IOMMU if there
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3271) 		 * is no custom allocator. Mixing SM capable vIOMMU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3272) 		 * and non-SM vIOMMU are not supported.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3273) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3274) 		intel_iommu_sm = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3275) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3276) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3277) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3278) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3279) static int __init init_dmars(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3280) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3281) 	struct dmar_drhd_unit *drhd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3282) 	struct intel_iommu *iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3283) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3284) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3285) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3286) 	 * for each drhd
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3287) 	 *    allocate root
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3288) 	 *    initialize and program root entry to not present
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3289) 	 * endfor
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3290) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3291) 	for_each_drhd_unit(drhd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3292) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3293) 		 * lock not needed as this is only incremented in the single
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3294) 		 * threaded kernel __init code path all other access are read
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3295) 		 * only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3296) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3297) 		if (g_num_of_iommus < DMAR_UNITS_SUPPORTED) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3298) 			g_num_of_iommus++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3299) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3300) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3301) 		pr_err_once("Exceeded %d IOMMUs\n", DMAR_UNITS_SUPPORTED);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3302) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3303) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3304) 	/* Preallocate enough resources for IOMMU hot-addition */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3305) 	if (g_num_of_iommus < DMAR_UNITS_SUPPORTED)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3306) 		g_num_of_iommus = DMAR_UNITS_SUPPORTED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3307) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3308) 	g_iommus = kcalloc(g_num_of_iommus, sizeof(struct intel_iommu *),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3309) 			GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3310) 	if (!g_iommus) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3311) 		pr_err("Allocating global iommu array failed\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3312) 		ret = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3313) 		goto error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3314) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3315) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3316) 	for_each_iommu(iommu, drhd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3317) 		if (drhd->ignored) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3318) 			iommu_disable_translation(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3319) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3320) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3321) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3322) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3323) 		 * Find the max pasid size of all IOMMU's in the system.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3324) 		 * We need to ensure the system pasid table is no bigger
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3325) 		 * than the smallest supported.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3326) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3327) 		if (pasid_supported(iommu)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3328) 			u32 temp = 2 << ecap_pss(iommu->ecap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3329) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3330) 			intel_pasid_max_id = min_t(u32, temp,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3331) 						   intel_pasid_max_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3332) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3333) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3334) 		g_iommus[iommu->seq_id] = iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3335) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3336) 		intel_iommu_init_qi(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3337) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3338) 		ret = iommu_init_domains(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3339) 		if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3340) 			goto free_iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3341) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3342) 		init_translation_status(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3343) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3344) 		if (translation_pre_enabled(iommu) && !is_kdump_kernel()) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3345) 			iommu_disable_translation(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3346) 			clear_translation_pre_enabled(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3347) 			pr_warn("Translation was enabled for %s but we are not in kdump mode\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3348) 				iommu->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3349) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3350) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3351) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3352) 		 * TBD:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3353) 		 * we could share the same root & context tables
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3354) 		 * among all IOMMU's. Need to Split it later.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3355) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3356) 		ret = iommu_alloc_root_entry(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3357) 		if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3358) 			goto free_iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3359) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3360) 		if (translation_pre_enabled(iommu)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3361) 			pr_info("Translation already enabled - trying to copy translation structures\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3362) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3363) 			ret = copy_translation_tables(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3364) 			if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3365) 				/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3366) 				 * We found the IOMMU with translation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3367) 				 * enabled - but failed to copy over the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3368) 				 * old root-entry table. Try to proceed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3369) 				 * by disabling translation now and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3370) 				 * allocating a clean root-entry table.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3371) 				 * This might cause DMAR faults, but
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3372) 				 * probably the dump will still succeed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3373) 				 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3374) 				pr_err("Failed to copy translation tables from previous kernel for %s\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3375) 				       iommu->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3376) 				iommu_disable_translation(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3377) 				clear_translation_pre_enabled(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3378) 			} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3379) 				pr_info("Copied translation tables from previous kernel for %s\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3380) 					iommu->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3381) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3382) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3383) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3384) 		if (!ecap_pass_through(iommu->ecap))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3385) 			hw_pass_through = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3386) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3387) 		if (!intel_iommu_strict && cap_caching_mode(iommu->cap)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3388) 			pr_warn("Disable batched IOTLB flush due to virtualization");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3389) 			intel_iommu_strict = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3390) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3391) 		intel_svm_check(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3392) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3393) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3394) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3395) 	 * Now that qi is enabled on all iommus, set the root entry and flush
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3396) 	 * caches. This is required on some Intel X58 chipsets, otherwise the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3397) 	 * flush_context function will loop forever and the boot hangs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3398) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3399) 	for_each_active_iommu(iommu, drhd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3400) 		iommu_flush_write_buffer(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3401) #ifdef CONFIG_INTEL_IOMMU_SVM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3402) 		register_pasid_allocator(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3403) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3404) 		iommu_set_root_entry(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3405) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3406) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3407) #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3408) 	dmar_map_gfx = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3409) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3410) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3411) 	if (!dmar_map_gfx)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3412) 		iommu_identity_mapping |= IDENTMAP_GFX;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3413) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3414) 	check_tylersburg_isoch();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3415) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3416) 	ret = si_domain_init(hw_pass_through);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3417) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3418) 		goto free_iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3419) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3420) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3421) 	 * for each drhd
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3422) 	 *   enable fault log
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3423) 	 *   global invalidate context cache
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3424) 	 *   global invalidate iotlb
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3425) 	 *   enable translation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3426) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3427) 	for_each_iommu(iommu, drhd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3428) 		if (drhd->ignored) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3429) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3430) 			 * we always have to disable PMRs or DMA may fail on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3431) 			 * this device
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3432) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3433) 			if (force_on)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3434) 				iommu_disable_protect_mem_regions(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3435) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3436) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3437) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3438) 		iommu_flush_write_buffer(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3439) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3440) #ifdef CONFIG_INTEL_IOMMU_SVM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3441) 		if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3442) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3443) 			 * Call dmar_alloc_hwirq() with dmar_global_lock held,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3444) 			 * could cause possible lock race condition.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3445) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3446) 			up_write(&dmar_global_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3447) 			ret = intel_svm_enable_prq(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3448) 			down_write(&dmar_global_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3449) 			if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3450) 				goto free_iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3451) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3452) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3453) 		ret = dmar_set_interrupt(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3454) 		if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3455) 			goto free_iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3456) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3457) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3458) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3459) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3460) free_iommu:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3461) 	for_each_active_iommu(iommu, drhd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3462) 		disable_dmar_iommu(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3463) 		free_dmar_iommu(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3464) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3465) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3466) 	kfree(g_iommus);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3467) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3468) error:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3469) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3470) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3471) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3472) /* This takes a number of _MM_ pages, not VTD pages */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3473) static unsigned long intel_alloc_iova(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3474) 				     struct dmar_domain *domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3475) 				     unsigned long nrpages, uint64_t dma_mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3476) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3477) 	unsigned long iova_pfn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3478) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3479) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3480) 	 * Restrict dma_mask to the width that the iommu can handle.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3481) 	 * First-level translation restricts the input-address to a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3482) 	 * canonical address (i.e., address bits 63:N have the same
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3483) 	 * value as address bit [N-1], where N is 48-bits with 4-level
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3484) 	 * paging and 57-bits with 5-level paging). Hence, skip bit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3485) 	 * [N-1].
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3486) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3487) 	if (domain_use_first_level(domain))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3488) 		dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw - 1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3489) 				 dma_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3490) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3491) 		dma_mask = min_t(uint64_t, DOMAIN_MAX_ADDR(domain->gaw),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3492) 				 dma_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3493) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3494) 	/* Ensure we reserve the whole size-aligned region */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3495) 	nrpages = __roundup_pow_of_two(nrpages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3496) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3497) 	if (!dmar_forcedac && dma_mask > DMA_BIT_MASK(32)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3498) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3499) 		 * First try to allocate an io virtual address in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3500) 		 * DMA_BIT_MASK(32) and if that fails then try allocating
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3501) 		 * from higher range
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3502) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3503) 		iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3504) 					   IOVA_PFN(DMA_BIT_MASK(32)), false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3505) 		if (iova_pfn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3506) 			return iova_pfn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3507) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3508) 	iova_pfn = alloc_iova_fast(&domain->iovad, nrpages,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3509) 				   IOVA_PFN(dma_mask), true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3510) 	if (unlikely(!iova_pfn)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3511) 		dev_err_once(dev, "Allocating %ld-page iova failed\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3512) 			     nrpages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3513) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3514) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3515) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3516) 	return iova_pfn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3517) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3518) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3519) static dma_addr_t __intel_map_single(struct device *dev, phys_addr_t paddr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3520) 				     size_t size, int dir, u64 dma_mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3521) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3522) 	struct dmar_domain *domain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3523) 	phys_addr_t start_paddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3524) 	unsigned long iova_pfn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3525) 	int prot = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3526) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3527) 	struct intel_iommu *iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3528) 	unsigned long paddr_pfn = paddr >> PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3529) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3530) 	BUG_ON(dir == DMA_NONE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3531) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3532) 	if (unlikely(attach_deferred(dev)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3533) 		do_deferred_attach(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3534) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3535) 	domain = find_domain(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3536) 	if (!domain)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3537) 		return DMA_MAPPING_ERROR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3538) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3539) 	iommu = domain_get_iommu(domain);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3540) 	size = aligned_nrpages(paddr, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3541) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3542) 	iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size), dma_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3543) 	if (!iova_pfn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3544) 		goto error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3545) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3546) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3547) 	 * Check if DMAR supports zero-length reads on write only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3548) 	 * mappings..
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3549) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3550) 	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3551) 			!cap_zlr(iommu->cap))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3552) 		prot |= DMA_PTE_READ;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3553) 	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3554) 		prot |= DMA_PTE_WRITE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3555) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3556) 	 * paddr - (paddr + size) might be partial page, we should map the whole
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3557) 	 * page.  Note: if two part of one page are separately mapped, we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3558) 	 * might have two guest_addr mapping to the same host paddr, but this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3559) 	 * is not a big problem
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3560) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3561) 	ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3562) 				 mm_to_dma_pfn(paddr_pfn), size, prot);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3563) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3564) 		goto error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3565) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3566) 	start_paddr = (phys_addr_t)iova_pfn << PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3567) 	start_paddr += paddr & ~PAGE_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3568) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3569) 	trace_map_single(dev, start_paddr, paddr, size << VTD_PAGE_SHIFT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3570) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3571) 	return start_paddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3572) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3573) error:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3574) 	if (iova_pfn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3575) 		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3576) 	dev_err(dev, "Device request: %zx@%llx dir %d --- failed\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3577) 		size, (unsigned long long)paddr, dir);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3578) 	return DMA_MAPPING_ERROR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3579) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3580) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3581) static dma_addr_t intel_map_page(struct device *dev, struct page *page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3582) 				 unsigned long offset, size_t size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3583) 				 enum dma_data_direction dir,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3584) 				 unsigned long attrs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3585) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3586) 	return __intel_map_single(dev, page_to_phys(page) + offset,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3587) 				  size, dir, *dev->dma_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3588) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3589) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3590) static dma_addr_t intel_map_resource(struct device *dev, phys_addr_t phys_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3591) 				     size_t size, enum dma_data_direction dir,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3592) 				     unsigned long attrs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3593) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3594) 	return __intel_map_single(dev, phys_addr, size, dir, *dev->dma_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3595) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3596) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3597) static void intel_unmap(struct device *dev, dma_addr_t dev_addr, size_t size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3598) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3599) 	struct dmar_domain *domain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3600) 	unsigned long start_pfn, last_pfn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3601) 	unsigned long nrpages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3602) 	unsigned long iova_pfn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3603) 	struct intel_iommu *iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3604) 	struct page *freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3605) 	struct pci_dev *pdev = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3606) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3607) 	domain = find_domain(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3608) 	BUG_ON(!domain);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3609) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3610) 	iommu = domain_get_iommu(domain);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3611) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3612) 	iova_pfn = IOVA_PFN(dev_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3613) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3614) 	nrpages = aligned_nrpages(dev_addr, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3615) 	start_pfn = mm_to_dma_pfn(iova_pfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3616) 	last_pfn = start_pfn + nrpages - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3617) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3618) 	if (dev_is_pci(dev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3619) 		pdev = to_pci_dev(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3620) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3621) 	freelist = domain_unmap(domain, start_pfn, last_pfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3622) 	if (intel_iommu_strict || (pdev && pdev->untrusted) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3623) 			!has_iova_flush_queue(&domain->iovad)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3624) 		iommu_flush_iotlb_psi(iommu, domain, start_pfn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3625) 				      nrpages, !freelist, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3626) 		/* free iova */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3627) 		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3628) 		dma_free_pagelist(freelist);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3629) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3630) 		queue_iova(&domain->iovad, iova_pfn, nrpages,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3631) 			   (unsigned long)freelist);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3632) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3633) 		 * queue up the release of the unmap to save the 1/6th of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3634) 		 * cpu used up by the iotlb flush operation...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3635) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3636) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3637) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3638) 	trace_unmap_single(dev, dev_addr, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3639) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3640) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3641) static void intel_unmap_page(struct device *dev, dma_addr_t dev_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3642) 			     size_t size, enum dma_data_direction dir,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3643) 			     unsigned long attrs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3644) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3645) 	intel_unmap(dev, dev_addr, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3646) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3647) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3648) static void intel_unmap_resource(struct device *dev, dma_addr_t dev_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3649) 		size_t size, enum dma_data_direction dir, unsigned long attrs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3650) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3651) 	intel_unmap(dev, dev_addr, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3652) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3653) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3654) static void *intel_alloc_coherent(struct device *dev, size_t size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3655) 				  dma_addr_t *dma_handle, gfp_t flags,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3656) 				  unsigned long attrs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3657) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3658) 	struct page *page = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3659) 	int order;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3660) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3661) 	if (unlikely(attach_deferred(dev)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3662) 		do_deferred_attach(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3663) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3664) 	size = PAGE_ALIGN(size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3665) 	order = get_order(size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3666) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3667) 	if (gfpflags_allow_blocking(flags)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3668) 		unsigned int count = size >> PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3669) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3670) 		page = dma_alloc_from_contiguous(dev, count, order,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3671) 						 flags & __GFP_NOWARN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3672) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3673) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3674) 	if (!page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3675) 		page = alloc_pages(flags, order);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3676) 	if (!page)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3677) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3678) 	memset(page_address(page), 0, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3679) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3680) 	*dma_handle = __intel_map_single(dev, page_to_phys(page), size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3681) 					 DMA_BIDIRECTIONAL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3682) 					 dev->coherent_dma_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3683) 	if (*dma_handle != DMA_MAPPING_ERROR)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3684) 		return page_address(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3685) 	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3686) 		__free_pages(page, order);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3687) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3688) 	return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3689) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3690) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3691) static void intel_free_coherent(struct device *dev, size_t size, void *vaddr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3692) 				dma_addr_t dma_handle, unsigned long attrs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3693) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3694) 	int order;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3695) 	struct page *page = virt_to_page(vaddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3696) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3697) 	size = PAGE_ALIGN(size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3698) 	order = get_order(size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3699) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3700) 	intel_unmap(dev, dma_handle, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3701) 	if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3702) 		__free_pages(page, order);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3703) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3704) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3705) static void intel_unmap_sg(struct device *dev, struct scatterlist *sglist,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3706) 			   int nelems, enum dma_data_direction dir,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3707) 			   unsigned long attrs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3708) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3709) 	dma_addr_t startaddr = sg_dma_address(sglist) & PAGE_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3710) 	unsigned long nrpages = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3711) 	struct scatterlist *sg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3712) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3713) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3714) 	for_each_sg(sglist, sg, nelems, i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3715) 		nrpages += aligned_nrpages(sg_dma_address(sg), sg_dma_len(sg));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3716) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3717) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3718) 	intel_unmap(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3719) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3720) 	trace_unmap_sg(dev, startaddr, nrpages << VTD_PAGE_SHIFT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3721) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3722) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3723) static int intel_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3724) 			enum dma_data_direction dir, unsigned long attrs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3725) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3726) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3727) 	struct dmar_domain *domain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3728) 	size_t size = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3729) 	int prot = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3730) 	unsigned long iova_pfn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3731) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3732) 	struct scatterlist *sg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3733) 	unsigned long start_vpfn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3734) 	struct intel_iommu *iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3735) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3736) 	BUG_ON(dir == DMA_NONE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3737) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3738) 	if (unlikely(attach_deferred(dev)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3739) 		do_deferred_attach(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3740) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3741) 	domain = find_domain(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3742) 	if (!domain)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3743) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3744) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3745) 	iommu = domain_get_iommu(domain);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3746) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3747) 	for_each_sg(sglist, sg, nelems, i)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3748) 		size += aligned_nrpages(sg->offset, sg->length);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3749) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3750) 	iova_pfn = intel_alloc_iova(dev, domain, dma_to_mm_pfn(size),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3751) 				*dev->dma_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3752) 	if (!iova_pfn) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3753) 		sglist->dma_length = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3754) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3755) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3756) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3757) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3758) 	 * Check if DMAR supports zero-length reads on write only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3759) 	 * mappings..
