Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
/* drivers/input/sensors/sensor-dev.c - handle all gsensor in this file
*
* Copyright (C) 2012-2015 ROCKCHIP.
* Author: luowei <lw@rock-chips.com>
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/interrupt.h>
#include <linux/i2c.h>
#include <linux/slab.h>
#include <linux/irq.h>
#include <linux/miscdevice.h>
#include <linux/gpio.h>
#include <linux/uaccess.h>
#include <asm/atomic.h>
#include <linux/delay.h>
#include <linux/input.h>
#include <linux/workqueue.h>
#include <linux/freezer.h>
#include <linux/proc_fs.h>
#include <linux/gpio.h>
#include <linux/of_gpio.h>
#include <linux/of.h>
#ifdef CONFIG_HAS_EARLYSUSPEND
#include <linux/earlysuspend.h>
#endif
#include <linux/l3g4200d.h>
#include <linux/sensor-dev.h>
#include <linux/module.h>
#ifdef CONFIG_COMPAT
#include <linux/compat.h>
#endif
#include <linux/soc/rockchip/rk_vendor_storage.h>
#define SENSOR_CALIBRATION_LEN 64
struct sensor_calibration_data {
<------>s32 accel_offset[3];
<------>s32 gyro_offset[3];
<------>u8 is_accel_calibrated;
<------>u8 is_gyro_calibrated;
};
static struct sensor_private_data *g_sensor[SENSOR_NUM_TYPES];
static struct sensor_operate *sensor_ops[SENSOR_NUM_ID];
static int sensor_probe_times[SENSOR_NUM_ID];
static struct class *sensor_class;
static struct sensor_calibration_data sensor_cali_data;
static int sensor_calibration_data_write(struct sensor_calibration_data *calibration_data)
{
<------>int ret;
<------>u8 data[SENSOR_CALIBRATION_LEN] = {0};
<------>memcpy(data, (u8 *)calibration_data, sizeof(struct sensor_calibration_data));
<------>ret = rk_vendor_write(SENSOR_CALIBRATION_ID, (void *)data, SENSOR_CALIBRATION_LEN);
<------>if (ret < 0) {
<------><------>printk(KERN_ERR "%s failed\n", __func__);
<------><------>return ret;
<------>}
<------>return 0;
}
static int sensor_calibration_data_read(struct sensor_calibration_data *calibration_data)
{
<------>int ret;
<------>u8 data[SENSOR_CALIBRATION_LEN] = {0};
<------>struct sensor_calibration_data *cdata = (struct sensor_calibration_data *)data;
<------>ret = rk_vendor_read(SENSOR_CALIBRATION_ID, (void *)data, SENSOR_CALIBRATION_LEN);
<------>if (ret < 0) {
<------><------>printk(KERN_ERR "%s failed\n", __func__);
<------><------>return ret;
<------>}
<------>if (cdata->is_accel_calibrated == 1) {
<------><------>calibration_data->accel_offset[0] = cdata->accel_offset[0];
<------><------>calibration_data->accel_offset[1] = cdata->accel_offset[1];
<------><------>calibration_data->accel_offset[2] = cdata->accel_offset[2];
<------><------>calibration_data->is_accel_calibrated = 1;
<------>}
<------>if (cdata->is_gyro_calibrated == 1) {
<------><------>calibration_data->gyro_offset[0] = cdata->gyro_offset[0];
<------><------>calibration_data->gyro_offset[1] = cdata->gyro_offset[1];
<------><------>calibration_data->gyro_offset[2] = cdata->gyro_offset[2];
<------><------>calibration_data->is_gyro_calibrated = 1;
<------>}
<------>return 0;
}
static ssize_t accel_calibration_show(struct class *class,
<------><------>struct class_attribute *attr, char *buf)
{
<------>int ret;
<------>struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_ACCEL];
<------>if (sensor == NULL)
<------><------>return sprintf(buf, "no accel sensor find\n");
<------>if (sensor_cali_data.is_accel_calibrated == 1)
<------><------>return sprintf(buf, "accel calibration: %d, %d, %d\n", sensor_cali_data.accel_offset[0],
<------><------><------><------>sensor_cali_data.accel_offset[1], sensor_cali_data.accel_offset[2]);
<------>ret = sensor_calibration_data_read(&sensor_cali_data);
<------>if (ret) {
