Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
/*
 * drivers/input/touchscreen/gsl3673.c
 *
 * Copyright (c) 2012 Shanghai Basewin
 *	Guan Yuwei<guanyuwei@basewin.com>
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License version 2 as
 *  published by the Free Software Foundation.
 */
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/hrtimer.h>
#include <linux/i2c.h>
#include <linux/input.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/platform_device.h>
#include <linux/async.h>
#include <linux/gpio.h>
#include <linux/irq.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/proc_fs.h>
#include <linux/input/mt.h>
#include <linux/wakelock.h>

#include "tp_suspend.h"
#include <linux/of_gpio.h>
#define GSL_DEBUG 0

#define TP2680A_ID	0x88
#define TP2680B_ID	0x82
#ifdef GSLX680_COMPATIBLE
static char chip_type;
#endif

#if defined(CONFIG_BOARD_TYPE_ZM1128CE)
		extern int axp_gpio_set_value(int gpio, int io_state);
		extern int axp_gpio_set_io(int, int);
		#define PMU_GPIO_NUM    2
#endif

#if defined(CONFIG_TP_3680_YTG_G10077_F1)
	#include "gsl3680b_hw1088.h"
	#define TP_SIZE_2560X1600
	#define Y_POL
#elif defined(CONFIG_TP_3680_ZM97F_DRFPC_V10)
	#include "gsl3680b_zm97f.h"
	#define HAVE_TOUCH_KEY
#elif defined(CONFIG_TP_3680_F_WGJ)
	#include "gsl3680_tab9689.h"
	#define TP_SIZE_800X1280
	#define X_POL
	#if defined(CONFIG_BOARD_TYPE_TAB8010_8d)
	#define Y_POL
	#endif
#elif defined(CONFIG_TP_3680_TAB106)
	#include "gsl3680_tab106.h"
	#define TP_SIZE_1366X768
	#define Y_POL
#elif defined(CONFIG_TOUCHSCREEN_GSL3673_800X1280)
	#define TP_SIZE_800X1280
	#include "gsl3673_800x1280.h"
#else
	#include "gsl3680b_zm97f.h"
	#define HAVE_TOUCH_KEY
#endif

#ifdef TP_SIZE_1024X600
	#define SCREEN_MAX_X		1024
	#define SCREEN_MAX_Y		600
#elif defined(TP_SIZE_1024X768)
	#define SCREEN_MAX_X		1024
	#define SCREEN_MAX_Y		768
#elif defined(TP_SIZE_768X1024)
	#define SCREEN_MAX_X		768
	#define SCREEN_MAX_Y		1024
#elif defined(TP_SIZE_800X1280)
	#define SCREEN_MAX_X		800
	#define SCREEN_MAX_Y		1280
#elif defined(TP_SIZE_2560X1600)
	#define SCREEN_MAX_X		2560
	#define SCREEN_MAX_Y		1600
#elif defined(TP_SIZE_1366X768)
	#define SCREEN_MAX_X		1366
	#define SCREEN_MAX_Y		768
#else
	#define SCREEN_MAX_X		2048
	#define SCREEN_MAX_Y		1536
#endif
#define REPORT_DATA_ANDROID_4_0
#define SLEEP_CLEAR_POINT

#ifdef FILTER_POINT
#define FILTER_MAX	9
#endif

#define GSL3673_I2C_NAME	"gsl3673_800x1280"
#define GSL3673_I2C_ADDR	0x40

#define GSL_DATA_REG		0x80
#define GSL_STATUS_REG		0xe0
#define GSL_PAGE_REG		0xf0

#define TPD_PROC_DEBUG
#ifdef TPD_PROC_DEBUG
#include <linux/proc_fs.h>
#include <linux/uaccess.h>
#define GSL_CONFIG_PROC_FILE "gsl_config"
#define CONFIG_LEN 31
static char gsl_read[CONFIG_LEN];
static u8 gsl_data_proc[8] = {0};
static u8 gsl_proc_flag;
#endif
#define PRESS_MAX			255
#define MAX_FINGERS			10
#define MAX_CONTACTS		10
#define DMA_TRANS_LEN		0x20
#ifdef GSL_MONITOR
static struct delayed_work gsl_monitor_work;
static struct workqueue_struct *gsl_monitor_workqueue;
static u8 int_1st[4] = {0};
static u8 int_2nd[4] = {0};
static char b0_counter;
static char bc_counter;
static char i2c_lock_flag;
#endif

static struct gsl_ts *this_ts;
static struct i2c_client *gsl_client;
#define WRITE_I2C_SPEED 350000
#define I2C_SPEED  200000
#define CLOSE_TP_POWER   0

#ifdef HAVE_TOUCH_KEY
static u16 key;
static int key_state_flag;
struct key_data {
	u16 key;
	u16 x_min;
	u16 x_max;
	u16 y_min;
	u16 y_max;
};

const u16 key_array[] = {
	KEY_HOMEPAGE,
	KEY_BACK,
	KEY_MENU,
	KEY_SEARCH,
};