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3760) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3761) 	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL || \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3762) 			!cap_zlr(iommu->cap))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3763) 		prot |= DMA_PTE_READ;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3764) 	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3765) 		prot |= DMA_PTE_WRITE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3766) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3767) 	start_vpfn = mm_to_dma_pfn(iova_pfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3768) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3769) 	ret = domain_sg_mapping(domain, start_vpfn, sglist, size, prot);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3770) 	if (unlikely(ret)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3771) 		dma_pte_free_pagetable(domain, start_vpfn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3772) 				       start_vpfn + size - 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3773) 				       agaw_to_level(domain->agaw) + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3774) 		free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(size));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3775) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3776) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3777) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3778) 	for_each_sg(sglist, sg, nelems, i)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3779) 		trace_map_sg(dev, i + 1, nelems, sg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3780) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3781) 	return nelems;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3782) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3783) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3784) static u64 intel_get_required_mask(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3785) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3786) 	return DMA_BIT_MASK(32);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3787) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3788) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3789) static const struct dma_map_ops intel_dma_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3790) 	.alloc = intel_alloc_coherent,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3791) 	.free = intel_free_coherent,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3792) 	.map_sg = intel_map_sg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3793) 	.unmap_sg = intel_unmap_sg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3794) 	.map_page = intel_map_page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3795) 	.unmap_page = intel_unmap_page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3796) 	.map_resource = intel_map_resource,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3797) 	.unmap_resource = intel_unmap_resource,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3798) 	.dma_supported = dma_direct_supported,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3799) 	.mmap = dma_common_mmap,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3800) 	.get_sgtable = dma_common_get_sgtable,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3801) 	.alloc_pages = dma_common_alloc_pages,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3802) 	.free_pages = dma_common_free_pages,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3803) 	.get_required_mask = intel_get_required_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3804) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3805) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3806) static void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3807) bounce_sync_single(struct device *dev, dma_addr_t addr, size_t size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3808) 		   enum dma_data_direction dir, enum dma_sync_target target)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3809) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3810) 	struct dmar_domain *domain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3811) 	phys_addr_t tlb_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3812) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3813) 	domain = find_domain(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3814) 	if (WARN_ON(!domain))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3815) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3816) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3817) 	tlb_addr = intel_iommu_iova_to_phys(&domain->domain, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3818) 	if (is_swiotlb_buffer(tlb_addr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3819) 		swiotlb_tbl_sync_single(dev, tlb_addr, size, dir, target);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3820) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3821) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3822) static dma_addr_t
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3823) bounce_map_single(struct device *dev, phys_addr_t paddr, size_t size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3824) 		  enum dma_data_direction dir, unsigned long attrs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3825) 		  u64 dma_mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3826) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3827) 	size_t aligned_size = ALIGN(size, VTD_PAGE_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3828) 	struct dmar_domain *domain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3829) 	struct intel_iommu *iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3830) 	unsigned long iova_pfn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3831) 	unsigned long nrpages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3832) 	phys_addr_t tlb_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3833) 	int prot = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3834) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3835) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3836) 	if (unlikely(attach_deferred(dev)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3837) 		do_deferred_attach(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3838) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3839) 	domain = find_domain(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3840) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3841) 	if (WARN_ON(dir == DMA_NONE || !domain))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3842) 		return DMA_MAPPING_ERROR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3843) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3844) 	iommu = domain_get_iommu(domain);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3845) 	if (WARN_ON(!iommu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3846) 		return DMA_MAPPING_ERROR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3847) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3848) 	nrpages = aligned_nrpages(0, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3849) 	iova_pfn = intel_alloc_iova(dev, domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3850) 				    dma_to_mm_pfn(nrpages), dma_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3851) 	if (!iova_pfn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3852) 		return DMA_MAPPING_ERROR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3853) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3854) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3855) 	 * Check if DMAR supports zero-length reads on write only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3856) 	 * mappings..
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3857) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3858) 	if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3859) 			!cap_zlr(iommu->cap))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3860) 		prot |= DMA_PTE_READ;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3861) 	if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3862) 		prot |= DMA_PTE_WRITE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3863) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3864) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3865) 	 * If both the physical buffer start address and size are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3866) 	 * page aligned, we don't need to use a bounce page.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3867) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3868) 	if (!IS_ALIGNED(paddr | size, VTD_PAGE_SIZE)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3869) 		tlb_addr = swiotlb_tbl_map_single(dev, paddr, size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3870) 				aligned_size, dir, attrs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3871) 		if (tlb_addr == DMA_MAPPING_ERROR) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3872) 			goto swiotlb_error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3873) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3874) 			/* Cleanup the padding area. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3875) 			void *padding_start = phys_to_virt(tlb_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3876) 			size_t padding_size = aligned_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3877) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3878) 			if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3879) 			    (dir == DMA_TO_DEVICE ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3880) 			     dir == DMA_BIDIRECTIONAL)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3881) 				padding_start += size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3882) 				padding_size -= size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3883) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3884) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3885) 			memset(padding_start, 0, padding_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3886) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3887) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3888) 		tlb_addr = paddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3889) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3890) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3891) 	ret = domain_pfn_mapping(domain, mm_to_dma_pfn(iova_pfn),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3892) 				 tlb_addr >> VTD_PAGE_SHIFT, nrpages, prot);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3893) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3894) 		goto mapping_error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3895) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3896) 	trace_bounce_map_single(dev, iova_pfn << PAGE_SHIFT, paddr, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3897) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3898) 	return (phys_addr_t)iova_pfn << PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3899) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3900) mapping_error:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3901) 	if (is_swiotlb_buffer(tlb_addr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3902) 		swiotlb_tbl_unmap_single(dev, tlb_addr, size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3903) 					 aligned_size, dir, attrs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3904) swiotlb_error:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3905) 	free_iova_fast(&domain->iovad, iova_pfn, dma_to_mm_pfn(nrpages));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3906) 	dev_err(dev, "Device bounce map: %zx@%llx dir %d --- failed\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3907) 		size, (unsigned long long)paddr, dir);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3908) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3909) 	return DMA_MAPPING_ERROR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3910) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3911) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3912) static void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3913) bounce_unmap_single(struct device *dev, dma_addr_t dev_addr, size_t size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3914) 		    enum dma_data_direction dir, unsigned long attrs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3915) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3916) 	size_t aligned_size = ALIGN(size, VTD_PAGE_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3917) 	struct dmar_domain *domain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3918) 	phys_addr_t tlb_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3919) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3920) 	domain = find_domain(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3921) 	if (WARN_ON(!domain))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3922) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3923) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3924) 	tlb_addr = intel_iommu_iova_to_phys(&domain->domain, dev_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3925) 	if (WARN_ON(!tlb_addr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3926) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3927) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3928) 	intel_unmap(dev, dev_addr, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3929) 	if (is_swiotlb_buffer(tlb_addr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3930) 		swiotlb_tbl_unmap_single(dev, tlb_addr, size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3931) 					 aligned_size, dir, attrs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3932) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3933) 	trace_bounce_unmap_single(dev, dev_addr, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3934) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3935) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3936) static dma_addr_t
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3937) bounce_map_page(struct device *dev, struct page *page, unsigned long offset,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3938) 		size_t size, enum dma_data_direction dir, unsigned long attrs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3939) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3940) 	return bounce_map_single(dev, page_to_phys(page) + offset,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3941) 				 size, dir, attrs, *dev->dma_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3942) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3943) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3944) static dma_addr_t
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3945) bounce_map_resource(struct device *dev, phys_addr_t phys_addr, size_t size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3946) 		    enum dma_data_direction dir, unsigned long attrs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3947) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3948) 	return bounce_map_single(dev, phys_addr, size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3949) 				 dir, attrs, *dev->dma_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3950) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3951) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3952) static void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3953) bounce_unmap_page(struct device *dev, dma_addr_t dev_addr, size_t size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3954) 		  enum dma_data_direction dir, unsigned long attrs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3955) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3956) 	bounce_unmap_single(dev, dev_addr, size, dir, attrs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3957) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3958) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3959) static void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3960) bounce_unmap_resource(struct device *dev, dma_addr_t dev_addr, size_t size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3961) 		      enum dma_data_direction dir, unsigned long attrs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3962) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3963) 	bounce_unmap_single(dev, dev_addr, size, dir, attrs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3964) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3965) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3966) static void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3967) bounce_unmap_sg(struct device *dev, struct scatterlist *sglist, int nelems,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3968) 		enum dma_data_direction dir, unsigned long attrs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3969) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3970) 	struct scatterlist *sg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3971) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3972) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3973) 	for_each_sg(sglist, sg, nelems, i)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3974) 		bounce_unmap_page(dev, sg->dma_address,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3975) 				  sg_dma_len(sg), dir, attrs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3976) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3977) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3978) static int
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3979) bounce_map_sg(struct device *dev, struct scatterlist *sglist, int nelems,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3980) 	      enum dma_data_direction dir, unsigned long attrs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3981) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3982) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3983) 	struct scatterlist *sg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3984) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3985) 	for_each_sg(sglist, sg, nelems, i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3986) 		sg->dma_address = bounce_map_page(dev, sg_page(sg),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3987) 						  sg->offset, sg->length,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3988) 						  dir, attrs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3989) 		if (sg->dma_address == DMA_MAPPING_ERROR)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3990) 			goto out_unmap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3991) 		sg_dma_len(sg) = sg->length;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3992) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3993) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3994) 	for_each_sg(sglist, sg, nelems, i)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3995) 		trace_bounce_map_sg(dev, i + 1, nelems, sg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3996) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3997) 	return nelems;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3998) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3999) out_unmap:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4000) 	bounce_unmap_sg(dev, sglist, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4001) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4002) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4003) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4004) static void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4005) bounce_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4006) 			   size_t size, enum dma_data_direction dir)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4007) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4008) 	bounce_sync_single(dev, addr, size, dir, SYNC_FOR_CPU);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4009) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4010) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4011) static void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4012) bounce_sync_single_for_device(struct device *dev, dma_addr_t addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4013) 			      size_t size, enum dma_data_direction dir)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4014) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4015) 	bounce_sync_single(dev, addr, size, dir, SYNC_FOR_DEVICE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4016) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4017) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4018) static void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4019) bounce_sync_sg_for_cpu(struct device *dev, struct scatterlist *sglist,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4020) 		       int nelems, enum dma_data_direction dir)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4021) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4022) 	struct scatterlist *sg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4023) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4024) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4025) 	for_each_sg(sglist, sg, nelems, i)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4026) 		bounce_sync_single(dev, sg_dma_address(sg),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4027) 				   sg_dma_len(sg), dir, SYNC_FOR_CPU);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4028) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4029) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4030) static void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4031) bounce_sync_sg_for_device(struct device *dev, struct scatterlist *sglist,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4032) 			  int nelems, enum dma_data_direction dir)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4033) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4034) 	struct scatterlist *sg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4035) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4036) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4037) 	for_each_sg(sglist, sg, nelems, i)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4038) 		bounce_sync_single(dev, sg_dma_address(sg),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4039) 				   sg_dma_len(sg), dir, SYNC_FOR_DEVICE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4040) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4041) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4042) static const struct dma_map_ops bounce_dma_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4043) 	.alloc			= intel_alloc_coherent,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4044) 	.free			= intel_free_coherent,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4045) 	.map_sg			= bounce_map_sg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4046) 	.unmap_sg		= bounce_unmap_sg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4047) 	.map_page		= bounce_map_page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4048) 	.unmap_page		= bounce_unmap_page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4049) 	.sync_single_for_cpu	= bounce_sync_single_for_cpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4050) 	.sync_single_for_device	= bounce_sync_single_for_device,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4051) 	.sync_sg_for_cpu	= bounce_sync_sg_for_cpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4052) 	.sync_sg_for_device	= bounce_sync_sg_for_device,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4053) 	.map_resource		= bounce_map_resource,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4054) 	.unmap_resource		= bounce_unmap_resource,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4055) 	.alloc_pages		= dma_common_alloc_pages,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4056) 	.free_pages		= dma_common_free_pages,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4057) 	.dma_supported		= dma_direct_supported,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4058) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4059) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4060) static inline int iommu_domain_cache_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4061) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4062) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4063) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4064) 	iommu_domain_cache = kmem_cache_create("iommu_domain",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4065) 					 sizeof(struct dmar_domain),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4066) 					 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4067) 					 SLAB_HWCACHE_ALIGN,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4068) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4069) 					 NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4070) 	if (!iommu_domain_cache) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4071) 		pr_err("Couldn't create iommu_domain cache\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4072) 		ret = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4073) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4074) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4075) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4076) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4077) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4078) static inline int iommu_devinfo_cache_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4079) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4080) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4081) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4082) 	iommu_devinfo_cache = kmem_cache_create("iommu_devinfo",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4083) 					 sizeof(struct device_domain_info),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4084) 					 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4085) 					 SLAB_HWCACHE_ALIGN,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4086) 					 NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4087) 	if (!iommu_devinfo_cache) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4088) 		pr_err("Couldn't create devinfo cache\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4089) 		ret = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4090) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4091) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4092) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4093) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4094) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4095) static int __init iommu_init_mempool(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4096) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4097) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4098) 	ret = iova_cache_get();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4099) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4100) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4101) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4102) 	ret = iommu_domain_cache_init();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4103) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4104) 		goto domain_error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4105) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4106) 	ret = iommu_devinfo_cache_init();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4107) 	if (!ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4108) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4109) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4110) 	kmem_cache_destroy(iommu_domain_cache);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4111) domain_error:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4112) 	iova_cache_put();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4113) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4114) 	return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4115) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4116) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4117) static void __init iommu_exit_mempool(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4118) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4119) 	kmem_cache_destroy(iommu_devinfo_cache);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4120) 	kmem_cache_destroy(iommu_domain_cache);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4121) 	iova_cache_put();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4122) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4123) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4124) static void __init init_no_remapping_devices(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4125) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4126) 	struct dmar_drhd_unit *drhd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4127) 	struct device *dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4128) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4129) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4130) 	for_each_drhd_unit(drhd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4131) 		if (!drhd->include_all) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4132) 			for_each_active_dev_scope(drhd->devices,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4133) 						  drhd->devices_cnt, i, dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4134) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4135) 			/* ignore DMAR unit if no devices exist */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4136) 			if (i == drhd->devices_cnt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4137) 				drhd->ignored = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4138) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4139) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4140) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4141) 	for_each_active_drhd_unit(drhd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4142) 		if (drhd->include_all)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4143) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4144) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4145) 		for_each_active_dev_scope(drhd->devices,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4146) 					  drhd->devices_cnt, i, dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4147) 			if (!dev_is_pci(dev) || !IS_GFX_DEVICE(to_pci_dev(dev)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4148) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4149) 		if (i < drhd->devices_cnt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4150) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4151) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4152) 		/* This IOMMU has *only* gfx devices. Either bypass it or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4153) 		   set the gfx_mapped flag, as appropriate */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4154) 		drhd->gfx_dedicated = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4155) 		if (!dmar_map_gfx)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4156) 			drhd->ignored = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4157) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4158) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4159) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4160) #ifdef CONFIG_SUSPEND