<------><------>dev_err(&sensor->client->dev, "read accel sensor calibration data failed\n");
<------><------>return sprintf(buf, "read error\n");
<------>}
<------>if (sensor_cali_data.is_accel_calibrated == 1)
<------><------>return sprintf(buf, "accel calibration: %d, %d, %d\n", sensor_cali_data.accel_offset[0],
<------><------><------>sensor_cali_data.accel_offset[1], sensor_cali_data.accel_offset[2]);
<------>return sprintf(buf, "read error\n");
}
#define ACCEL_CAPTURE_TIMES 20
#define ACCEL_SENSITIVE 16384
/* +-1 * 16384 / 9.8 */
#define ACCEL_OFFSET_MAX 1600
static int accel_do_calibration(struct sensor_private_data *sensor)
{
<------>int i;
<------>int ret;
<------>int max_try_times = 20;
<------>long int sum_accel[3] = {0, 0, 0};
<------>mutex_lock(&sensor->operation_mutex);
<------>for (i = 0; i < ACCEL_CAPTURE_TIMES; ) {
<------><------>ret = sensor->ops->report(sensor->client);
<------><------>if (ret < 0)
<------><------><------>dev_err(&sensor->client->dev, "in %s read accel data error\n", __func__);
<------><------>if (abs(sensor->axis.x) > ACCEL_OFFSET_MAX ||
<------><------><------>abs(sensor->axis.y) > ACCEL_OFFSET_MAX ||
<------><------><------>abs(abs(sensor->axis.z) - ACCEL_SENSITIVE) > ACCEL_OFFSET_MAX) {
<------><------><------>sum_accel[0] = 0;
<------><------><------>sum_accel[1] = 0;
<------><------><------>sum_accel[2] = 0;
<------><------><------>i = 0;
<------><------><------>max_try_times--;
<------><------>} else {
<------><------><------>sum_accel[0] += sensor->axis.x;
<------><------><------>sum_accel[1] += sensor->axis.y;
<------><------><------>sum_accel[2] += sensor->axis.z;
<------><------><------>i++;
<------><------>}
<------><------>if (max_try_times == 0) {
<------><------><------>mutex_unlock(&sensor->operation_mutex);
<------><------><------>return -1;
<------><------>}
<------><------>dev_info(&sensor->client->dev, "%d times, read accel data is %d, %d, %d\n",
<------><------><------>i, sensor->axis.x, sensor->axis.y, sensor->axis.z);
<------><------>msleep(sensor->pdata->poll_delay_ms);
<------>}
<------>mutex_unlock(&sensor->operation_mutex);
<------>sensor_cali_data.accel_offset[0] = sum_accel[0] / ACCEL_CAPTURE_TIMES;
<------>sensor_cali_data.accel_offset[1] = sum_accel[1] / ACCEL_CAPTURE_TIMES;
<------>sensor_cali_data.accel_offset[2] = sum_accel[2] / ACCEL_CAPTURE_TIMES;
<------>sensor_cali_data.accel_offset[2] = sensor_cali_data.accel_offset[2] > 0
<------><------>? sensor_cali_data.accel_offset[2] - ACCEL_SENSITIVE : sensor_cali_data.accel_offset[2] + ACCEL_SENSITIVE;
<------>sensor_cali_data.is_accel_calibrated = 1;
<------>dev_info(&sensor->client->dev, "accel offset is %d, %d, %d\n", sensor_cali_data.accel_offset[0],
<------><------>sensor_cali_data.accel_offset[1], sensor_cali_data.accel_offset[2]);
<------>return 0;
}
static ssize_t accel_calibration_store(struct class *class,
<------><------>struct class_attribute *attr, const char *buf, size_t count)
{
<------>struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_ACCEL];
<------>int val, ret;
<------>int pre_status;
<------>if (sensor == NULL)
<------><------>return -1;
<------>ret = kstrtoint(buf, 10, &val);
<------>if (ret) {
<------><------>dev_err(&sensor->client->dev, "%s: kstrtoint error return %d\n", __func__, ret);
<------><------>return -1;
<------>}
<------>if (val != 1) {
<------><------>dev_err(&sensor->client->dev, "%s: error value\n", __func__);
<------><------>return -1;
<------>}
<------>atomic_set(&sensor->is_factory, 1);
<------>pre_status = sensor->status_cur;
<------>if (pre_status == SENSOR_OFF) {
<------><------>mutex_lock(&sensor->operation_mutex);