#define MAX_KEY_NUM     ARRAY_SIZE(key_array)

struct key_data gsl_key_data[MAX_KEY_NUM] = {
	{KEY_HOMEPAGE, 860, 880, 1550, 1570},
	{KEY_BACK, 2048, 2048, 2048, 2048},
	{KEY_MENU, 2048, 2048, 2048, 2048},
	{KEY_SEARCH, 2048, 2048, 2048, 2048},
};
#endif

struct gsl_ts_data {
	u8 x_index;
	u8 y_index;
	u8 z_index;
	u8 id_index;
	u8 touch_index;
	u8 data_reg;
	u8 status_reg;
	u8 data_size;
	u8 touch_bytes;
	u8 update_data;
	u8 touch_meta_data;
	u8 finger_size;
};

static struct gsl_ts_data devices[] = {
	{
		.x_index = 6,
		.y_index = 4,
		.z_index = 5,
		.id_index = 7,
		.data_reg = GSL_DATA_REG,
		.status_reg = GSL_STATUS_REG,
		.update_data = 0x4,
		.touch_bytes = 4,
		.touch_meta_data = 4,
		.finger_size = 70,
	},
};

struct gsl_ts {
	struct i2c_client *client;
	struct input_dev *input;
	struct work_struct work;
	struct workqueue_struct *wq;
	struct gsl_ts_data *dd;
	u8 *touch_data;
	u8 device_id;
	int irq;
	int rst;
	int flag_irq_is_disable;
	spinlock_t irq_lock;
	struct tp_device  tp;
	struct work_struct download_fw_work;
	struct work_struct resume_work;
};

#if GSL_DEBUG
#define print_info(fmt, args...)   \
		do {                              \
			printk(fmt, ##args);     \
		} while (0)
#else
#define print_info(fmt, args...)
#endif

static u32 id_sign[MAX_CONTACTS + 1] = {0};
static u8 id_state_flag[MAX_CONTACTS + 1] = {0};
static u8 id_state_old_flag[MAX_CONTACTS + 1] = {0};
static u16 x_old[MAX_CONTACTS + 1] = {0};
static u16 y_old[MAX_CONTACTS + 1] = {0};
static u16 x_new;
static u16 y_new;

static int gsl3673_init(void)
{
	struct device_node *np = gsl_client->dev.of_node;
	enum of_gpio_flags rst_flags;
	unsigned long irq_flags;

	this_ts->irq = of_get_named_gpio_flags(np, "irq_gpio_number", 0,
				(enum of_gpio_flags *)&irq_flags);
	this_ts->rst = of_get_named_gpio_flags(np, "rst_gpio_number", 0,
				&rst_flags);
	if (devm_gpio_request(&this_ts->client->dev, this_ts->rst, NULL) != 0) {
		dev_err(&this_ts->client->dev, "gpio_request this_ts->rst error\n");
		return -EIO;
	}
	gpio_direction_output(this_ts->rst, 0);
	gpio_set_value(this_ts->rst, 1);
	return 0;
}

static int gsl3673_shutdown_low(void)
{
	if (this_ts->rst > 1)
		gpio_set_value(this_ts->rst, 0);
	return 0;
}

static int gsl3673_shutdown_high(void)
{
	if (this_ts->rst > 1)
		gpio_set_value(this_ts->rst, 1);
	return 0;
}

static inline u16 join_bytes(u8 a, u8 b)
{
	u16 ab = 0;

	ab = ab | a;
	ab = ab << 8 | b;
	return ab;
}

static u32 gsl_write_interface(struct i2c_client *client, const u8 reg,
				u8 *buf, u32 num)
{
	struct i2c_msg xfer_msg[1];

	buf[0] = reg;
	xfer_msg[0].addr = client->addr;
	xfer_msg[0].len = num + 1;
	xfer_msg[0].flags = client->flags & I2C_M_TEN;
	xfer_msg[0].buf = buf;

	return i2c_transfer(client->adapter, xfer_msg, 1) == 1 ? 0 : -EFAULT;
}

static int gsl_ts_write(struct i2c_client *client, u8 addr, u8 *pdata,
				int datalen)
{
	int ret = 0;
	u8 tmp_buf[128];
	unsigned int bytelen = 0;

	if (datalen > 125) {
		print_info("%s too big datalen = %d!\n", __func__, datalen);
		return -1;
	}
	tmp_buf[0] = addr;
	bytelen++;
	if (datalen != 0 && pdata != NULL) {
		memcpy(&tmp_buf[bytelen], pdata, datalen);
		bytelen += datalen;
	}
	ret = i2c_master_send(client, tmp_buf, bytelen);
	return ret;
}

static int gsl_ts_read(struct i2c_client *client, u8 addr, u8 *pdata,
				unsigned int datalen)
{
	int ret = 0;

	if (datalen > 126) {
		print_info("%s too big datalen = %d!\n", __func__, datalen);
		return -1;
	}
	ret = gsl_ts_write(client, addr, NULL, 0);
	if (ret < 0) {
		print_info("%s set data address fail!\n", __func__);
		return ret;
	}
	return i2c_master_recv(client, pdata, datalen);
}

#ifdef GSLX680_COMPATIBLE
static void judge_chip_type(struct i2c_client *client)
{
	u8 read_buf[4] = {0};

	msleep(50);
	gsl_ts_read(client, 0xfc, read_buf, sizeof(read_buf));
	if (read_buf[2] != 0x36 && read_buf[2] != 0x88) {
		msleep(50);
		gsl_ts_read(client, 0xfc, read_buf, sizeof(read_buf));
	}
	print_info("leaf ggggg buf0 =%x %x %x  %x\n",
				read_buf[0], read_buf[1], read_buf[2], read_buf[3]);
	chip_type = read_buf[2];
}
#endif

static inline void fw2buf(u8 *buf, const u32 *fw)
{
	u32 *u32_buf = (int *)buf;
	*u32_buf = *fw;
}

static void gsl_load_fw(struct i2c_client *client)
{
	u8 buf[DMA_TRANS_LEN * 4 + 1] = {0};
	u8 send_flag = 1;
	u8 *cur = buf + 1;
	u32 source_line = 0;
	u32 source_len;
	struct fw_data const *ptr_fw;