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4161) static int init_iommu_hw(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4162) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4163) 	struct dmar_drhd_unit *drhd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4164) 	struct intel_iommu *iommu = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4165) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4166) 	for_each_active_iommu(iommu, drhd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4167) 		if (iommu->qi)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4168) 			dmar_reenable_qi(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4169) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4170) 	for_each_iommu(iommu, drhd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4171) 		if (drhd->ignored) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4172) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4173) 			 * we always have to disable PMRs or DMA may fail on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4174) 			 * this device
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4175) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4176) 			if (force_on)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4177) 				iommu_disable_protect_mem_regions(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4178) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4179) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4180) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4181) 		iommu_flush_write_buffer(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4182) 		iommu_set_root_entry(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4183) 		iommu_enable_translation(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4184) 		iommu_disable_protect_mem_regions(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4185) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4186) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4187) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4188) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4189) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4190) static void iommu_flush_all(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4191) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4192) 	struct dmar_drhd_unit *drhd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4193) 	struct intel_iommu *iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4194) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4195) 	for_each_active_iommu(iommu, drhd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4196) 		iommu->flush.flush_context(iommu, 0, 0, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4197) 					   DMA_CCMD_GLOBAL_INVL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4198) 		iommu->flush.flush_iotlb(iommu, 0, 0, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4199) 					 DMA_TLB_GLOBAL_FLUSH);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4200) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4201) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4202) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4203) static int iommu_suspend(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4204) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4205) 	struct dmar_drhd_unit *drhd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4206) 	struct intel_iommu *iommu = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4207) 	unsigned long flag;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4208) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4209) 	for_each_active_iommu(iommu, drhd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4210) 		iommu->iommu_state = kcalloc(MAX_SR_DMAR_REGS, sizeof(u32),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4211) 						 GFP_ATOMIC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4212) 		if (!iommu->iommu_state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4213) 			goto nomem;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4214) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4215) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4216) 	iommu_flush_all();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4217) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4218) 	for_each_active_iommu(iommu, drhd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4219) 		iommu_disable_translation(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4220) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4221) 		raw_spin_lock_irqsave(&iommu->register_lock, flag);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4222) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4223) 		iommu->iommu_state[SR_DMAR_FECTL_REG] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4224) 			readl(iommu->reg + DMAR_FECTL_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4225) 		iommu->iommu_state[SR_DMAR_FEDATA_REG] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4226) 			readl(iommu->reg + DMAR_FEDATA_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4227) 		iommu->iommu_state[SR_DMAR_FEADDR_REG] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4228) 			readl(iommu->reg + DMAR_FEADDR_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4229) 		iommu->iommu_state[SR_DMAR_FEUADDR_REG] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4230) 			readl(iommu->reg + DMAR_FEUADDR_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4231) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4232) 		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4233) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4234) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4235) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4236) nomem:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4237) 	for_each_active_iommu(iommu, drhd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4238) 		kfree(iommu->iommu_state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4239) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4240) 	return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4241) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4242) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4243) static void iommu_resume(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4244) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4245) 	struct dmar_drhd_unit *drhd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4246) 	struct intel_iommu *iommu = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4247) 	unsigned long flag;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4248) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4249) 	if (init_iommu_hw()) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4250) 		if (force_on)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4251) 			panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4252) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4253) 			WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4254) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4255) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4256) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4257) 	for_each_active_iommu(iommu, drhd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4258) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4259) 		raw_spin_lock_irqsave(&iommu->register_lock, flag);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4260) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4261) 		writel(iommu->iommu_state[SR_DMAR_FECTL_REG],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4262) 			iommu->reg + DMAR_FECTL_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4263) 		writel(iommu->iommu_state[SR_DMAR_FEDATA_REG],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4264) 			iommu->reg + DMAR_FEDATA_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4265) 		writel(iommu->iommu_state[SR_DMAR_FEADDR_REG],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4266) 			iommu->reg + DMAR_FEADDR_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4267) 		writel(iommu->iommu_state[SR_DMAR_FEUADDR_REG],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4268) 			iommu->reg + DMAR_FEUADDR_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4269) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4270) 		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4271) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4272) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4273) 	for_each_active_iommu(iommu, drhd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4274) 		kfree(iommu->iommu_state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4275) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4276) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4277) static struct syscore_ops iommu_syscore_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4278) 	.resume		= iommu_resume,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4279) 	.suspend	= iommu_suspend,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4280) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4281) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4282) static void __init init_iommu_pm_ops(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4283) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4284) 	register_syscore_ops(&iommu_syscore_ops);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4285) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4286) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4287) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4288) static inline void init_iommu_pm_ops(void) {}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4289) #endif	/* CONFIG_PM */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4290) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4291) static int rmrr_sanity_check(struct acpi_dmar_reserved_memory *rmrr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4292) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4293) 	if (!IS_ALIGNED(rmrr->base_address, PAGE_SIZE) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4294) 	    !IS_ALIGNED(rmrr->end_address + 1, PAGE_SIZE) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4295) 	    rmrr->end_address <= rmrr->base_address ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4296) 	    arch_rmrr_sanity_check(rmrr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4297) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4298) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4299) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4300) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4301) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4302) int __init dmar_parse_one_rmrr(struct acpi_dmar_header *header, void *arg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4303) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4304) 	struct acpi_dmar_reserved_memory *rmrr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4305) 	struct dmar_rmrr_unit *rmrru;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4306) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4307) 	rmrr = (struct acpi_dmar_reserved_memory *)header;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4308) 	if (rmrr_sanity_check(rmrr)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4309) 		pr_warn(FW_BUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4310) 			   "Your BIOS is broken; bad RMRR [%#018Lx-%#018Lx]\n"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4311) 			   "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4312) 			   rmrr->base_address, rmrr->end_address,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4313) 			   dmi_get_system_info(DMI_BIOS_VENDOR),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4314) 			   dmi_get_system_info(DMI_BIOS_VERSION),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4315) 			   dmi_get_system_info(DMI_PRODUCT_VERSION));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4316) 		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4317) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4318) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4319) 	rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4320) 	if (!rmrru)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4321) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4322) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4323) 	rmrru->hdr = header;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4324) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4325) 	rmrru->base_address = rmrr->base_address;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4326) 	rmrru->end_address = rmrr->end_address;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4327) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4328) 	rmrru->devices = dmar_alloc_dev_scope((void *)(rmrr + 1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4329) 				((void *)rmrr) + rmrr->header.length,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4330) 				&rmrru->devices_cnt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4331) 	if (rmrru->devices_cnt && rmrru->devices == NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4332) 		goto free_rmrru;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4333) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4334) 	list_add(&rmrru->list, &dmar_rmrr_units);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4335) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4336) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4337) free_rmrru:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4338) 	kfree(rmrru);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4339) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4340) 	return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4341) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4342) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4343) static struct dmar_atsr_unit *dmar_find_atsr(struct acpi_dmar_atsr *atsr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4344) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4345) 	struct dmar_atsr_unit *atsru;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4346) 	struct acpi_dmar_atsr *tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4347) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4348) 	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4349) 				dmar_rcu_check()) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4350) 		tmp = (struct acpi_dmar_atsr *)atsru->hdr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4351) 		if (atsr->segment != tmp->segment)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4352) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4353) 		if (atsr->header.length != tmp->header.length)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4354) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4355) 		if (memcmp(atsr, tmp, atsr->header.length) == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4356) 			return atsru;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4357) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4358) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4359) 	return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4360) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4361) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4362) int dmar_parse_one_atsr(struct acpi_dmar_header *hdr, void *arg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4363) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4364) 	struct acpi_dmar_atsr *atsr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4365) 	struct dmar_atsr_unit *atsru;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4366) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4367) 	if (system_state >= SYSTEM_RUNNING && !intel_iommu_enabled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4368) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4369) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4370) 	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4371) 	atsru = dmar_find_atsr(atsr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4372) 	if (atsru)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4373) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4374) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4375) 	atsru = kzalloc(sizeof(*atsru) + hdr->length, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4376) 	if (!atsru)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4377) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4378) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4379) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4380) 	 * If memory is allocated from slab by ACPI _DSM method, we need to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4381) 	 * copy the memory content because the memory buffer will be freed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4382) 	 * on return.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4383) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4384) 	atsru->hdr = (void *)(atsru + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4385) 	memcpy(atsru->hdr, hdr, hdr->length);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4386) 	atsru->include_all = atsr->flags & 0x1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4387) 	if (!atsru->include_all) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4388) 		atsru->devices = dmar_alloc_dev_scope((void *)(atsr + 1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4389) 				(void *)atsr + atsr->header.length,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4390) 				&atsru->devices_cnt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4391) 		if (atsru->devices_cnt && atsru->devices == NULL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4392) 			kfree(atsru);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4393) 			return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4394) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4395) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4396) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4397) 	list_add_rcu(&atsru->list, &dmar_atsr_units);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4398) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4399) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4400) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4401) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4402) static void intel_iommu_free_atsr(struct dmar_atsr_unit *atsru)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4403) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4404) 	dmar_free_dev_scope(&atsru->devices, &atsru->devices_cnt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4405) 	kfree(atsru);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4406) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4407) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4408) int dmar_release_one_atsr(struct acpi_dmar_header *hdr, void *arg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4409) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4410) 	struct acpi_dmar_atsr *atsr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4411) 	struct dmar_atsr_unit *atsru;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4412) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4413) 	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4414) 	atsru = dmar_find_atsr(atsr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4415) 	if (atsru) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4416) 		list_del_rcu(&atsru->list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4417) 		synchronize_rcu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4418) 		intel_iommu_free_atsr(atsru);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4419) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4420) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4421) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4422) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4423) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4424) int dmar_check_one_atsr(struct acpi_dmar_header *hdr, void *arg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4425) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4426) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4427) 	struct device *dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4428) 	struct acpi_dmar_atsr *atsr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4429) 	struct dmar_atsr_unit *atsru;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4430) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4431) 	atsr = container_of(hdr, struct acpi_dmar_atsr, header);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4432) 	atsru = dmar_find_atsr(atsr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4433) 	if (!atsru)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4434) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4435) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4436) 	if (!atsru->include_all && atsru->devices && atsru->devices_cnt) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4437) 		for_each_active_dev_scope(atsru->devices, atsru->devices_cnt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4438) 					  i, dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4439) 			return -EBUSY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4440) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4441) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4442) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4443) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4444) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4445) static int intel_iommu_add(struct dmar_drhd_unit *dmaru)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4446) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4447) 	int sp, ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4448) 	struct intel_iommu *iommu = dmaru->iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4449) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4450) 	if (g_iommus[iommu->seq_id])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4451) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4452) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4453) 	if (hw_pass_through && !ecap_pass_through(iommu->ecap)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4454) 		pr_warn("%s: Doesn't support hardware pass through.\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4455) 			iommu->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4456) 		return -ENXIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4457) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4458) 	if (!ecap_sc_support(iommu->ecap) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4459) 	    domain_update_iommu_snooping(iommu)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4460) 		pr_warn("%s: Doesn't support snooping.\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4461) 			iommu->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4462) 		return -ENXIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4463) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4464) 	sp = domain_update_iommu_superpage(NULL, iommu) - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4465) 	if (sp >= 0 && !(cap_super_page_val(iommu->cap) & (1 << sp))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4466) 		pr_warn("%s: Doesn't support large page.\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4467) 			iommu->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4468) 		return -ENXIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4469) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4470) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4471) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4472) 	 * Disable translation if already enabled prior to OS handover.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4473) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4474) 	if (iommu->gcmd & DMA_GCMD_TE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4475) 		iommu_disable_translation(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4476) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4477) 	g_iommus[iommu->seq_id] = iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4478) 	ret = iommu_init_domains(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4479) 	if (ret == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4480) 		ret = iommu_alloc_root_entry(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4481) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4482) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4483) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4484) 	intel_svm_check(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4485) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4486) 	if (dmaru->ignored) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4487) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4488) 		 * we always have to disable PMRs or DMA may fail on this device