<------><------>sensor->ops->active(sensor->client, SENSOR_ON, sensor->pdata->poll_delay_ms);
<------><------>mutex_unlock(&sensor->operation_mutex);
<------>} else {
<------><------>sensor->stop_work = 1;
<------><------>if (sensor->pdata->irq_enable)
<------><------><------>disable_irq_nosync(sensor->client->irq);
<------><------>else
<------><------><------>cancel_delayed_work_sync(&sensor->delaywork);
<------>}
<------>ret = accel_do_calibration(sensor);
<------>if (ret < 0) {
<------><------>dev_err(&sensor->client->dev, "accel do calibration failed\n");
<------><------>goto OUT;
<------>}
<------>ret = sensor_calibration_data_write(&sensor_cali_data);
<------>if (ret)
<------><------>dev_err(&sensor->client->dev, "write accel sensor calibration data failed\n");
OUT:
<------>if (pre_status == SENSOR_ON) {
<------><------>sensor->stop_work = 0;
<------><------>if (sensor->pdata->irq_enable)
<------><------><------>enable_irq(sensor->client->irq);
<------><------>else
<------><------><------>schedule_delayed_work(&sensor->delaywork, msecs_to_jiffies(sensor->pdata->poll_delay_ms));
<------>} else {
<------><------>mutex_lock(&sensor->operation_mutex);
<------><------>sensor->ops->active(sensor->client, SENSOR_OFF, sensor->pdata->poll_delay_ms);
<------><------>mutex_unlock(&sensor->operation_mutex);
<------>}
<------>atomic_set(&sensor->is_factory, 0);
<------>wake_up(&sensor->is_factory_ok);
<------>return ret ? ret : count;
}
static CLASS_ATTR_RW(accel_calibration);
static ssize_t gyro_calibration_show(struct class *class,
<------><------>struct class_attribute *attr, char *buf)
{
<------>int ret;
<------>struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_GYROSCOPE];
<------>if (sensor == NULL)
<------><------>return sprintf(buf, "no gyro sensor find\n");
<------>if (sensor_cali_data.is_gyro_calibrated == 1)
<------><------>return sprintf(buf, "gyro calibration: %d, %d, %d\n", sensor_cali_data.gyro_offset[0],
<------><------><------><------>sensor_cali_data.gyro_offset[1], sensor_cali_data.gyro_offset[2]);
<------>ret = sensor_calibration_data_read(&sensor_cali_data);
<------>if (ret) {
<------><------>dev_err(&sensor->client->dev, "read gyro sensor calibration data failed\n");
<------><------>return sprintf(buf, "read error\n");
<------>}
<------>if (sensor_cali_data.is_gyro_calibrated == 1)
<------><------>return sprintf(buf, "gyro calibration: %d, %d, %d\n", sensor_cali_data.gyro_offset[0],
<------><------><------><------>sensor_cali_data.gyro_offset[1], sensor_cali_data.gyro_offset[2]);
<------>return sprintf(buf, "read error\n");
}
#define GYRO_CAPTURE_TIMES 20
static int gyro_do_calibration(struct sensor_private_data *sensor)
{
<------>int i;
<------>int ret;
<------>long int sum_gyro[3] = {0, 0, 0};
<------>mutex_lock(&sensor->operation_mutex);
<------>for (i = 0; i < GYRO_CAPTURE_TIMES; i++) {
<------><------>ret = sensor->ops->report(sensor->client);
<------><------>if (ret < 0) {
<------><------><------>dev_err(&sensor->client->dev, "in %s read gyro data error\n", __func__);
<------><------><------>mutex_unlock(&sensor->operation_mutex);
<------><------><------>return -1;
<------><------>}
<------><------>sum_gyro[0] += sensor->axis.x;
<------><------>sum_gyro[1] += sensor->axis.y;
<------><------>sum_gyro[2] += sensor->axis.z;
<------><------>dev_info(&sensor->client->dev, "%d times, read gyro data is %d, %d, %d\n",
<------><------><------>i, sensor->axis.x, sensor->axis.y, sensor->axis.z);
<------><------>msleep(sensor->pdata->poll_delay_ms);
<------>}
<------>mutex_unlock(&sensor->operation_mutex);