#ifdef GSLX680_COMPATIBLE
		if (chip_type == TP2680A_ID) {
			ptr_fw = GSL2680A_FW;
			source_len = ARRAY_SIZE(GSL2680A_FW);
		} else {
			ptr_fw = GSL2680B_FW;
			source_len = ARRAY_SIZE(GSL2680B_FW);
		}
#else
		ptr_fw = GSL3673_FW;
		source_len = ARRAY_SIZE(GSL3673_FW);
#endif
	for (source_line = 0; source_line < source_len; source_line++) {
		if (ptr_fw[source_line].offset == GSL_PAGE_REG) {
			fw2buf(cur, &ptr_fw[source_line].val);
			gsl_write_interface(client, GSL_PAGE_REG, buf, 4);
			send_flag = 1;
		} else {
			if (1 == send_flag % (DMA_TRANS_LEN < 0x20 ? DMA_TRANS_LEN : 0x20))
				buf[0] = (u8)ptr_fw[source_line].offset;
			fw2buf(cur, &ptr_fw[source_line].val);
			cur += 4;
			if (0 == send_flag % (DMA_TRANS_LEN < 0x20 ? DMA_TRANS_LEN : 0x20)) {
					gsl_write_interface(client, buf[0], buf, cur - buf - 1);
					cur = buf + 1;
			}
			send_flag++;
		}
	}
}

static int test_i2c(struct i2c_client *client)
{
	u8 read_buf = 0;
	u8 write_buf = 0x12;
	int ret, rc = 1;

	ret = gsl_ts_read(client, 0xf0, &read_buf, sizeof(read_buf));
	if (ret < 0)
		rc--;
	msleep(2);
	ret = gsl_ts_write(client, 0xf0, &write_buf, sizeof(write_buf));
	msleep(2);
	ret = gsl_ts_read(client, 0xf0, &read_buf, sizeof(read_buf));
	if (ret < 0)
		rc--;
	return rc;
}

static void startup_chip(struct i2c_client *client)
{
	u8 tmp = 0x00;

#ifdef GSL_NOID_VERSION
	gsl_DataInit(gsl_config_data_id_3673);
#endif
	gsl_ts_write(client, 0xe0, &tmp, 1);
	mdelay(5);
}

static void reset_chip(struct i2c_client *client)
{
	u8 tmp = 0x88;
	u8 buf[4] = {0x00};

	gsl_ts_write(client, 0xe0, &tmp, sizeof(tmp));
	mdelay(5);
	tmp = 0x04;
	gsl_ts_write(client, 0xe4, &tmp, sizeof(tmp));
	mdelay(5);
	gsl_ts_write(client, 0xbc, buf, sizeof(buf));
	mdelay(5);
}

static void clr_reg(struct i2c_client *client)
{
	u8 write_buf[4]	= {0};

	write_buf[0] = 0x88;
	gsl_ts_write(client, 0xe0, &write_buf[0], 1);
	msleep(20);
	write_buf[0] = 0x03;
	gsl_ts_write(client, 0x80, &write_buf[0], 1);
	msleep(5);
	write_buf[0] = 0x04;
	gsl_ts_write(client, 0xe4, &write_buf[0], 1);
	msleep(5);
	write_buf[0] = 0x00;
	gsl_ts_write(client, 0xe0, &write_buf[0], 1);
	msleep(20);
}

static int init_chip(struct i2c_client *client)
{
	int rc;
	struct gsl_ts *ts = i2c_get_clientdata(client);

	gsl3673_shutdown_low();
	msleep(20);
	gsl3673_shutdown_high();
	msleep(20);
	rc = test_i2c(client);
	if (rc < 0) {
		dev_err(&client->dev, "GSL3673 test_i2c error!\n");
		return rc;
	}
	schedule_work(&ts->download_fw_work);
	return 0;
}

static int check_mem_data(struct i2c_client *client)
{
	u8 read_buf[4]  = {0};
	int rc;

	mdelay(10);
	gsl_ts_read(client, 0xb0, read_buf, sizeof(read_buf));
	if (read_buf[3] != 0x5a || read_buf[2] != 0x5a || read_buf[1] !=
				0x5a || read_buf[0] != 0x5a) {
		print_info("#########check mem read 0xb0 = %x %x %x %x #########\n",
					read_buf[3], read_buf[2], read_buf[1], read_buf[0]);
		rc = init_chip(client);
		if (rc < 0)
			return rc;
	}
	return 0;
}

#ifdef TPD_PROC_DEBUG
static int char_to_int(char ch)
{
	if (ch >= '0' && ch <= '9')
		return (ch - '0');
	else
		return (ch - 'a' + 10);
}

static int gsl_config_read_proc(struct seq_file *m, void *v)
{
	char temp_data[5] = {0};
	unsigned int tmp = 0;

	if ('v' == gsl_read[0] && 's' == gsl_read[1]) {
#ifdef GSL_NOID_VERSION
		tmp = gsl_version_id();
#else
		tmp = 0x20121215;
#endif
		seq_printf(m, "version:%x\n", tmp);
	} else if ('r' == gsl_read[0] && 'e' == gsl_read[1]) {
		if ('i' == gsl_read[3]) {
#ifdef GSL_NOID_VERSION
			tmp = (gsl_data_proc[5] << 8) | gsl_data_proc[4];
			seq_printf(m, "gsl_config_data_id_3673[%d] = ", tmp);
			if (tmp >= 0 && tmp < ARRAY_SIZE(gsl_config_data_id_3673))
				seq_printf(m, "%d\n", gsl_config_data_id_3673[tmp]);
#endif
		} else {
			gsl_ts_write(gsl_client, 0Xf0, &gsl_data_proc[4], 4);
			if (gsl_data_proc[0] < 0x80)
				gsl_ts_read(gsl_client, gsl_data_proc[0], temp_data, 4);
			gsl_ts_read(gsl_client, gsl_data_proc[0], temp_data, 4);
			seq_printf(m, "offset : {0x%02x,0x", gsl_data_proc[0]);
			seq_printf(m, "%02d", temp_data[3]);
			seq_printf(m, "%02d", temp_data[2]);
			seq_printf(m, "%02d", temp_data[1]);
			seq_printf(m, "%02d};\n", temp_data[0]);
		}
	}
	return 0;
}