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4489) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4490) 		if (force_on)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4491) 			iommu_disable_protect_mem_regions(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4492) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4493) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4494) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4495) 	intel_iommu_init_qi(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4496) 	iommu_flush_write_buffer(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4497) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4498) #ifdef CONFIG_INTEL_IOMMU_SVM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4499) 	if (pasid_supported(iommu) && ecap_prs(iommu->ecap)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4500) 		ret = intel_svm_enable_prq(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4501) 		if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4502) 			goto disable_iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4503) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4504) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4505) 	ret = dmar_set_interrupt(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4506) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4507) 		goto disable_iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4508) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4509) 	iommu_set_root_entry(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4510) 	iommu_enable_translation(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4511) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4512) 	iommu_disable_protect_mem_regions(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4513) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4514) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4515) disable_iommu:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4516) 	disable_dmar_iommu(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4517) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4518) 	free_dmar_iommu(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4519) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4520) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4521) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4522) int dmar_iommu_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4523) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4524) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4525) 	struct intel_iommu *iommu = dmaru->iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4526) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4527) 	if (!intel_iommu_enabled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4528) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4529) 	if (iommu == NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4530) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4531) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4532) 	if (insert) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4533) 		ret = intel_iommu_add(dmaru);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4534) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4535) 		disable_dmar_iommu(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4536) 		free_dmar_iommu(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4537) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4538) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4539) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4540) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4541) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4542) static void intel_iommu_free_dmars(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4543) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4544) 	struct dmar_rmrr_unit *rmrru, *rmrr_n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4545) 	struct dmar_atsr_unit *atsru, *atsr_n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4546) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4547) 	list_for_each_entry_safe(rmrru, rmrr_n, &dmar_rmrr_units, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4548) 		list_del(&rmrru->list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4549) 		dmar_free_dev_scope(&rmrru->devices, &rmrru->devices_cnt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4550) 		kfree(rmrru);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4551) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4552) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4553) 	list_for_each_entry_safe(atsru, atsr_n, &dmar_atsr_units, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4554) 		list_del(&atsru->list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4555) 		intel_iommu_free_atsr(atsru);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4556) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4557) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4558) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4559) int dmar_find_matched_atsr_unit(struct pci_dev *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4560) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4561) 	int i, ret = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4562) 	struct pci_bus *bus;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4563) 	struct pci_dev *bridge = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4564) 	struct device *tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4565) 	struct acpi_dmar_atsr *atsr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4566) 	struct dmar_atsr_unit *atsru;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4567) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4568) 	dev = pci_physfn(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4569) 	for (bus = dev->bus; bus; bus = bus->parent) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4570) 		bridge = bus->self;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4571) 		/* If it's an integrated device, allow ATS */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4572) 		if (!bridge)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4573) 			return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4574) 		/* Connected via non-PCIe: no ATS */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4575) 		if (!pci_is_pcie(bridge) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4576) 		    pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4577) 			return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4578) 		/* If we found the root port, look it up in the ATSR */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4579) 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_ROOT_PORT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4580) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4581) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4582) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4583) 	rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4584) 	list_for_each_entry_rcu(atsru, &dmar_atsr_units, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4585) 		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4586) 		if (atsr->segment != pci_domain_nr(dev->bus))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4587) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4588) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4589) 		for_each_dev_scope(atsru->devices, atsru->devices_cnt, i, tmp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4590) 			if (tmp == &bridge->dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4591) 				goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4592) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4593) 		if (atsru->include_all)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4594) 			goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4595) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4596) 	ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4597) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4598) 	rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4599) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4600) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4601) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4602) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4603) int dmar_iommu_notify_scope_dev(struct dmar_pci_notify_info *info)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4604) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4605) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4606) 	struct dmar_rmrr_unit *rmrru;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4607) 	struct dmar_atsr_unit *atsru;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4608) 	struct acpi_dmar_atsr *atsr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4609) 	struct acpi_dmar_reserved_memory *rmrr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4610) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4611) 	if (!intel_iommu_enabled && system_state >= SYSTEM_RUNNING)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4612) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4613) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4614) 	list_for_each_entry(rmrru, &dmar_rmrr_units, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4615) 		rmrr = container_of(rmrru->hdr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4616) 				    struct acpi_dmar_reserved_memory, header);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4617) 		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4618) 			ret = dmar_insert_dev_scope(info, (void *)(rmrr + 1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4619) 				((void *)rmrr) + rmrr->header.length,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4620) 				rmrr->segment, rmrru->devices,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4621) 				rmrru->devices_cnt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4622) 			if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4623) 				return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4624) 		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4625) 			dmar_remove_dev_scope(info, rmrr->segment,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4626) 				rmrru->devices, rmrru->devices_cnt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4627) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4628) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4629) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4630) 	list_for_each_entry(atsru, &dmar_atsr_units, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4631) 		if (atsru->include_all)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4632) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4633) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4634) 		atsr = container_of(atsru->hdr, struct acpi_dmar_atsr, header);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4635) 		if (info->event == BUS_NOTIFY_ADD_DEVICE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4636) 			ret = dmar_insert_dev_scope(info, (void *)(atsr + 1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4637) 					(void *)atsr + atsr->header.length,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4638) 					atsr->segment, atsru->devices,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4639) 					atsru->devices_cnt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4640) 			if (ret > 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4641) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4642) 			else if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4643) 				return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4644) 		} else if (info->event == BUS_NOTIFY_REMOVED_DEVICE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4645) 			if (dmar_remove_dev_scope(info, atsr->segment,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4646) 					atsru->devices, atsru->devices_cnt))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4647) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4648) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4649) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4650) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4651) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4652) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4653) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4654) static int intel_iommu_memory_notifier(struct notifier_block *nb,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4655) 				       unsigned long val, void *v)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4656) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4657) 	struct memory_notify *mhp = v;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4658) 	unsigned long start_vpfn = mm_to_dma_pfn(mhp->start_pfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4659) 	unsigned long last_vpfn = mm_to_dma_pfn(mhp->start_pfn +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4660) 			mhp->nr_pages - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4661) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4662) 	switch (val) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4663) 	case MEM_GOING_ONLINE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4664) 		if (iommu_domain_identity_map(si_domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4665) 					      start_vpfn, last_vpfn)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4666) 			pr_warn("Failed to build identity map for [%lx-%lx]\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4667) 				start_vpfn, last_vpfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4668) 			return NOTIFY_BAD;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4669) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4670) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4671) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4672) 	case MEM_OFFLINE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4673) 	case MEM_CANCEL_ONLINE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4674) 		{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4675) 			struct dmar_drhd_unit *drhd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4676) 			struct intel_iommu *iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4677) 			struct page *freelist;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4678) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4679) 			freelist = domain_unmap(si_domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4680) 						start_vpfn, last_vpfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4681) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4682) 			rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4683) 			for_each_active_iommu(iommu, drhd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4684) 				iommu_flush_iotlb_psi(iommu, si_domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4685) 					start_vpfn, mhp->nr_pages,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4686) 					!freelist, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4687) 			rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4688) 			dma_free_pagelist(freelist);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4689) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4690) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4691) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4692) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4693) 	return NOTIFY_OK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4694) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4695) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4696) static struct notifier_block intel_iommu_memory_nb = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4697) 	.notifier_call = intel_iommu_memory_notifier,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4698) 	.priority = 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4699) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4700) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4701) static void free_all_cpu_cached_iovas(unsigned int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4702) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4703) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4704) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4705) 	for (i = 0; i < g_num_of_iommus; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4706) 		struct intel_iommu *iommu = g_iommus[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4707) 		struct dmar_domain *domain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4708) 		int did;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4709) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4710) 		if (!iommu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4711) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4712) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4713) 		for (did = 0; did < cap_ndoms(iommu->cap); did++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4714) 			domain = get_iommu_domain(iommu, (u16)did);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4715) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4716) 			if (!domain || domain->domain.type != IOMMU_DOMAIN_DMA)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4717) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4718) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4719) 			free_cpu_cached_iovas(cpu, &domain->iovad);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4720) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4721) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4722) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4723) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4724) static int intel_iommu_cpu_dead(unsigned int cpu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4725) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4726) 	free_all_cpu_cached_iovas(cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4727) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4728) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4729) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4730) static void intel_disable_iommus(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4731) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4732) 	struct intel_iommu *iommu = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4733) 	struct dmar_drhd_unit *drhd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4734) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4735) 	for_each_iommu(iommu, drhd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4736) 		iommu_disable_translation(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4737) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4738) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4739) void intel_iommu_shutdown(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4740) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4741) 	struct dmar_drhd_unit *drhd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4742) 	struct intel_iommu *iommu = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4743) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4744) 	if (no_iommu || dmar_disabled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4745) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4746) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4747) 	down_write(&dmar_global_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4748) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4749) 	/* Disable PMRs explicitly here. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4750) 	for_each_iommu(iommu, drhd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4751) 		iommu_disable_protect_mem_regions(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4752) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4753) 	/* Make sure the IOMMUs are switched off */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4754) 	intel_disable_iommus();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4755) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4756) 	up_write(&dmar_global_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4757) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4758) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4759) static inline struct intel_iommu *dev_to_intel_iommu(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4760) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4761) 	struct iommu_device *iommu_dev = dev_to_iommu_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4762) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4763) 	return container_of(iommu_dev, struct intel_iommu, iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4764) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4765) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4766) static ssize_t intel_iommu_show_version(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4767) 					struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4768) 					char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4769) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4770) 	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4771) 	u32 ver = readl(iommu->reg + DMAR_VER_REG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4772) 	return sprintf(buf, "%d:%d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4773) 		       DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4774) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4775) static DEVICE_ATTR(version, S_IRUGO, intel_iommu_show_version, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4776) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4777) static ssize_t intel_iommu_show_address(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4778) 					struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4779) 					char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4780) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4781) 	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4782) 	return sprintf(buf, "%llx\n", iommu->reg_phys);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4783) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4784) static DEVICE_ATTR(address, S_IRUGO, intel_iommu_show_address, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4785) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4786) static ssize_t intel_iommu_show_cap(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4787) 				    struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4788) 				    char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4789) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4790) 	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4791) 	return sprintf(buf, "%llx\n", iommu->cap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4792) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4793) static DEVICE_ATTR(cap, S_IRUGO, intel_iommu_show_cap, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4794) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4795) static ssize_t intel_iommu_show_ecap(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4796) 				    struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4797) 				    char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4798) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4799) 	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4800) 	return sprintf(buf, "%llx\n", iommu->ecap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4801) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4802) static DEVICE_ATTR(ecap, S_IRUGO, intel_iommu_show_ecap, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4803) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4804) static ssize_t intel_iommu_show_ndoms(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4805) 				      struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4806) 				      char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4807) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4808) 	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4809) 	return sprintf(buf, "%ld\n", cap_ndoms(iommu->cap));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4810) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4811) static DEVICE_ATTR(domains_supported, S_IRUGO, intel_iommu_show_ndoms, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4812) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4813) static ssize_t intel_iommu_show_ndoms_used(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4814) 					   struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4815) 					   char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4816) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4817) 	struct intel_iommu *iommu = dev_to_intel_iommu(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4818) 	return sprintf(buf, "%d\n", bitmap_weight(iommu->domain_ids,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4819) 						  cap_ndoms(iommu->cap)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4820) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4821) static DEVICE_ATTR(domains_used, S_IRUGO, intel_iommu_show_ndoms_used, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4822) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4823) static struct attribute *intel_iommu_attrs[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4824) 	&dev_attr_version.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4825) 	&dev_attr_address.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4826) 	&dev_attr_cap.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4827) 	&dev_attr_ecap.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4828) 	&dev_attr_domains_supported.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4829) 	&dev_attr_domains_used.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4830) 	NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4831) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4832) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4833) static struct attribute_group intel_iommu_group = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4834) 	.name = "intel-iommu",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4835) 	.attrs = intel_iommu_attrs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4836) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4837) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4838) const struct attribute_group *intel_iommu_groups[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4839) 	&intel_iommu_group,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4840) 	NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4841) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4842) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4843) static inline bool has_external_pci(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4844) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4845) 	struct pci_dev *pdev = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4846) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4847) 	for_each_pci_dev(pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4848) 		if (pdev->external_facing)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4849) 			return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4850) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4851) 	return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4852) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4853) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4854) static int __init platform_optin_force_iommu(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4855) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4856) 	if (!dmar_platform_optin() || no_platform_optin || !has_external_pci())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4857) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4858) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4859) 	if (no_iommu || dmar_disabled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4860) 		pr_info("Intel-IOMMU force enabled due to platform opt in\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4861) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4862) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4863) 	 * If Intel-IOMMU is disabled by default, we will apply identity
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4864) 	 * map for all devices except those marked as being untrusted.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4865) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4866) 	if (dmar_disabled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4867) 		iommu_set_default_passthrough(false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4868) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4869) 	dmar_disabled = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4870) 	no_iommu = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4871) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4872) 	return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4873) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4874) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4875) static int __init probe_acpi_namespace_devices(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4876) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4877) 	struct dmar_drhd_unit *drhd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4878) 	/* To avoid a -Wunused-but-set-variable warning. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4879) 	struct intel_iommu *iommu __maybe_unused;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4880) 	struct device *dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4881) 	int i, ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4882) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4883) 	for_each_active_iommu(iommu, drhd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4884) 		for_each_active_dev_scope(drhd->devices,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4885) 					  drhd->devices_cnt, i, dev) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4886) 			struct acpi_device_physical_node *pn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4887) 			struct iommu_group *group;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4888) 			struct acpi_device *adev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4889) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4890) 			if (dev->bus != &acpi_bus_type)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4891) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4892) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4893) 			adev = to_acpi_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4894) 			mutex_lock(&adev->physical_node_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4895) 			list_for_each_entry(pn,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4896) 					    &adev->physical_node_list, node) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4897) 				group = iommu_group_get(pn->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4898) 				if (group) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4899) 					iommu_group_put(group);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4900) 					continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4901) 				}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4902) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4903) 				pn->dev->bus->iommu_ops = &intel_iommu_ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4904) 				ret = iommu_probe_device(pn->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4905) 				if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4906) 					break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4907) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4908) 			mutex_unlock(&adev->physical_node_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4909) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4910) 			if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4911) 				return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4912) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4913) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4914) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4915) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4916) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4917) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4918) int __init intel_iommu_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4919) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4920) 	int ret = -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4921) 	struct dmar_drhd_unit *drhd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4922) 	struct intel_iommu *iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4923) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4924) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4925) 	 * Intel IOMMU is required for a TXT/tboot launch or platform