<------>sensor_cali_data.gyro_offset[0] = sum_gyro[0] / GYRO_CAPTURE_TIMES;
<------>sensor_cali_data.gyro_offset[1] = sum_gyro[1] / GYRO_CAPTURE_TIMES;
<------>sensor_cali_data.gyro_offset[2] = sum_gyro[2] / GYRO_CAPTURE_TIMES;
<------>sensor_cali_data.is_gyro_calibrated = 1;
<------>dev_info(&sensor->client->dev, "gyro offset is %d, %d, %d\n", sensor_cali_data.gyro_offset[0],
<------><------>sensor_cali_data.gyro_offset[1], sensor_cali_data.gyro_offset[2]);
<------>return 0;
}
static ssize_t gyro_calibration_store(struct class *class,
<------><------>struct class_attribute *attr, const char *buf, size_t count)
{
<------>struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_GYROSCOPE];
<------>int val, ret;
<------>int pre_status;
<------>if (sensor == NULL)
<------><------>return -1;
<------>ret = kstrtoint(buf, 10, &val);
<------>if (ret) {
<------><------>dev_err(&sensor->client->dev, "%s: kstrtoint error return %d\n", __func__, ret);
<------><------>return -1;
<------>}
<------>if (val != 1) {
<------><------>dev_err(&sensor->client->dev, "%s error value\n", __func__);
<------><------>return -1;
<------>}
<------>atomic_set(&sensor->is_factory, 1);
<------>pre_status = sensor->status_cur;
<------>if (pre_status == SENSOR_OFF) {
<------><------>mutex_lock(&sensor->operation_mutex);
<------><------>sensor->ops->active(sensor->client, SENSOR_ON, sensor->pdata->poll_delay_ms);
<------><------>mutex_unlock(&sensor->operation_mutex);
<------>} else {
<------><------>sensor->stop_work = 1;
<------><------>if (sensor->pdata->irq_enable)
<------><------><------>disable_irq_nosync(sensor->client->irq);
<------><------>else
<------><------><------>cancel_delayed_work_sync(&sensor->delaywork);
<------>}
<------>ret = gyro_do_calibration(sensor);
<------>if (ret < 0) {
<------><------>dev_err(&sensor->client->dev, "gyro do calibration failed\n");
<------><------>goto OUT;
<------>}
<------>ret = sensor_calibration_data_write(&sensor_cali_data);
<------>if (ret)
<------><------>dev_err(&sensor->client->dev, "write gyro sensor calibration data failed\n");
OUT:
<------>if (pre_status == SENSOR_ON) {
<------><------>sensor->stop_work = 0;
<------><------>if (sensor->pdata->irq_enable)
<------><------><------>enable_irq(sensor->client->irq);
<------><------>else
<------><------><------>schedule_delayed_work(&sensor->delaywork, msecs_to_jiffies(sensor->pdata->poll_delay_ms));
<------>} else {
<------><------>mutex_lock(&sensor->operation_mutex);
<------><------>sensor->ops->active(sensor->client, SENSOR_OFF, sensor->pdata->poll_delay_ms);
<------><------>mutex_unlock(&sensor->operation_mutex);
<------>}
<------>atomic_set(&sensor->is_factory, 0);
<------>wake_up(&sensor->is_factory_ok);
<------>return ret ? ret : count;
}
static CLASS_ATTR_RW(gyro_calibration);
static int sensor_class_init(void)
{
<------>int ret ;
<------>sensor_class = class_create(THIS_MODULE, "sensor_class");
<------>ret = class_create_file(sensor_class, &class_attr_accel_calibration);
<------>if (ret) {
<------><------>printk(KERN_ERR "%s:Fail to creat accel class file\n", __func__);
<------><------>return ret;
<------>}
<------>ret = class_create_file(sensor_class, &class_attr_gyro_calibration);
<------>if (ret) {
<------><------>printk(KERN_ERR "%s:Fail to creat gyro class file\n", __func__);
<------><------>return ret;
<------>}
<------>return 0;
}
static int sensor_get_id(struct i2c_client *client, int *value)
{
<------>struct sensor_private_data *sensor = (struct sensor_private_data *) i2c_get_clientdata(client);
<------>int result = 0;
<------>char temp = sensor->ops->id_reg;
<------>int i = 0;
<------>if (sensor->ops->id_reg >= 0) {