static ssize_t gsl_config_write_proc(struct file *file, const char *buffer,
				 size_t count, loff_t *data)
{
	u8 buf[8] = {0};
	char temp_buf[CONFIG_LEN];
	char *path_buf;
	int tmp = 0;
	int tmp1 = 0;

	if (count > 512) {
		print_info("size not match [%d:%zd]\n", CONFIG_LEN, count);
		return -EFAULT;
	}
	path_buf = kzalloc(count, GFP_KERNEL);
	if (!path_buf)
		print_info("alloc path_buf memory error\n");
	if (copy_from_user(path_buf, buffer, count)) {
		print_info("copy from user fail\n");
		goto exit_write_proc_out;
	}
	memcpy(temp_buf, path_buf, (count < CONFIG_LEN ? count : CONFIG_LEN));
	buf[3] = char_to_int(temp_buf[14]) << 4 | char_to_int(temp_buf[15]);
	buf[2] = char_to_int(temp_buf[16]) << 4 | char_to_int(temp_buf[17]);
	buf[1] = char_to_int(temp_buf[18]) << 4 | char_to_int(temp_buf[19]);
	buf[0] = char_to_int(temp_buf[20]) << 4 | char_to_int(temp_buf[21]);
	buf[7] = char_to_int(temp_buf[5]) << 4 | char_to_int(temp_buf[6]);
	buf[6] = char_to_int(temp_buf[7]) << 4 | char_to_int(temp_buf[8]);
	buf[5] = char_to_int(temp_buf[9]) << 4 | char_to_int(temp_buf[10]);
	buf[4] = char_to_int(temp_buf[11]) << 4 | char_to_int(temp_buf[12]);
	if ('v' == temp_buf[0] && 's' == temp_buf[1]) {
		memcpy(gsl_read, temp_buf, 4);
		print_info("gsl version\n");
	} else if ('s' == temp_buf[0] && 't' == temp_buf[1]) {
		gsl_proc_flag = 1;
		reset_chip(gsl_client);
	} else if ('e' == temp_buf[0] && 'n' == temp_buf[1]) {
		msleep(20);
		reset_chip(gsl_client);
		startup_chip(gsl_client);
		gsl_proc_flag = 0;
	} else if ('r' == temp_buf[0] && 'e' == temp_buf[1]) {
		memcpy(gsl_read, temp_buf, 4);
		memcpy(gsl_data_proc, buf, 8);
	} else if ('w' == temp_buf[0] && 'r' == temp_buf[1]) {
		gsl_ts_write(gsl_client, buf[4], buf, 4);
	}
#ifdef GSL_NOID_VERSION
	else if ('i' == temp_buf[0] && 'd' == temp_buf[1]) {
		tmp1 = (buf[7] << 24) | (buf[6] << 16) | (buf[5] << 8) | buf[4];
		tmp = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
		if (tmp1 >= 0 && tmp1 < ARRAY_SIZE(gsl_config_data_id_3673))
			gsl_config_data_id_3673[tmp1] = tmp;
	}
#endif
exit_write_proc_out:
	kfree(path_buf);
	return count;
}

static int gsl_server_list_open(struct inode *inode, struct file *file)
{
	return single_open(file, gsl_config_read_proc, NULL);
}

static const struct file_operations gsl_seq_fops = {
	.open = gsl_server_list_open,
	.read = seq_read,
	.release = single_release,
	.write = gsl_config_write_proc,
	.owner = THIS_MODULE,
};
#endif

#ifdef FILTER_POINT
static void filter_point(u16 x, u16 y, u8 id)
{
	u16 x_err = 0;
	u16 y_err = 0;
	u16 filter_step_x = 0, filter_step_y = 0;

	id_sign[id] = id_sign[id] + 1;
	if (id_sign[id] == 1) {
		x_old[id] = x;
		y_old[id] = y;
	}
	x_err = x > x_old[id] ? (x - x_old[id]) : (x_old[id] - x);
	y_err = y > y_old[id] ? (y - y_old[id]) : (y_old[id] - y);
	if ((x_err > FILTER_MAX && y_err > FILTER_MAX / 3) ||
					(x_err > FILTER_MAX / 3 && y_err > FILTER_MAX)) {
		filter_step_x = x_err;
		filter_step_y = y_err;
	} else {
		if (x_err > FILTER_MAX)
			filter_step_x = x_err;
		if (y_err > FILTER_MAX)
			filter_step_y = y_err;
	}
	if (x_err <= 2 * FILTER_MAX && y_err <= 2 * FILTER_MAX) {
		filter_step_x >>= 2;
		filter_step_y >>= 2;
	} else if (x_err <= 3 * FILTER_MAX && y_err <= 3 * FILTER_MAX) {
		filter_step_x >>= 1;
		filter_step_y >>= 1;
	} else if (x_err <= 4 * FILTER_MAX && y_err <= 4 * FILTER_MAX) {
		filter_step_x = filter_step_x * 3 / 4;
		filter_step_y = filter_step_y * 3 / 4;
	}
	x_new = x > x_old[id] ? (x_old[id] + filter_step_x)
				: (x_old[id] - filter_step_x);
	y_new = y > y_old[id] ? (y_old[id] + filter_step_y)
				: (y_old[id] - filter_step_y);
	x_old[id] = x_new;
	y_old[id] = y_new;
}
#else