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4926) 	 * opt in, so enforce that.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4927) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4928) 	force_on = (!intel_iommu_tboot_noforce && tboot_force_iommu()) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4929) 		    platform_optin_force_iommu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4930) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4931) 	if (iommu_init_mempool()) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4932) 		if (force_on)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4933) 			panic("tboot: Failed to initialize iommu memory\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4934) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4935) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4936) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4937) 	down_write(&dmar_global_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4938) 	if (dmar_table_init()) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4939) 		if (force_on)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4940) 			panic("tboot: Failed to initialize DMAR table\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4941) 		goto out_free_dmar;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4942) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4943) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4944) 	if (dmar_dev_scope_init() < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4945) 		if (force_on)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4946) 			panic("tboot: Failed to initialize DMAR device scope\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4947) 		goto out_free_dmar;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4948) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4949) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4950) 	up_write(&dmar_global_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4951) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4952) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4953) 	 * The bus notifier takes the dmar_global_lock, so lockdep will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4954) 	 * complain later when we register it under the lock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4955) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4956) 	dmar_register_bus_notifier();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4957) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4958) 	down_write(&dmar_global_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4959) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4960) 	if (!no_iommu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4961) 		intel_iommu_debugfs_init();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4962) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4963) 	if (no_iommu || dmar_disabled) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4964) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4965) 		 * We exit the function here to ensure IOMMU's remapping and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4966) 		 * mempool aren't setup, which means that the IOMMU's PMRs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4967) 		 * won't be disabled via the call to init_dmars(). So disable
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4968) 		 * it explicitly here. The PMRs were setup by tboot prior to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4969) 		 * calling SENTER, but the kernel is expected to reset/tear
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4970) 		 * down the PMRs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4971) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4972) 		if (intel_iommu_tboot_noforce) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4973) 			for_each_iommu(iommu, drhd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4974) 				iommu_disable_protect_mem_regions(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4975) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4976) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4977) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4978) 		 * Make sure the IOMMUs are switched off, even when we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4979) 		 * boot into a kexec kernel and the previous kernel left
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4980) 		 * them enabled
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4981) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4982) 		intel_disable_iommus();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4983) 		goto out_free_dmar;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4984) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4985) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4986) 	if (list_empty(&dmar_rmrr_units))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4987) 		pr_info("No RMRR found\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4988) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4989) 	if (list_empty(&dmar_atsr_units))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4990) 		pr_info("No ATSR found\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4991) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4992) 	if (dmar_init_reserved_ranges()) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4993) 		if (force_on)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4994) 			panic("tboot: Failed to reserve iommu ranges\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4995) 		goto out_free_reserved_range;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4996) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4997) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4998) 	if (dmar_map_gfx)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4999) 		intel_iommu_gfx_mapped = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5000) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5001) 	init_no_remapping_devices();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5002) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5003) 	ret = init_dmars();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5004) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5005) 		if (force_on)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5006) 			panic("tboot: Failed to initialize DMARs\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5007) 		pr_err("Initialization failed\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5008) 		goto out_free_reserved_range;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5009) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5010) 	up_write(&dmar_global_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5011) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5012) 	init_iommu_pm_ops();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5013) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5014) 	down_read(&dmar_global_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5015) 	for_each_active_iommu(iommu, drhd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5016) 		iommu_device_sysfs_add(&iommu->iommu, NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5017) 				       intel_iommu_groups,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5018) 				       "%s", iommu->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5019) 		iommu_device_set_ops(&iommu->iommu, &intel_iommu_ops);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5020) 		iommu_device_register(&iommu->iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5021) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5022) 	up_read(&dmar_global_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5023) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5024) 	bus_set_iommu(&pci_bus_type, &intel_iommu_ops);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5025) 	if (si_domain && !hw_pass_through)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5026) 		register_memory_notifier(&intel_iommu_memory_nb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5027) 	cpuhp_setup_state(CPUHP_IOMMU_INTEL_DEAD, "iommu/intel:dead", NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5028) 			  intel_iommu_cpu_dead);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5029) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5030) 	down_read(&dmar_global_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5031) 	if (probe_acpi_namespace_devices())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5032) 		pr_warn("ACPI name space devices didn't probe correctly\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5033) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5034) 	/* Finally, we enable the DMA remapping hardware. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5035) 	for_each_iommu(iommu, drhd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5036) 		if (!drhd->ignored && !translation_pre_enabled(iommu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5037) 			iommu_enable_translation(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5038) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5039) 		iommu_disable_protect_mem_regions(iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5040) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5041) 	up_read(&dmar_global_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5042) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5043) 	pr_info("Intel(R) Virtualization Technology for Directed I/O\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5044) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5045) 	intel_iommu_enabled = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5046) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5047) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5048) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5049) out_free_reserved_range:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5050) 	put_iova_domain(&reserved_iova_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5051) out_free_dmar:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5052) 	intel_iommu_free_dmars();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5053) 	up_write(&dmar_global_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5054) 	iommu_exit_mempool();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5055) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5056) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5057) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5058) static int domain_context_clear_one_cb(struct pci_dev *pdev, u16 alias, void *opaque)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5059) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5060) 	struct intel_iommu *iommu = opaque;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5061) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5062) 	domain_context_clear_one(iommu, PCI_BUS_NUM(alias), alias & 0xff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5063) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5064) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5065) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5066) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5067)  * NB - intel-iommu lacks any sort of reference counting for the users of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5068)  * dependent devices.  If multiple endpoints have intersecting dependent
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5069)  * devices, unbinding the driver from any one of them will possibly leave
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5070)  * the others unable to operate.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5071)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5072) static void domain_context_clear(struct intel_iommu *iommu, struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5073) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5074) 	if (!iommu || !dev || !dev_is_pci(dev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5075) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5076) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5077) 	pci_for_each_dma_alias(to_pci_dev(dev), &domain_context_clear_one_cb, iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5078) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5079) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5080) static void __dmar_remove_one_dev_info(struct device_domain_info *info)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5081) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5082) 	struct dmar_domain *domain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5083) 	struct intel_iommu *iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5084) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5085) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5086) 	assert_spin_locked(&device_domain_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5087) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5088) 	if (WARN_ON(!info))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5089) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5090) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5091) 	iommu = info->iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5092) 	domain = info->domain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5093) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5094) 	if (info->dev) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5095) 		if (dev_is_pci(info->dev) && sm_supported(iommu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5096) 			intel_pasid_tear_down_entry(iommu, info->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5097) 					PASID_RID2PASID, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5098) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5099) 		iommu_disable_dev_iotlb(info);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5100) 		if (!dev_is_real_dma_subdevice(info->dev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5101) 			domain_context_clear(iommu, info->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5102) 		intel_pasid_free_table(info->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5103) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5104) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5105) 	unlink_domain_info(info);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5106) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5107) 	spin_lock_irqsave(&iommu->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5108) 	domain_detach_iommu(domain, iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5109) 	spin_unlock_irqrestore(&iommu->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5110) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5111) 	free_devinfo_mem(info);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5112) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5113) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5114) static void dmar_remove_one_dev_info(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5115) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5116) 	struct device_domain_info *info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5117) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5118) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5119) 	spin_lock_irqsave(&device_domain_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5120) 	info = get_domain_info(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5121) 	if (info)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5122) 		__dmar_remove_one_dev_info(info);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5123) 	spin_unlock_irqrestore(&device_domain_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5124) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5125) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5126) static int md_domain_init(struct dmar_domain *domain, int guest_width)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5127) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5128) 	int adjust_width;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5129) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5130) 	/* calculate AGAW */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5131) 	domain->gaw = guest_width;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5132) 	adjust_width = guestwidth_to_adjustwidth(guest_width);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5133) 	domain->agaw = width_to_agaw(adjust_width);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5134) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5135) 	domain->iommu_coherency = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5136) 	domain->iommu_snooping = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5137) 	domain->iommu_superpage = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5138) 	domain->max_addr = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5139) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5140) 	/* always allocate the top pgd */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5141) 	domain->pgd = (struct dma_pte *)alloc_pgtable_page(domain->nid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5142) 	if (!domain->pgd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5143) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5144) 	domain_flush_cache(domain, domain->pgd, PAGE_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5145) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5146) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5147) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5148) static void intel_init_iova_domain(struct dmar_domain *dmar_domain)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5149) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5150) 	init_iova_domain(&dmar_domain->iovad, VTD_PAGE_SIZE, IOVA_START_PFN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5151) 	copy_reserved_iova(&reserved_iova_list, &dmar_domain->iovad);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5152) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5153) 	if (!intel_iommu_strict &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5154) 	    init_iova_flush_queue(&dmar_domain->iovad,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5155) 				  iommu_flush_iova, iova_entry_free))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5156) 		pr_info("iova flush queue initialization failed\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5157) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5158) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5159) static struct iommu_domain *intel_iommu_domain_alloc(unsigned type)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5160) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5161) 	struct dmar_domain *dmar_domain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5162) 	struct iommu_domain *domain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5163) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5164) 	switch (type) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5165) 	case IOMMU_DOMAIN_DMA:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5166) 	case IOMMU_DOMAIN_UNMANAGED:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5167) 		dmar_domain = alloc_domain(0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5168) 		if (!dmar_domain) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5169) 			pr_err("Can't allocate dmar_domain\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5170) 			return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5171) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5172) 		if (md_domain_init(dmar_domain, DEFAULT_DOMAIN_ADDRESS_WIDTH)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5173) 			pr_err("Domain initialization failed\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5174) 			domain_exit(dmar_domain);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5175) 			return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5176) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5177) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5178) 		if (type == IOMMU_DOMAIN_DMA)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5179) 			intel_init_iova_domain(dmar_domain);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5180) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5181) 		domain = &dmar_domain->domain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5182) 		domain->geometry.aperture_start = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5183) 		domain->geometry.aperture_end   =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5184) 				__DOMAIN_MAX_ADDR(dmar_domain->gaw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5185) 		domain->geometry.force_aperture = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5186) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5187) 		return domain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5188) 	case IOMMU_DOMAIN_IDENTITY:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5189) 		return &si_domain->domain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5190) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5191) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5192) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5193) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5194) 	return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5195) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5196) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5197) static void intel_iommu_domain_free(struct iommu_domain *domain)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5198) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5199) 	if (domain != &si_domain->domain)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5200) 		domain_exit(to_dmar_domain(domain));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5201) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5202) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5203) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5204)  * Check whether a @domain could be attached to the @dev through the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5205)  * aux-domain attach/detach APIs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5206)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5207) static inline bool
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5208) is_aux_domain(struct device *dev, struct iommu_domain *domain)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5209) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5210) 	struct device_domain_info *info = get_domain_info(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5211) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5212) 	return info && info->auxd_enabled &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5213) 			domain->type == IOMMU_DOMAIN_UNMANAGED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5214) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5215) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5216) static void auxiliary_link_device(struct dmar_domain *domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5217) 				  struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5218) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5219) 	struct device_domain_info *info = get_domain_info(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5220) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5221) 	assert_spin_locked(&device_domain_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5222) 	if (WARN_ON(!info))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5223) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5224) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5225) 	domain->auxd_refcnt++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5226) 	list_add(&domain->auxd, &info->auxiliary_domains);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5227) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5228) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5229) static void auxiliary_unlink_device(struct dmar_domain *domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5230) 				    struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5231) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5232) 	struct device_domain_info *info = get_domain_info(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5233) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5234) 	assert_spin_locked(&device_domain_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5235) 	if (WARN_ON(!info))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5236) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5237) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5238) 	list_del(&domain->auxd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5239) 	domain->auxd_refcnt--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5240) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5241) 	if (!domain->auxd_refcnt && domain->default_pasid > 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5242) 		ioasid_free(domain->default_pasid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5243) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5244) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5245) static int aux_domain_add_dev(struct dmar_domain *domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5246) 			      struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5247) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5248) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5249) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5250) 	struct intel_iommu *iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5251) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5252) 	iommu = device_to_iommu(dev, NULL, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5253) 	if (!iommu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5254) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5255) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5256) 	if (domain->default_pasid <= 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5257) 		u32 pasid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5258) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5259) 		/* No private data needed for the default pasid */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5260) 		pasid = ioasid_alloc(NULL, PASID_MIN,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5261) 				     pci_max_pasids(to_pci_dev(dev)) - 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5262) 				     NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5263) 		if (pasid == INVALID_IOASID) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5264) 			pr_err("Can't allocate default pasid\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5265) 			return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5266) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5267) 		domain->default_pasid = pasid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5268) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5269) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5270) 	spin_lock_irqsave(&device_domain_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5271) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5272) 	 * iommu->lock must be held to attach domain to iommu and