<------><------>for (i = 0; i < 3; i++) {
<------><------><------>result = sensor_rx_data(client, &temp, 1);
<------><------><------>*value = temp;
<------><------><------>if (!result)
<------><------><------><------>break;
<------><------>}
<------><------>if (result)
<------><------><------>return result;
<------><------>if (*value != sensor->ops->id_data) {
<------><------><------>dev_err(&client->dev, "%s:id=0x%x is not 0x%x\n", __func__, *value, sensor->ops->id_data);
<------><------><------>result = -1;
<------><------>}
<------>}
<------>return result;
}
static int sensor_initial(struct i2c_client *client)
{
<------>struct sensor_private_data *sensor = (struct sensor_private_data *) i2c_get_clientdata(client);
<------>int result = 0;
<------>/* register setting according to chip datasheet */
<------>result = sensor->ops->init(client);
<------>if (result < 0) {
<------><------>dev_err(&client->dev, "%s:fail to init sensor\n", __func__);
<------><------>return result;
<------>}
<------>return result;
}
static int sensor_chip_init(struct i2c_client *client)
{
<------>struct sensor_private_data *sensor = (struct sensor_private_data *) i2c_get_clientdata(client);
<------>struct sensor_operate *ops = sensor_ops[(int)sensor->i2c_id->driver_data];
<------>int result = 0;
<------>if (ops) {
<------><------>sensor->ops = ops;
<------>} else {
<------><------>dev_err(&client->dev, "%s:ops is null,sensor name is %s\n", __func__, sensor->i2c_id->name);
<------><------>result = -1;
<------><------>goto error;
<------>}
<------>if ((sensor->type != ops->type) || ((int)sensor->i2c_id->driver_data != ops->id_i2c)) {
<------><------>dev_err(&client->dev, "%s:type or id is different:type=%d,%d,id=%d,%d\n", __func__, sensor->type, ops->type, (int)sensor->i2c_id->driver_data, ops->id_i2c);
<------><------>result = -1;
<------><------>goto error;
<------>}
<------>if (!ops->init || !ops->active || !ops->report) {
<------><------>dev_err(&client->dev, "%s:error:some function is needed\n", __func__);
<------><------>result = -1;
<------><------>goto error;
<------>}
<------>result = sensor_get_id(sensor->client, &sensor->devid);
<------>if (result < 0) {
<------><------>dev_err(&client->dev, "%s:fail to read %s devid:0x%x\n", __func__, sensor->i2c_id->name, sensor->devid);
<------><------>result = -2;
<------><------>goto error;
<------>}
<------>dev_info(&client->dev, "%s:%s:devid=0x%x,ops=0x%p\n", __func__, sensor->i2c_id->name, sensor->devid, sensor->ops);
<------>result = sensor_initial(sensor->client);
<------>if (result < 0) {
<------><------>dev_err(&client->dev, "%s:fail to init sensor\n", __func__);
<------><------>result = -2;
<------><------>goto error;
<------>}
<------>return 0;
error:
<------>return result;
}
static int sensor_reset_rate(struct i2c_client *client, int rate)
{
<------>struct sensor_private_data *sensor = (struct sensor_private_data *) i2c_get_clientdata(client);
<------>int result = 0;
<------>if (rate < 5)
<------><------>rate = 5;
<------>else if (rate > 200)
<------><------>rate = 200;
<------>dev_info(&client->dev, "set sensor poll time to %dms\n", rate);
<------>/* work queue is always slow, we need more quickly to match hal rate */
<------>if (sensor->pdata->poll_delay_ms == (rate - 4))
<------><------>return 0;
<------>sensor->pdata->poll_delay_ms = rate - 4;
<------>if (sensor->status_cur == SENSOR_ON) {
<------><------>if (!sensor->pdata->irq_enable) {
<------><------><------>sensor->stop_work = 1;
<------><------><------>cancel_delayed_work_sync(&sensor->delaywork);
<------><------>}
<------><------>sensor->ops->active(client, SENSOR_OFF, rate);