static void record_point(u16 x, u16 y, u8 id)
{
	u16 x_err = 0;
	u16 y_err = 0;

	id_sign[id] = id_sign[id] + 1;
	if (id_sign[id] == 1) {
		x_old[id] = x;
		y_old[id] = y;
	}
	x = (x_old[id] + x) / 2;
	y = (y_old[id] + y) / 2;
	if (x > x_old[id])
		x_err = x - x_old[id];
	else
		x_err = x_old[id] - x;
	if (y > y_old[id])
		y_err = y - y_old[id];
	else
		y_err = y_old[id] - y;
	if ((x_err > 3 && y_err > 1) || (x_err > 1 && y_err > 3)) {
		x_new = x;
		x_old[id] = x;
		y_new = y;
		y_old[id] = y;
	} else {
		if (x_err > 3) {
			x_new = x;
			x_old[id] = x;
		} else {
			x_new = x_old[id];
		}
		if (y_err > 3) {
			y_new = y;
			y_old[id] = y;
		} else {
			y_new = y_old[id];
		}
	}
	if (id_sign[id] == 1) {
		x_new = x_old[id];
		y_new = y_old[id];
	}
}
#endif

#ifdef HAVE_TOUCH_KEY
static void report_key(struct gsl_ts *ts, u16 x, u16 y)
{
	u16 i = 0;

	for (i = 0; i < MAX_KEY_NUM; i++) {
		if ((gsl_key_data[i].x_min < x) && (x < gsl_key_data[i].x_max)
				&& (gsl_key_data[i].y_min < y)
				&& (y < gsl_key_data[i].y_max)) {
			key = gsl_key_data[i].key;
			input_report_key(ts->input, key, 1);
			input_sync(ts->input);
			key_state_flag = 1;
			break;
		}
	}
}
#endif

static void report_data(struct gsl_ts *ts, u16 x, u16 y, u8 pressure, u8 id)
{
#ifdef SWAP_XY
	swap(x, y);
#endif
	if (x > SCREEN_MAX_X || y > SCREEN_MAX_Y) {
	#ifdef HAVE_TOUCH_KEY
		report_key(ts, x, y);
	#endif
		return;
	}
#ifdef REPORT_DATA_ANDROID_4_0
	input_mt_slot(ts->input, id);
	input_report_abs(ts->input, ABS_MT_TRACKING_ID, id);
	input_report_abs(ts->input, ABS_MT_TOUCH_MAJOR, pressure);
#ifdef X_POL
	input_report_abs(ts->input, ABS_MT_POSITION_X, SCREEN_MAX_X - x);
#else
	input_report_abs(ts->input, ABS_MT_POSITION_X, x);
#endif
#ifdef Y_POL
	input_report_abs(ts->input, ABS_MT_POSITION_Y, (SCREEN_MAX_Y - y));
#else
	input_report_abs(ts->input, ABS_MT_POSITION_Y, (y));
#endif
	input_report_abs(ts->input, ABS_MT_WIDTH_MAJOR, 1);
#else
	input_report_abs(ts->input, ABS_MT_TRACKING_ID, id);
	input_report_abs(ts->input, ABS_MT_TOUCH_MAJOR, pressure);
	input_report_abs(ts->input, ABS_MT_POSITION_X, x);
	input_report_abs(ts->input, ABS_MT_POSITION_Y, y);
	input_report_abs(ts->input, ABS_MT_WIDTH_MAJOR, 1);
	input_mt_sync(ts->input);
#endif
}

static void ts_irq_disable(struct gsl_ts *ts)
{
	unsigned long irqflags;

	spin_lock_irqsave(&ts->irq_lock, irqflags);
	if (!ts->flag_irq_is_disable) {
		disable_irq_nosync(ts->client->irq);
		ts->flag_irq_is_disable = 1;
	}
	spin_unlock_irqrestore(&ts->irq_lock, irqflags);
}

static void ts_irq_enable(struct gsl_ts *ts)
{
	unsigned long irqflags = 0;

	spin_lock_irqsave(&ts->irq_lock, irqflags);
	if (ts->flag_irq_is_disable) {
		enable_irq(ts->client->irq);
		ts->flag_irq_is_disable = 0;
	}
	spin_unlock_irqrestore(&ts->irq_lock, irqflags);
}

static void gsl3673_ts_worker(struct work_struct *work)
{
	int rc, i;
	u8 id, touches;
	u16 x, y;

#ifdef GSL_NOID_VERSION
	u32 tmp1;
	u8 buf[4] = {0};
	struct gsl_touch_info cinfo;
#endif