setup the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5273) 	 * pasid entry for second level translation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5274) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5275) 	spin_lock(&iommu->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5276) 	ret = domain_attach_iommu(domain, iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5277) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5278) 		goto attach_failed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5279) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5280) 	/* Setup the PASID entry for mediated devices: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5281) 	if (domain_use_first_level(domain))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5282) 		ret = domain_setup_first_level(iommu, domain, dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5283) 					       domain->default_pasid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5284) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5285) 		ret = intel_pasid_setup_second_level(iommu, domain, dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5286) 						     domain->default_pasid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5287) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5288) 		goto table_failed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5289) 	spin_unlock(&iommu->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5290) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5291) 	auxiliary_link_device(domain, dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5292) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5293) 	spin_unlock_irqrestore(&device_domain_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5294) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5295) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5296) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5297) table_failed:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5298) 	domain_detach_iommu(domain, iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5299) attach_failed:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5300) 	spin_unlock(&iommu->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5301) 	spin_unlock_irqrestore(&device_domain_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5302) 	if (!domain->auxd_refcnt && domain->default_pasid > 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5303) 		ioasid_free(domain->default_pasid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5304) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5305) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5306) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5307) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5308) static void aux_domain_remove_dev(struct dmar_domain *domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5309) 				  struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5310) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5311) 	struct device_domain_info *info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5312) 	struct intel_iommu *iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5313) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5314) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5315) 	if (!is_aux_domain(dev, &domain->domain))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5316) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5317) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5318) 	spin_lock_irqsave(&device_domain_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5319) 	info = get_domain_info(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5320) 	iommu = info->iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5321) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5322) 	auxiliary_unlink_device(domain, dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5323) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5324) 	spin_lock(&iommu->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5325) 	intel_pasid_tear_down_entry(iommu, dev, domain->default_pasid, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5326) 	domain_detach_iommu(domain, iommu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5327) 	spin_unlock(&iommu->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5328) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5329) 	spin_unlock_irqrestore(&device_domain_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5330) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5331) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5332) static int prepare_domain_attach_device(struct iommu_domain *domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5333) 					struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5334) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5335) 	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5336) 	struct intel_iommu *iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5337) 	int addr_width;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5338) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5339) 	iommu = device_to_iommu(dev, NULL, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5340) 	if (!iommu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5341) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5342) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5343) 	/* check if this iommu agaw is sufficient for max mapped address */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5344) 	addr_width = agaw_to_width(iommu->agaw);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5345) 	if (addr_width > cap_mgaw(iommu->cap))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5346) 		addr_width = cap_mgaw(iommu->cap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5347) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5348) 	if (dmar_domain->max_addr > (1LL << addr_width)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5349) 		dev_err(dev, "%s: iommu width (%d) is not "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5350) 		        "sufficient for the mapped address (%llx)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5351) 		        __func__, addr_width, dmar_domain->max_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5352) 		return -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5353) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5354) 	dmar_domain->gaw = addr_width;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5355) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5356) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5357) 	 * Knock out extra levels of page tables if necessary
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5358) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5359) 	while (iommu->agaw < dmar_domain->agaw) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5360) 		struct dma_pte *pte;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5361) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5362) 		pte = dmar_domain->pgd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5363) 		if (dma_pte_present(pte)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5364) 			dmar_domain->pgd = (struct dma_pte *)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5365) 				phys_to_virt(dma_pte_addr(pte));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5366) 			free_pgtable_page(pte);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5367) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5368) 		dmar_domain->agaw--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5369) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5370) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5371) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5372) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5373) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5374) static int intel_iommu_attach_device(struct iommu_domain *domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5375) 				     struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5376) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5377) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5378) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5379) 	if (domain->type == IOMMU_DOMAIN_UNMANAGED &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5380) 	    device_is_rmrr_locked(dev)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5381) 		dev_warn(dev, "Device is ineligible for IOMMU domain attach due to platform RMRR requirement.  Contact your platform vendor.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5382) 		return -EPERM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5383) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5384) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5385) 	if (is_aux_domain(dev, domain))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5386) 		return -EPERM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5387) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5388) 	/* normally dev is not mapped */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5389) 	if (unlikely(domain_context_mapped(dev))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5390) 		struct dmar_domain *old_domain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5391) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5392) 		old_domain = find_domain(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5393) 		if (old_domain)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5394) 			dmar_remove_one_dev_info(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5395) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5396) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5397) 	ret = prepare_domain_attach_device(domain, dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5398) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5399) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5400) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5401) 	return domain_add_dev_info(to_dmar_domain(domain), dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5402) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5403) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5404) static int intel_iommu_aux_attach_device(struct iommu_domain *domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5405) 					 struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5406) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5407) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5408) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5409) 	if (!is_aux_domain(dev, domain))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5410) 		return -EPERM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5411) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5412) 	ret = prepare_domain_attach_device(domain, dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5413) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5414) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5415) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5416) 	return aux_domain_add_dev(to_dmar_domain(domain), dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5417) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5418) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5419) static void intel_iommu_detach_device(struct iommu_domain *domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5420) 				      struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5421) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5422) 	dmar_remove_one_dev_info(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5423) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5424) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5425) static void intel_iommu_aux_detach_device(struct iommu_domain *domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5426) 					  struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5427) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5428) 	aux_domain_remove_dev(to_dmar_domain(domain), dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5429) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5430) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5431) #ifdef CONFIG_INTEL_IOMMU_SVM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5432) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5433)  * 2D array for converting and sanitizing IOMMU generic TLB granularity to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5434)  * VT-d granularity. Invalidation is typically included in the unmap operation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5435)  * as a result of DMA or VFIO unmap. However, for assigned devices guest
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5436)  * owns the first level page tables. Invalidations of translation caches in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5437)  * guest are trapped and passed down to the host.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5438)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5439)  * vIOMMU in the guest will only expose first level page tables, therefore
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5440)  * we do not support IOTLB granularity for request without PASID (second level).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5441)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5442)  * For example, to find the VT-d granularity encoding for IOTLB
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5443)  * type and page selective granularity within PASID:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5444)  * X: indexed by iommu cache type
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5445)  * Y: indexed by enum iommu_inv_granularity
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5446)  * [IOMMU_CACHE_INV_TYPE_IOTLB][IOMMU_INV_GRANU_ADDR]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5447)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5448) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5449) static const int
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5450) inv_type_granu_table[IOMMU_CACHE_INV_TYPE_NR][IOMMU_INV_GRANU_NR] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5451) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5452) 	 * PASID based IOTLB invalidation: PASID selective (per PASID),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5453) 	 * page selective (address granularity)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5454) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5455) 	{-EINVAL, QI_GRAN_NONG_PASID, QI_GRAN_PSI_PASID},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5456) 	/* PASID based dev TLBs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5457) 	{-EINVAL, -EINVAL, QI_DEV_IOTLB_GRAN_PASID_SEL},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5458) 	/* PASID cache */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5459) 	{-EINVAL, -EINVAL, -EINVAL}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5460) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5461) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5462) static inline int to_vtd_granularity(int type, int granu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5463) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5464) 	return inv_type_granu_table[type][granu];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5465) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5466) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5467) static inline u64 to_vtd_size(u64 granu_size, u64 nr_granules)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5468) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5469) 	u64 nr_pages = (granu_size * nr_granules) >> VTD_PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5470) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5471) 	/* VT-d size is encoded as 2^size of 4K pages, 0 for 4k, 9 for 2MB, etc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5472) 	 * IOMMU cache invalidate API passes granu_size in bytes, and number of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5473) 	 * granu size in contiguous memory.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5474) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5475) 	return order_base_2(nr_pages);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5476) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5477) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5478) static int
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5479) intel_iommu_sva_invalidate(struct iommu_domain *domain, struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5480) 			   struct iommu_cache_invalidate_info *inv_info)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5481) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5482) 	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5483) 	struct device_domain_info *info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5484) 	struct intel_iommu *iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5485) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5486) 	int cache_type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5487) 	u8 bus, devfn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5488) 	u16 did, sid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5489) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5490) 	u64 size = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5491) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5492) 	if (!inv_info || !dmar_domain)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5493) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5494) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5495) 	if (!dev || !dev_is_pci(dev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5496) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5497) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5498) 	iommu = device_to_iommu(dev, &bus, &devfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5499) 	if (!iommu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5500) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5501) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5502) 	if (!(dmar_domain->flags & DOMAIN_FLAG_NESTING_MODE))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5503) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5504) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5505) 	spin_lock_irqsave(&device_domain_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5506) 	spin_lock(&iommu->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5507) 	info = get_domain_info(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5508) 	if (!info) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5509) 		ret = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5510) 		goto out_unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5511) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5512) 	did = dmar_domain->iommu_did[iommu->seq_id];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5513) 	sid = PCI_DEVID(bus, devfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5514) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5515) 	/* Size is only valid in address selective invalidation */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5516) 	if (inv_info->granularity == IOMMU_INV_GRANU_ADDR)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5517) 		size = to_vtd_size(inv_info->granu.addr_info.granule_size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5518) 				   inv_info->granu.addr_info.nb_granules);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5519) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5520) 	for_each_set_bit(cache_type,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5521) 			 (unsigned long *)&inv_info->cache,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5522) 			 IOMMU_CACHE_INV_TYPE_NR) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5523) 		int granu = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5524) 		u64 pasid = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5525) 		u64 addr = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5526) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5527) 		granu = to_vtd_granularity(cache_type, inv_info->granularity);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5528) 		if (granu == -EINVAL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5529) 			pr_err_ratelimited("Invalid cache type and granu combination %d/%d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5530) 					   cache_type, inv_info->granularity);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5531) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5532) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5533) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5534) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5535) 		 * PASID is stored in different locations based on the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5536) 		 * granularity.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5537) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5538) 		if (inv_info->granularity == IOMMU_INV_GRANU_PASID &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5539) 		    (inv_info->granu.pasid_info.flags & IOMMU_INV_PASID_FLAGS_PASID))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5540) 			pasid = inv_info->granu.pasid_info.pasid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5541) 		else if (inv_info->granularity == IOMMU_INV_GRANU_ADDR &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5542) 			 (inv_info->granu.addr_info.flags & IOMMU_INV_ADDR_FLAGS_PASID))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5543) 			pasid = inv_info->granu.addr_info.pasid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5544) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5545) 		switch (BIT(cache_type)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5546) 		case IOMMU_CACHE_INV_TYPE_IOTLB:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5547) 			/* HW will ignore LSB bits based on address mask */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5548) 			if (inv_info->granularity == IOMMU_INV_GRANU_ADDR &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5549) 			    size &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5550) 			    (inv_info->granu.addr_info.addr & ((BIT(VTD_PAGE_SHIFT + size)) - 1))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5551) 				pr_err_ratelimited("User address not aligned, 0x%llx, size order %llu\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5552) 						   inv_info->granu.addr_info.addr, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5553) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5554) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5555) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5556) 			 * If granu is PASID-selective, address is ignored.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5557) 			 * We use npages = -1 to indicate that.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5558) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5559) 			qi_flush_piotlb(iommu, did, pasid,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5560) 					mm_to_dma_pfn(inv_info->granu.addr_info.addr),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5561) 					(granu == QI_GRAN_NONG_PASID) ? -1 : 1 << size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5562) 					inv_info->granu.addr_info.flags & IOMMU_INV_ADDR_FLAGS_LEAF);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5563) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5564) 			if (!info->ats_enabled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5565) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5566) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5567) 			 * Always flush device IOTLB if ATS is enabled. vIOMMU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5568) 			 * in the guest may assume IOTLB flush is inclusive,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5569) 			 * which is more efficient.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5570) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5571) 			fallthrough;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5572) 		case IOMMU_CACHE_INV_TYPE_DEV_IOTLB:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5573) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5574) 			 * PASID based device TLB invalidation does not support
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5575) 			 * IOMMU_INV_GRANU_PASID granularity but only supports
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5576) 			 * IOMMU_INV_GRANU_ADDR.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5577) 			 * The equivalent of that is we set the size to be the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5578) 			 * entire range of 64 bit. User only provides PASID info
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5579) 			 * without address info. So we set addr to 0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5580) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5581) 			if (inv_info->granularity == IOMMU_INV_GRANU_PASID) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5582) 				size = 64 - VTD_PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5583) 				addr = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5584) 			} else if (inv_info->granularity == IOMMU_INV_GRANU_ADDR) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5585) 				addr = inv_info->granu.addr_info.addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5586) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5587) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5588) 			if (info->ats_enabled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5589) 				qi_flush_dev_iotlb_pasid(iommu, sid,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5590) 						info->pfsid, pasid,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5591) 						info->ats_qdep, addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5592) 						size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5593) 			else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5594) 				pr_warn_ratelimited("Passdown device IOTLB flush w/o ATS!\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5595) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5596) 		default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5597) 			dev_err_ratelimited(dev, "Unsupported IOMMU invalidation type %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5598) 					    cache_type);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5599) 			ret = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5600) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5601) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5602) out_unlock:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5603) 	spin_unlock(&iommu->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5604) 	spin_unlock_irqrestore(&device_domain_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5605) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5606) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5607) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5608) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5609) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5610) static int intel_iommu_map(struct iommu_domain *domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5611) 			   unsigned long iova, phys_addr_t hpa,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5612) 			   size_t size, int iommu_prot, gfp_t gfp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5613) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5614) 	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5615) 	u64 max_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5616) 	int prot = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5617) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5618) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5619) 	if (iommu_prot & IOMMU_READ)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5620) 		prot |= DMA_PTE_READ;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5621) 	if (iommu_prot & IOMMU_WRITE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5622) 		prot |= DMA_PTE_WRITE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5623) 	if ((iommu_prot & IOMMU_CACHE) && dmar_domain->iommu_snooping)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5624) 		prot |= DMA_PTE_SNP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5625) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5626) 	max_addr = iova + size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5627) 	if (dmar_domain->max_addr < max_addr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5628) 		u64 end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5629) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5630) 		/* check if minimum agaw is sufficient for mapped address */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5631) 		end = __DOMAIN_MAX_ADDR(dmar_domain->gaw) + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5632) 		if (end < max_addr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5633) 			pr_err("%s: iommu width (%d) is not "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5634) 			       "sufficient for the mapped address (%llx)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5635) 			       __func__, dmar_domain->gaw, max_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5636) 			return -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5637) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5638) 		dmar_domain->max_addr = max_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5639) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5640) 	/* Round up size to next multiple of PAGE_SIZE, if it and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5641) 	   the low bits of hpa would take us onto the next page */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5642) 	size = aligned_nrpages(hpa, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5643) 	ret = domain_pfn_mapping(dmar_domain, iova >> VTD_PAGE_SHIFT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5644) 				 hpa >> VTD_PAGE_SHIFT, size, prot);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5645) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5646) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5647) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5648) static size_t intel_iommu_unmap(struct iommu_domain *domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5649) 				unsigned long iova, size_t size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5650) 				struct iommu_iotlb_gather *gather)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5651) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5652) 	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5653) 	struct page *freelist = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5654) 	unsigned long start_pfn, last_pfn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5655) 	unsigned int npages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5656) 	int iommu_id, level = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5657) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5658) 	/* Cope with horrid API which requires us to unmap more than the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5659) 	   size argument if it happens to be a large-page mapping. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5660) 	BUG_ON(!pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5661) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5662) 	if (size < VTD_PAGE_SIZE << level_to_offset_bits(level))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5663) 		size = VTD_PAGE_SIZE << level_to_offset_bits(level);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5664) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5665) 	start_pfn = iova >> VTD_PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5666) 	last_pfn = (iova + size - 1) >> VTD_PAGE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5667) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5668) 	freelist = domain_unmap(dmar_domain, start_pfn, last_pfn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5669) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5670) 	npages = last_pfn - start_pfn + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5671) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5672) 	for_each_domain_iommu(iommu_id, dmar_domain)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5673) 		iommu_flush_iotlb_psi(g_iommus[iommu_id], dmar_domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5674) 				      start_pfn, npages, !freelist, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5675) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5676) 	dma_free_pagelist(freelist);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5677) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5678) 	if (dmar_domain->max_addr == iova + size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5679) 		dmar_domain->max_addr = iova;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5680) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5681) 	return size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5682) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5683) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5684) static phys_addr_t intel_iommu_iova_to_phys(struct iommu_domain *domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5685) 					    dma_addr_t iova)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5686) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5687) 	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5688) 	struct dma_pte *pte;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5689) 	int level = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5690) 	u64 phys = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5691) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5692) 	pte = pfn_to_dma_pte(dmar_domain, iova >> VTD_PAGE_SHIFT, &level);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5693) 	if (pte && dma_pte_present(pte))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5694) 		phys = dma_pte_addr(pte) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5695) 			(iova & (BIT_MASK(level_to_offset_bits(level) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5696) 						VTD_PAGE_SHIFT) - 1));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5697) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5698) 	return phys;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5699) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5700) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5701) static inline bool scalable_mode_support(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5702) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5703) 	struct dmar_drhd_unit *drhd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5704) 	struct intel_iommu *iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5705) 	bool ret = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5706) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5707) 	rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5708) 	for_each_active_iommu(iommu, drhd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5709) 		if (!sm_supported(iommu)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5710) 			ret = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5711) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5712) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5713) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5714) 	rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5715) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5716) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5717) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5718) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5719) static inline bool iommu_pasid_support(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5720) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5721) 	struct dmar_drhd_unit *drhd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5722) 	struct intel_iommu *iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5723) 	bool ret = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5724) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5725) 	rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5726) 	for_each_active_iommu(iommu, drhd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5727) 		if (!pasid_supported(iommu)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5728) 			ret = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5729) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5730) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5731) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5732) 	rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5733) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5734) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5735) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5736) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5737) static inline bool nested_mode_support(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5738) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5739) 	struct dmar_drhd_unit *drhd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5740) 	struct intel_iommu *iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5741) 	bool ret = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5742) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5743) 	rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5744) 	for_each_active_iommu(iommu, drhd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5745) 		if (!sm_supported(iommu) || !ecap_nest(iommu->ecap)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5746) 			ret = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5747) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5748) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5749) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5750) 	rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5751) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5752) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5753) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5754) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5755) static bool intel_iommu_capable(enum iommu_cap cap)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5756) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5757) 	if (cap == IOMMU_CAP_CACHE_COHERENCY)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5758) 		return domain_update_iommu_snooping(NULL) == 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5759) 	if (cap == IOMMU_CAP_INTR_REMAP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5760) 		return irq_remapping_enabled == 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5761) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5762) 	return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5763) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5764) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5765) static struct iommu_device *intel_iommu_probe_device(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5766) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5767) 	struct intel_iommu *iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5768) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5769) 	iommu = device_to_iommu(dev, NULL, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5770) 	if (!iommu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5771) 		return ERR_PTR(-ENODEV);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5772) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5773) 	if (translation_pre_enabled(iommu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5774) 		dev_iommu_priv_set(dev, DEFER_DEVICE_DOMAIN_INFO);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5775) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5776) 	return &iommu->iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5777) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5778) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5779) static void intel_iommu_release_device(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5780) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5781) 	struct intel_iommu *iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5782) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5783) 	iommu = device_to_iommu(dev, NULL, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5784) 	if (!iommu)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5785) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5786) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5787) 	dmar_remove_one_dev_info(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5788) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5789) 	set_dma_ops(dev, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5790) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5791) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5792) static void intel_iommu_probe_finalize(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5793) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5794) 	struct iommu_domain *domain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5795) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5796) 	domain = iommu_get_domain_for_dev(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5797) 	if (device_needs_bounce(dev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5798) 		set_dma_ops(dev, &bounce_dma_ops);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5799) 	else if (domain && domain->type == IOMMU_DOMAIN_DMA)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5800) 		set_dma_ops(dev, &intel_dma_ops);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5801) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5802) 		set_dma_ops(dev, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5803) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5804) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5805) static void intel_iommu_get_resv_regions(struct device *device,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5806) 					 struct list_head *head)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5807) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5808) 	int prot = DMA_PTE_READ | DMA_PTE_WRITE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5809) 	struct iommu_resv_region *reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5810) 	struct dmar_rmrr_unit *rmrr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5811) 	struct device *i_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5812) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5813) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5814) 	down_read(&dmar_global_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5815) 	for_each_rmrr_units(rmrr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5816) 		for_each_active_dev_scope(rmrr->devices, rmrr->devices_cnt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5817) 					  i, i_dev) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5818) 			struct iommu_resv_region *resv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5819) 			enum iommu_resv_type type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5820) 			size_t length;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5821) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5822) 			if (i_dev != device &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5823) 			    !is_downstream_to_pci_bridge(device, i_dev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5824) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5825) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5826) 			length = rmrr->end_address - rmrr->base_address + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5827) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5828) 			type = device_rmrr_is_relaxable(device) ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5829) 				IOMMU_RESV_DIRECT_RELAXABLE : IOMMU_RESV_DIRECT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5830) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5831) 			resv = iommu_alloc_resv_region(rmrr->base_address,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5832) 						       length, prot, type);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5833) 			if (!resv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5834) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5835) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5836) 			list_add_tail(&resv->list, head);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5837) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5838) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5839) 	up_read(&dmar_global_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5840) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5841) #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5842) 	if (dev_is_pci(device)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5843) 		struct pci_dev *pdev = to_pci_dev(device);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5844) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5845) 		if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5846) 			reg = iommu_alloc_resv_region(0, 1UL << 24, prot,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5847) 						   IOMMU_RESV_DIRECT_RELAXABLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5848) 			if (reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5849) 				list_add_tail(&reg->list, head);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5850) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5851) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5852) #endif /* CONFIG_INTEL_IOMMU_FLOPPY_WA */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5853) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5854) 	reg = iommu_alloc_resv_region(IOAPIC_RANGE_START,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5855) 				      IOAPIC_RANGE_END - IOAPIC_RANGE_START + 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5856) 				      0, IOMMU_RESV_MSI);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5857) 	if (!reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5858) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5859) 	list_add_tail(&reg->list, head);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5860) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5861) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5862) int intel_iommu_enable_pasid(struct intel_iommu *iommu, struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5863) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5864) 	struct device_domain_info *info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5865) 	struct context_entry *context;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5866) 	struct dmar_domain *domain;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5867) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5868) 	u64 ctx_lo;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5869) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5870) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5871) 	domain = find_domain(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5872) 	if (!domain)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5873) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5874) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5875) 	spin_lock_irqsave(&device_domain_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5876) 	spin_lock(&iommu->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5877) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5878) 	ret = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5879) 	info = get_domain_info(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5880) 	if (!info || !info->pasid_supported)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5881) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5882) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5883) 	context = iommu_context_addr(iommu, info->bus, info->devfn, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5884) 	if (WARN_ON(!context))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5885) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5886) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5887) 	ctx_lo = context[0].lo;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5888) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5889) 	if (!(ctx_lo & CONTEXT_PASIDE)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5890) 		ctx_lo |= CONTEXT_PASIDE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5891) 		context[0].lo = ctx_lo;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5892) 		wmb();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5893) 		iommu->flush.flush_context(iommu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5894) 					   domain->iommu_did[iommu->seq_id],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5895) 					   PCI_DEVID(info->bus, info->devfn),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5896) 					   DMA_CCMD_MASK_NOBIT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5897) 					   DMA_CCMD_DEVICE_INVL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5898) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5899) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5900) 	/* Enable PASID support in the device, if it wasn't already */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5901) 	if (!info->pasid_enabled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5902) 		iommu_enable_dev_iotlb(info);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5903) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5904) 	ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5905) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5906)  out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5907) 	spin_unlock(&iommu->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5908) 	spin_unlock_irqrestore(&device_domain_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5909) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5910) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5911) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5912) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5913) static void intel_iommu_apply_resv_region(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5914) 					  struct iommu_domain *domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5915) 					  struct iommu_resv_region *region)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5916) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5917) 	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5918) 	unsigned long start, end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5919) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5920) 	start = IOVA_PFN(region->start);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5921) 	end   = IOVA_PFN(region->start + region->length - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5922) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5923) 	WARN_ON_ONCE(!reserve_iova(&dmar_domain->iovad, start, end));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5924) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5925) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5926) static struct iommu_group *intel_iommu_device_group(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5927) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5928) 	if (dev_is_pci(dev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5929) 		return pci_device_group(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5930) 	return generic_device_group(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5931) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5932) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5933) static int intel_iommu_enable_auxd(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5934) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5935) 	struct device_domain_info *info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5936) 	struct intel_iommu *iommu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5937) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5938) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5939) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5940) 	iommu = device_to_iommu(dev, NULL, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5941) 	if (!iommu || dmar_disabled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5942) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5943) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5944) 	if (!sm_supported(iommu) || !pasid_supported(iommu))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5945) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5946) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5947) 	ret = intel_iommu_enable_pasid(iommu, dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5948) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5949) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5950) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5951) 	spin_lock_irqsave(&device_domain_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5952) 	info = get_domain_info(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5953) 	info->auxd_enabled = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5954) 	spin_unlock_irqrestore(&device_domain_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5955) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5956) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5957) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5958) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5959) static int intel_iommu_disable_auxd(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5960) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5961) 	struct device_domain_info *info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5962) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5963) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5964) 	spin_lock_irqsave(&device_domain_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5965) 	info = get_domain_info(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5966) 	if (!WARN_ON(!info))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5967) 		info->auxd_enabled = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5968) 	spin_unlock_irqrestore(&device_domain_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5969) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5970) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5971) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5972) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5973) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5974)  * A PCI express designated vendor specific extended capability is defined
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5975)  * in the section 3.7 of Intel scalable I/O virtualization technical spec
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5976)  * for system software and tools to detect endpoint devices supporting the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5977)  * Intel scalable IO virtualization without host driver dependency.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5978)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5979)  * Returns the address of the matching extended capability structure within
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5980)  * the device's PCI configuration space or 0 if the device does not support
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5981)  * it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5982)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5983) static int siov_find_pci_dvsec(struct pci_dev *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5984) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5985) 	int pos;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5986) 	u16 vendor, id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5987) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5988) 	pos = pci_find_next_ext_capability(pdev, 0, 0x23);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5989) 	while (pos) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5990) 		pci_read_config_word(pdev, pos + 4, &vendor);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5991) 		pci_read_config_word(pdev, pos + 8, &id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5992) 		if (vendor == PCI_VENDOR_ID_INTEL && id == 5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5993) 			return pos;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5994) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5995) 		pos = pci_find_next_ext_capability(pdev, pos, 0x23);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5996) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5997) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5998) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5999) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6000) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6001) static bool
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6002) intel_iommu_dev_has_feat(struct device *dev, enum iommu_dev_features feat)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6003) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6004) 	if (feat == IOMMU_DEV_FEAT_AUX) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6005) 		int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6006) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6007) 		if (!dev_is_pci(dev) || dmar_disabled ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6008) 		    !scalable_mode_support() || !iommu_pasid_support())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6009) 			return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6010) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6011) 		ret = pci_pasid_features(to_pci_dev(dev));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6012) 		if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6013) 			return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6014) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6015) 		return !!siov_find_pci_dvsec(to_pci_dev(dev));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6016) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6017) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6018) 	if (feat == IOMMU_DEV_FEAT_SVA) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6019) 		struct device_domain_info *info = get_domain_info(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6020) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6021) 		return info && (info->iommu->flags & VTD_FLAG_SVM_CAPABLE) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6022) 			info->pasid_supported && info->pri_supported &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6023) 			info->ats_supported;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6024) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6025) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6026) 	return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6027) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6028) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6029) static int