	struct gsl_ts *ts = container_of(work, struct gsl_ts, work);
#ifdef TPD_PROC_DEBUG
	if (gsl_proc_flag == 1)
		goto schedule;
#endif
#ifdef GSL_MONITOR
	if (i2c_lock_flag != 0)
		goto i2c_lock_schedule;
	else
		i2c_lock_flag = 1;
#endif
	rc = gsl_ts_read(ts->client, 0x80, ts->touch_data, ts->dd->data_size);
	if (rc < 0) {
		dev_err(&ts->client->dev, "read failed\n");
		goto schedule;
	}
	touches = ts->touch_data[ts->dd->touch_index];
#ifdef GSL_NOID_VERSION
	cinfo.finger_num = touches;
	for (i = 0; i < (touches < MAX_CONTACTS ? touches : MAX_CONTACTS); i++) {
		cinfo.x[i] = join_bytes((ts->touch_data[ts->dd->x_index  +
				4 * i + 1] & 0xf), ts->touch_data[ts->dd->x_index + 4 * i]);
		cinfo.y[i] = join_bytes(ts->touch_data[ts->dd->y_index + 4 * i + 1],
				ts->touch_data[ts->dd->y_index + 4 * i]);
		cinfo.id[i] = ((ts->touch_data[ts->dd->x_index  + 4 * i + 1]
				& 0xf0) >> 4);
	}
	cinfo.finger_num = (ts->touch_data[3] << 24) | (ts->touch_data[2] << 16)
		| (ts->touch_data[1] << 8) | (ts->touch_data[0]);
	gsl_alg_id_main(&cinfo);
	tmp1 = gsl_mask_tiaoping();
	if (tmp1 > 0 && tmp1 < 0xffffffff) {
		buf[0] = 0xa;
		buf[1] = 0;
		buf[2] = 0;
		buf[3] = 0;
		gsl_ts_write(ts->client, 0xf0, buf, 4);
		buf[0] = (u8)(tmp1 & 0xff);
		buf[1] = (u8)((tmp1 >> 8) & 0xff);
		buf[2] = (u8)((tmp1 >> 16) & 0xff);
		buf[3] = (u8)((tmp1 >> 24) & 0xff);
		print_info(
				"tmp1=%08x,buf[0]=%02x,buf[1]=%02x,buf[2]=%02x,buf[3]=%02x\n",
				tmp1, buf[0], buf[1], buf[2], buf[3]);
		gsl_ts_write(ts->client, 0x8, buf, 4);
	}
	touches = cinfo.finger_num;
#endif
	for (i = 1; i <= MAX_CONTACTS; i++) {
		if (touches == 0)
			id_sign[i] = 0;
		id_state_flag[i] = 0;
	}
	for (i = 0; i < (touches > MAX_FINGERS ? MAX_FINGERS : touches); i++) {
	#ifdef GSL_NOID_VERSION
		id = cinfo.id[i];
		x =  cinfo.x[i];
		y =  cinfo.y[i];
	#else
		x = join_bytes((ts->touch_data[ts->dd->x_index + 4 * i + 1]
				& 0xf), ts->touch_data[ts->dd->x_index + 4 * i]);
		y = join_bytes(ts->touch_data[ts->dd->y_index + 4 * i + 1],
				ts->touch_data[ts->dd->y_index + 4 * i]);
		id = ts->touch_data[ts->dd->id_index + 4 * i] >> 4;
	#endif
		if (id >= 1 && id <= MAX_CONTACTS) {
		#ifdef FILTER_POINT
			filter_point(x, y, id);
		#else
			record_point(x, y, id);
		#endif
			report_data(ts, x_new, y_new, 10, id);
			id_state_flag[id] = 1;
		}
	}
	for (i = 1; i <= MAX_CONTACTS; i++) {
		if ((touches == 0) || ((id_state_old_flag[i] != 0) &&
			(id_state_flag[i] == 0))) {
		#ifdef REPORT_DATA_ANDROID_4_0
			input_mt_slot(ts->input, i);
			input_report_abs(ts->input, ABS_MT_TRACKING_ID, -1);
			input_mt_report_slot_state(ts->input, MT_TOOL_FINGER, false);
		#endif
			id_sign[i] = 0;
		}
		id_state_old_flag[i] = id_state_flag[i];
	}
#if 1
	#ifdef HAVE_TOUCH_KEY
		if (key_state_flag && touches == 0) {
			input_report_key(ts->input, key, 0);
			input_sync(ts->input);
			key_state_flag = 0;
		}
	#endif
#endif
	input_sync(ts->input);
schedule:
#ifdef GSL_MONITOR
	i2c_lock_flag = 0;
i2c_lock_schedule:
#endif
	ts_irq_enable(ts);

}

#ifdef GSL_MONITOR
static void gsl_monitor_worker(struct work_struct *work)
{
	u8 read_buf[4]  = {0};
	char init_chip_flag = 0;
	int rc;

	if (i2c_lock_flag != 0)
		i2c_lock_flag = 1;
	else
		i2c_lock_flag = 1;
	gsl_ts_read(gsl_client, 0xb0, read_buf, 4);
	if (read_buf[3] != 0x5a || read_buf[2] != 0x5a ||
				read_buf[1] != 0x5a || read_buf[0] != 0x5a)
		b0_counter++;
	else
		b0_counter = 0;
	if (b0_counter > 1) {
		print_info("======read 0xb0: %x %x %x %x ======\n",
				read_buf[3], read_buf[2], read_buf[1], read_buf[0]);
		init_chip_flag = 1;
		b0_counter = 0;
	}
	gsl_ts_read(gsl_client, 0xb4, read_buf, 4);
	int_2nd[3] = int_1st[3];
	int_2nd[2] = int_1st[2];
	int_2nd[1] = int_1st[1];
	int_2nd[0] = int_1st[0];
	int_1st[3] = read_buf[3];
	int_1st[2] = read_buf[2];
	int_1st[1] = read_buf[1];
	int_1st[0] = read_buf[0];
	if (int_1st[3] == int_2nd[3] && int_1st[2] == int_2nd[2] &&
				int_1st[1] == int_2nd[1] && int_1st[0] == int_2nd[0]) {
		print_info(
				"======int_1st: %x %x %x %x ,int_2nd: %x %x %x %x ======\n",
				int_1st[3], int_1st[2], int_1st[1], int_1st[0],
				int_2nd[3], int_2nd[2], int_2nd[1], int_2nd[0]);
		init_chip_flag = 1;
	}
	gsl_ts_read(gsl_client, 0xbc, read_buf, 4);
	if (read_buf[3] != 0 || read_buf[2] != 0 ||
				read_buf[1] != 0 || read_buf[0] != 0)
		bc_counter++;
	else
		bc_counter = 0;
	if (bc_counter > 1) {
		print_info("======read 0xbc: %x %x %x %x======\n",
				read_buf[3], read_buf[2], read_buf[1], read_buf[0]);
		init_chip_flag = 1;
		bc_counter = 0;
	}
	if (init_chip_flag) {
		rc = init_chip(gsl_client);
		if (rc < 0)
			return;
	}
	i2c_lock_flag = 0;
}
#endif