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6030) intel_iommu_dev_enable_feat(struct device *dev, enum iommu_dev_features feat)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6031) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6032) 	if (feat == IOMMU_DEV_FEAT_AUX)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6033) 		return intel_iommu_enable_auxd(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6034) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6035) 	if (feat == IOMMU_DEV_FEAT_SVA) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6036) 		struct device_domain_info *info = get_domain_info(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6037) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6038) 		if (!info)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6039) 			return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6040) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6041) 		if (info->iommu->flags & VTD_FLAG_SVM_CAPABLE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6042) 			return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6043) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6044) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6045) 	return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6046) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6047) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6048) static int
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6049) intel_iommu_dev_disable_feat(struct device *dev, enum iommu_dev_features feat)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6050) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6051) 	if (feat == IOMMU_DEV_FEAT_AUX)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6052) 		return intel_iommu_disable_auxd(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6053) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6054) 	return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6055) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6056) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6057) static bool
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6058) intel_iommu_dev_feat_enabled(struct device *dev, enum iommu_dev_features feat)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6059) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6060) 	struct device_domain_info *info = get_domain_info(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6061) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6062) 	if (feat == IOMMU_DEV_FEAT_AUX)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6063) 		return scalable_mode_support() && info && info->auxd_enabled;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6064) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6065) 	return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6066) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6067) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6068) static int
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6069) intel_iommu_aux_get_pasid(struct iommu_domain *domain, struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6070) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6071) 	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6072) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6073) 	return dmar_domain->default_pasid > 0 ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6074) 			dmar_domain->default_pasid : -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6075) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6076) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6077) static bool intel_iommu_is_attach_deferred(struct iommu_domain *domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6078) 					   struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6079) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6080) 	return attach_deferred(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6081) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6082) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6083) static int
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6084) intel_iommu_domain_set_attr(struct iommu_domain *domain,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6085) 			    enum iommu_attr attr, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6086) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6087) 	struct dmar_domain *dmar_domain = to_dmar_domain(domain);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6088) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6089) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6090) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6091) 	if (domain->type != IOMMU_DOMAIN_UNMANAGED)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6092) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6093) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6094) 	switch (attr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6095) 	case DOMAIN_ATTR_NESTING:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6096) 		spin_lock_irqsave(&device_domain_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6097) 		if (nested_mode_support() &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6098) 		    list_empty(&dmar_domain->devices)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6099) 			dmar_domain->flags |= DOMAIN_FLAG_NESTING_MODE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6100) 			dmar_domain->flags &= ~DOMAIN_FLAG_USE_FIRST_LEVEL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6101) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6102) 			ret = -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6103) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6104) 		spin_unlock_irqrestore(&device_domain_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6105) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6106) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6107) 		ret = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6108) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6109) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6110) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6111) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6112) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6113) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6114) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6115)  * Check that the device does not live on an external facing PCI port that is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6116)  * marked as untrusted. Such devices should not be able to apply quirks and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6117)  * thus not be able to bypass the IOMMU restrictions.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6118)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6119) static bool risky_device(struct pci_dev *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6120) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6121) 	if (pdev->untrusted) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6122) 		pci_info(pdev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6123) 			 "Skipping IOMMU quirk for dev [%04X:%04X] on untrusted PCI link\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6124) 			 pdev->vendor, pdev->device);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6125) 		pci_info(pdev, "Please check with your BIOS/Platform vendor about this\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6126) 		return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6127) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6128) 	return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6129) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6130) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6131) const struct iommu_ops intel_iommu_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6132) 	.capable		= intel_iommu_capable,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6133) 	.domain_alloc		= intel_iommu_domain_alloc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6134) 	.domain_free		= intel_iommu_domain_free,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6135) 	.domain_set_attr	= intel_iommu_domain_set_attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6136) 	.attach_dev		= intel_iommu_attach_device,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6137) 	.detach_dev		= intel_iommu_detach_device,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6138) 	.aux_attach_dev		= intel_iommu_aux_attach_device,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6139) 	.aux_detach_dev		= intel_iommu_aux_detach_device,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6140) 	.aux_get_pasid		= intel_iommu_aux_get_pasid,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6141) 	.map			= intel_iommu_map,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6142) 	.unmap			= intel_iommu_unmap,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6143) 	.iova_to_phys		= intel_iommu_iova_to_phys,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6144) 	.probe_device		= intel_iommu_probe_device,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6145) 	.probe_finalize		= intel_iommu_probe_finalize,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6146) 	.release_device		= intel_iommu_release_device,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6147) 	.get_resv_regions	= intel_iommu_get_resv_regions,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6148) 	.put_resv_regions	= generic_iommu_put_resv_regions,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6149) 	.apply_resv_region	= intel_iommu_apply_resv_region,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6150) 	.device_group		= intel_iommu_device_group,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6151) 	.dev_has_feat		= intel_iommu_dev_has_feat,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6152) 	.dev_feat_enabled	= intel_iommu_dev_feat_enabled,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6153) 	.dev_enable_feat	= intel_iommu_dev_enable_feat,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6154) 	.dev_disable_feat	= intel_iommu_dev_disable_feat,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6155) 	.is_attach_deferred	= intel_iommu_is_attach_deferred,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6156) 	.def_domain_type	= device_def_domain_type,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6157) 	.pgsize_bitmap		= INTEL_IOMMU_PGSIZES,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6158) #ifdef CONFIG_INTEL_IOMMU_SVM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6159) 	.cache_invalidate	= intel_iommu_sva_invalidate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6160) 	.sva_bind_gpasid	= intel_svm_bind_gpasid,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6161) 	.sva_unbind_gpasid	= intel_svm_unbind_gpasid,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6162) 	.sva_bind		= intel_svm_bind,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6163) 	.sva_unbind		= intel_svm_unbind,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6164) 	.sva_get_pasid		= intel_svm_get_pasid,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6165) 	.page_response		= intel_svm_page_response,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6166) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6167) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6168) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6169) static void quirk_iommu_igfx(struct pci_dev *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6170) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6171) 	if (risky_device(dev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6172) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6173) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6174) 	pci_info(dev, "Disabling IOMMU for graphics on this chipset\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6175) 	dmar_map_gfx = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6176) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6177) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6178) /* G4x/GM45 integrated gfx dmar support is totally busted. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6179) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_igfx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6180) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_igfx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6181) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_igfx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6182) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_igfx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6183) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_igfx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6184) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_igfx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6185) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_igfx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6186) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6187) /* Broadwell igfx malfunctions with dmar */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6188) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1606, quirk_iommu_igfx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6189) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160B, quirk_iommu_igfx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6190) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160E, quirk_iommu_igfx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6191) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1602, quirk_iommu_igfx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6192) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160A, quirk_iommu_igfx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6193) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x160D, quirk_iommu_igfx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6194) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1616, quirk_iommu_igfx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6195) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161B, quirk_iommu_igfx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6196) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161E, quirk_iommu_igfx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6197) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1612, quirk_iommu_igfx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6198) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161A, quirk_iommu_igfx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6199) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x161D, quirk_iommu_igfx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6200) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1626, quirk_iommu_igfx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6201) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162B, quirk_iommu_igfx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6202) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162E, quirk_iommu_igfx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6203) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1622, quirk_iommu_igfx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6204) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162A, quirk_iommu_igfx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6205) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x162D, quirk_iommu_igfx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6206) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1636, quirk_iommu_igfx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6207) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163B, quirk_iommu_igfx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6208) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163E, quirk_iommu_igfx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6209) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x1632, quirk_iommu_igfx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6210) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163A, quirk_iommu_igfx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6211) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x163D, quirk_iommu_igfx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6212) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6213) static void quirk_iommu_rwbf(struct pci_dev *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6214) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6215) 	if (risky_device(dev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6216) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6217) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6218) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6219) 	 * Mobile 4 Series Chipset neglects to set RWBF capability,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6220) 	 * but needs it. Same seems to hold for the desktop versions.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6221) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6222) 	pci_info(dev, "Forcing write-buffer flush capability\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6223) 	rwbf_quirk = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6224) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6225) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6226) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2a40, quirk_iommu_rwbf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6227) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e00, quirk_iommu_rwbf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6228) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e10, quirk_iommu_rwbf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6229) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e20, quirk_iommu_rwbf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6230) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e30, quirk_iommu_rwbf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6231) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e40, quirk_iommu_rwbf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6232) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x2e90, quirk_iommu_rwbf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6233) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6234) #define GGC 0x52
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6235) #define GGC_MEMORY_SIZE_MASK	(0xf << 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6236) #define GGC_MEMORY_SIZE_NONE	(0x0 << 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6237) #define GGC_MEMORY_SIZE_1M	(0x1 << 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6238) #define GGC_MEMORY_SIZE_2M	(0x3 << 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6239) #define GGC_MEMORY_VT_ENABLED	(0x8 << 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6240) #define GGC_MEMORY_SIZE_2M_VT	(0x9 << 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6241) #define GGC_MEMORY_SIZE_3M_VT	(0xa << 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6242) #define GGC_MEMORY_SIZE_4M_VT	(0xb << 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6243) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6244) static void quirk_calpella_no_shadow_gtt(struct pci_dev *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6245) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6246) 	unsigned short ggc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6247) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6248) 	if (risky_device(dev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6249) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6250) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6251) 	if (pci_read_config_word(dev, GGC, &ggc))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6252) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6253) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6254) 	if (!(ggc & GGC_MEMORY_VT_ENABLED)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6255) 		pci_info(dev, "BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6256) 		dmar_map_gfx = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6257) 	} else if (dmar_map_gfx) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6258) 		/* we have to ensure the gfx device is idle before we flush */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6259) 		pci_info(dev, "Disabling batched IOTLB flush on Ironlake\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6260) 		intel_iommu_strict = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6261)        }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6262) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6263) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0040, quirk_calpella_no_shadow_gtt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6264) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0044, quirk_calpella_no_shadow_gtt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6265) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x0062, quirk_calpella_no_shadow_gtt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6266) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, 0x006a, quirk_calpella_no_shadow_gtt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6267) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6268) static void quirk_igfx_skip_te_disable(struct pci_dev *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6269) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6270) 	unsigned short ver;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6271) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6272) 	if (!IS_GFX_DEVICE(dev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6273) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6274) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6275) 	ver = (dev->device >> 8) & 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6276) 	if (ver != 0x45 && ver != 0x46 && ver != 0x4c &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6277) 	    ver != 0x4e && ver != 0x8a && ver != 0x98 &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6278) 	    ver != 0x9a)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6279) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6280) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6281) 	if (risky_device(dev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6282) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6283) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6284) 	pci_info(dev, "Skip IOMMU disabling for graphics\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6285) 	iommu_skip_te_disable = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6286) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6287) DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_ANY_ID, quirk_igfx_skip_te_disable);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6288) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6289) /* On Tylersburg chipsets, some BIOSes have been known to enable the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6290)    ISOCH DMAR unit for the Azalia sound device, but not give it any
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6291)    TLB entries, which causes it to deadlock. Check for that.  We do
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6292)    this in a function called from init_dmars(), instead of in a PCI
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6293)    quirk, because we don't want to print the obnoxious "BIOS broken"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6294)    message if VT-d is actually disabled.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6295) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6296) static void __init check_tylersburg_isoch(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6297) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6298) 	struct pci_dev *pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6299) 	uint32_t vtisochctrl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6300) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6301) 	/* If there's no Azalia in the system anyway, forget it. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6302) 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x3a3e, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6303) 	if (!pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6304) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6305) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6306) 	if (risky_device(pdev)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6307) 		pci_dev_put(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6308) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6309) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6310) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6311) 	pci_dev_put(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6312) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6313) 	/* System Management Registers. Might be hidden, in which case
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6314) 	   we can't do the sanity check. But that's OK, because the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6315) 	   known-broken BIOSes _don't_ actually hide it, so far. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6316) 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x342e, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6317) 	if (!pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6318) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6319) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6320) 	if (risky_device(pdev)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6321) 		pci_dev_put(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6322) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6323) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6324) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6325) 	if (pci_read_config_dword(pdev, 0x188, &vtisochctrl)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6326) 		pci_dev_put(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6327) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6328) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6329) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6330) 	pci_dev_put(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6331) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6332) 	/* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6333) 	if (vtisochctrl & 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6334) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6335) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6336) 	/* Drop all bits other than the number of TLB entries */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6337) 	vtisochctrl &= 0x1c;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6338) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6339) 	/* If we have the recommended number of TLB entries (16), fine. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6340) 	if (vtisochctrl == 0x10)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6341) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6342) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6343) 	/* Zero TLB entries? You get to ride the short bus to school. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6344) 	if (!vtisochctrl) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6345) 		WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6346) 		     "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6347) 		     dmi_get_system_info(DMI_BIOS_VENDOR),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6348) 		     dmi_get_system_info(DMI_BIOS_VERSION),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6349) 		     dmi_get_system_info(DMI_PRODUCT_VERSION));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6350) 		iommu_identity_mapping |= IDENTMAP_AZALIA;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6351) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6352) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6353) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6354) 	pr_warn("Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6355) 	       vtisochctrl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6356) }