static irqreturn_t gsl_ts_irq(int irq, void *dev_id)
{
	struct gsl_ts *ts = (struct gsl_ts *)dev_id;

	ts_irq_disable(ts);
	if (!work_pending(&ts->work))
		queue_work(ts->wq, &ts->work);
	return IRQ_HANDLED;
}

static int gsl3673_ts_init(struct i2c_client *client, struct gsl_ts *ts)
{
	struct input_dev *input_device;
	int rc = 0;
	#ifdef HAVE_TOUCH_KEY
	int i;
	#endif

	ts->dd = &devices[ts->device_id];
	if (ts->device_id == 0) {
		ts->dd->data_size = MAX_FINGERS * ts->dd->touch_bytes +
				ts->dd->touch_meta_data;
		ts->dd->touch_index = 0;
	}
	ts->touch_data = devm_kzalloc(&client->dev,
				ts->dd->data_size, GFP_KERNEL);
	if (!ts->touch_data)
		return -ENOMEM;
	input_device = devm_input_allocate_device(&ts->client->dev);
	if (!input_device) {
		return -ENOMEM;
	}
	ts->input = input_device;
	input_device->name = GSL3673_I2C_NAME;
	input_device->id.bustype = BUS_I2C;
	input_device->dev.parent = &client->dev;
	input_set_drvdata(input_device, ts);
#ifdef HAVE_TOUCH_KEY
	for (i = 0; i < MAX_KEY_NUM; i++) {
		input_device->evbit[i] =  BIT_MASK(EV_SYN) | BIT_MASK(EV_KEY);
		set_bit(key_array[i], input_device->keybit);
	}
#endif
#ifdef REPORT_DATA_ANDROID_4_0
	__set_bit(EV_ABS, input_device->evbit);
	__set_bit(EV_KEY, input_device->evbit);
	__set_bit(EV_REP, input_device->evbit);
	__set_bit(INPUT_PROP_DIRECT, input_device->propbit);
	input_mt_init_slots(input_device, (MAX_CONTACTS + 1), 0);
#else
	input_set_abs_params(input_device, ABS_MT_TRACKING_ID, 0,
				(MAX_CONTACTS + 1), 0, 0);
	set_bit(EV_ABS, input_device->evbit);
	set_bit(EV_KEY, input_device->evbit);
	__set_bit(INPUT_PROP_DIRECT, input_device->propbit);
	input_device->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
#endif
	set_bit(ABS_MT_POSITION_X, input_device->absbit);
	set_bit(ABS_MT_POSITION_Y, input_device->absbit);
	set_bit(ABS_MT_TOUCH_MAJOR, input_device->absbit);
	set_bit(ABS_MT_WIDTH_MAJOR, input_device->absbit);
	input_set_abs_params(input_device, ABS_MT_POSITION_X, 0,
				SCREEN_MAX_X, 0, 0);
	input_set_abs_params(input_device, ABS_MT_POSITION_Y, 0,
				SCREEN_MAX_Y, 0, 0);
	input_set_abs_params(input_device, ABS_MT_TOUCH_MAJOR, 0,
				PRESS_MAX, 0, 0);
	input_set_abs_params(input_device, ABS_MT_WIDTH_MAJOR, 0, 200, 0, 0);
	ts->wq = create_singlethread_workqueue("kworkqueue_ts");
	if (!ts->wq) {
		dev_err(&client->dev, "gsl Could not create workqueue\n");
		return -ENOMEM;
	}
	flush_workqueue(ts->wq);
	INIT_WORK(&ts->work, gsl3673_ts_worker);
	rc = input_register_device(input_device);
	if (rc)
		goto error_unreg_device;
	return 0;
error_unreg_device:
	destroy_workqueue(ts->wq);
	return rc;
}

static int gsl_ts_suspend(struct device *dev)
{
	struct gsl_ts *ts = dev_get_drvdata(dev);
	int i;

#ifdef GSL_MONITOR
	cancel_delayed_work_sync(&gsl_monitor_work);
#endif
	ts_irq_disable(ts);
	cancel_work_sync(&ts->work);

	gsl3673_shutdown_low();
#ifdef SLEEP_CLEAR_POINT
	msleep(10);
	#ifdef REPORT_DATA_ANDROID_4_0
	for (i = 1; i <= MAX_CONTACTS; i++) {
		input_mt_slot(ts->input, i);
		input_report_abs(ts->input, ABS_MT_TRACKING_ID, -1);
		input_mt_report_slot_state(ts->input, MT_TOOL_FINGER, false);
	}
	#else
	input_mt_sync(ts->input);
	#endif
	input_sync(ts->input);
	msleep(10);
	report_data(ts, 1, 1, 10, 1);
	input_sync(ts->input);
#endif
	return 0;
}

static int gsl_ts_resume(struct device *dev)
{
	struct gsl_ts *ts = dev_get_drvdata(dev);
	int i;
	int rc;

	gsl3673_shutdown_high();
	mdelay(5);
	reset_chip(ts->client);
	startup_chip(ts->client);
	rc = check_mem_data(ts->client);
	if (rc < 0)
		return rc;
#ifdef SLEEP_CLEAR_POINT
	#ifdef REPORT_DATA_ANDROID_4_0
	for (i = 1; i <= MAX_CONTACTS; i++) {
		input_mt_slot(ts->input, i);
		input_report_abs(ts->input, ABS_MT_TRACKING_ID, -1);
		input_mt_report_slot_state(ts->input, MT_TOOL_FINGER, false);
	}
	#else
	input_mt_sync(ts->input);
	#endif
	input_sync(ts->input);
#endif
#ifdef GSL_MONITOR
	queue_delayed_work(gsl_monitor_workqueue, &gsl_monitor_work, 300);
#endif
	ts_irq_enable(ts);
	return 0;
}

static int gsl_ts_early_suspend(struct tp_device *tp_d)
{
	struct gsl_ts *ts = container_of(tp_d, struct gsl_ts, tp);

	gsl_ts_suspend(&ts->client->dev);
	return 0;
}

static int gsl_ts_late_resume(struct tp_device *tp_d)
{
	struct gsl_ts *ts = container_of(tp_d, struct gsl_ts, tp);

	schedule_work(&ts->resume_work);

	return 0;
}

static void gsl_download_fw_work(struct work_struct *work)
{
	struct gsl_ts *ts = container_of(work, struct gsl_ts, download_fw_work);

	clr_reg(ts->client);
	reset_chip(ts->client);
	gsl_load_fw(ts->client);
	startup_chip(ts->client);
	reset_chip(ts->client);
	startup_chip(ts->client);
}

static void gsl_resume_work(struct work_struct *work)
{
	gsl_ts_resume(&gsl_client->dev);
}

static int  gsl_ts_probe(struct i2c_client *client,
			const struct i2c_device_id *id)
{
	struct gsl_ts *ts;
	int rc;
    #if defined CONFIG_BOARD_TYPE_ZM1128CE
		axp_gpio_set_io(PMU_GPIO_NUM, 1);
    #endif

	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
		dev_err(&client->dev, "gsl I2C functionality not supported\n");
		return -ENODEV;
	}
	ts = devm_kzalloc(&client->dev, sizeof(*ts), GFP_KERNEL);
	if (!ts)
		return -ENOMEM;
	ts->tp.tp_resume = gsl_ts_late_resume;
	ts->tp.tp_suspend = gsl_ts_early_suspend;
	tp_register_fb(&ts->tp);
	ts->client = client;
	i2c_set_clientdata(client, ts);
	this_ts = ts;
	gsl_client = client;
	gsl3673_init();
	rc = gsl3673_ts_init(client, ts);
	if (rc < 0) {
		dev_err(&client->dev, "gsl GSL3673 init failed\n");
		goto error_mutex_destroy;
	}
#ifdef GSLX680_COMPATIBLE
	judge_chip_type(client);
#endif
	INIT_WORK(&ts->download_fw_work, gsl_download_fw_work);
	INIT_WORK(&ts->resume_work, gsl_resume_work);

	rc = init_chip(ts->client);
	if (rc < 0) {
		dev_err(&client->dev, "gsl_probe: init_chip failed\n");
		goto error_init_chip_fail;
	}
	spin_lock_init(&ts->irq_lock);
	client->irq = gpio_to_irq(ts->irq);
	rc = devm_request_irq(&client->dev, client->irq, gsl_ts_irq,
				IRQF_TRIGGER_RISING, client->name, ts);
	if (rc < 0) {
		dev_err(&client->dev, "gsl_probe: request irq failed\n");
		return rc;
	}
#ifdef GSL_MONITOR
	INIT_DELAYED_WORK(&gsl_monitor_work, gsl_monitor_worker);
	gsl_monitor_workqueue = create_singlethread_workqueue
				("gsl_monitor_workqueue");
	queue_delayed_work(gsl_monitor_workqueue, &gsl_monitor_work, 1000);
#endif
#ifdef TPD_PROC_DEBUG
	proc_create(GSL_CONFIG_PROC_FILE, 0644, NULL, &gsl_seq_fops);
	gsl_proc_flag = 0;
#endif
	return 0;
error_init_chip_fail:
	cancel_work_sync(&ts->download_fw_work);
error_mutex_destroy:
	tp_unregister_fb(&ts->tp);
	return rc;
}

static int gsl_ts_remove(struct i2c_client *client)
{
	struct gsl_ts *ts = i2c_get_clientdata(client);

#ifdef GSL_MONITOR
	cancel_delayed_work_sync(&gsl_monitor_work);
	destroy_workqueue(gsl_monitor_workqueue);
#endif
	device_init_wakeup(&client->dev, 0);
	cancel_work_sync(&ts->work);
	destroy_workqueue(ts->wq);
	cancel_work_sync(&ts->download_fw_work);
	return 0;
}

static const struct of_device_id gsl_ts_ids[] = {
	{.compatible = "GSL,GSL3673_800X1280"},
	{ }
};

static const struct i2c_device_id gsl_ts_id[] = {
	{GSL3673_I2C_NAME, 0},
	{}
};

MODULE_DEVICE_TABLE(i2c, gsl_ts_id);

static struct i2c_driver gsl_ts_driver = {
	.driver = {
		.name = GSL3673_I2C_NAME,
		.owner = THIS_MODULE,
		.of_match_table = of_match_ptr(gsl_ts_ids),
	},
	.probe		= gsl_ts_probe,
	.remove		= gsl_ts_remove,
	.id_table	= gsl_ts_id,
};

static int __init gsl_ts_init(void)
{
	return i2c_add_driver(&gsl_ts_driver);
}

static void __exit gsl_ts_exit(void)
{
	i2c_del_driver(&gsl_ts_driver);
}

module_init(gsl_ts_init);
module_exit(gsl_ts_exit);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("GSL3673 touchscreen controller driver");
MODULE_AUTHOR("Guan Yuwei, guanyuwei@basewin.com");
MODULE_ALIAS("platform:gsl_ts");