<------><------>result = sensor->ops->active(client, SENSOR_ON, rate);
<------><------>if (!sensor->pdata->irq_enable) {
<------><------><------>sensor->stop_work = 0;
<------><------><------>schedule_delayed_work(&sensor->delaywork, msecs_to_jiffies(sensor->pdata->poll_delay_ms));
<------><------>}
<------>}
<------>return result;
}
static void sensor_delaywork_func(struct work_struct *work)
{
<------>struct delayed_work *delaywork = container_of(work, struct delayed_work, work);
<------>struct sensor_private_data *sensor = container_of(delaywork, struct sensor_private_data, delaywork);
<------>struct i2c_client *client = sensor->client;
<------>int result;
<------>mutex_lock(&sensor->sensor_mutex);
<------>result = sensor->ops->report(client);
<------>if (result < 0)
<------><------>dev_err(&client->dev, "%s: Get data failed\n", __func__);
<------>mutex_unlock(&sensor->sensor_mutex);
<------>if ((!sensor->pdata->irq_enable) && (sensor->stop_work == 0))
<------><------>schedule_delayed_work(&sensor->delaywork, msecs_to_jiffies(sensor->pdata->poll_delay_ms));
}
/*
* This is a threaded IRQ handler so can access I2C/SPI. Since all
* interrupts are clear on read the IRQ line will be reasserted and
* the physical IRQ will be handled again if another interrupt is
* asserted while we run - in the normal course of events this is a
* rare occurrence so we save I2C/SPI reads. We're also assuming that
* it's rare to get lots of interrupts firing simultaneously so try to
* minimise I/O.
*/
static irqreturn_t sensor_interrupt(int irq, void *dev_id)
{
<------>struct sensor_private_data *sensor =
<------><------><------>(struct sensor_private_data *)dev_id;
<------>struct i2c_client *client = sensor->client;
<------>mutex_lock(&sensor->sensor_mutex);
<------>if (sensor->ops->report(client) < 0)
<------><------>dev_err(&client->dev, "%s: Get data failed\n", __func__);
<------>mutex_unlock(&sensor->sensor_mutex);
<------>return IRQ_HANDLED;
}
static int sensor_irq_init(struct i2c_client *client)
{
<------>struct sensor_private_data *sensor =
<------><------><------>(struct sensor_private_data *) i2c_get_clientdata(client);
<------>int result = 0;
<------>int irq;
<------>if ((sensor->pdata->irq_enable) && (sensor->pdata->irq_flags != SENSOR_UNKNOW_DATA)) {
<------><------>if (sensor->pdata->poll_delay_ms <= 0)
<------><------><------>sensor->pdata->poll_delay_ms = 30;
<------><------>result = gpio_request(client->irq, sensor->i2c_id->name);
<------><------>if (result)
<------><------><------>dev_err(&client->dev, "%s:fail to request gpio :%d\n", __func__, client->irq);
<------><------>irq = gpio_to_irq(client->irq);
<------><------>result = devm_request_threaded_irq(&client->dev, irq, NULL, sensor_interrupt, sensor->pdata->irq_flags | IRQF_ONESHOT, sensor->ops->name, sensor);
<------><------>if (result) {
<------><------><------>dev_err(&client->dev, "%s:fail to request irq = %d, ret = 0x%x\n", __func__, irq, result);
<------><------><------>goto error;
<------><------>}
<------><------>client->irq = irq;
<------><------>disable_irq_nosync(client->irq);
<------><------>dev_info(&client->dev, "%s:use irq=%d\n", __func__, irq);
<------>} else if (!sensor->pdata->irq_enable) {
<------><------>INIT_DELAYED_WORK(&sensor->delaywork, sensor_delaywork_func);
<------><------>sensor->stop_work = 1;
<------><------>if (sensor->pdata->poll_delay_ms <= 0)
<------><------><------>sensor->pdata->poll_delay_ms = 30;
<------><------>dev_info(&client->dev, "%s:use polling,delay=%d ms\n", __func__, sensor->pdata->poll_delay_ms);
<------>}
error:
<------>return result;
}
void sensor_shutdown(struct i2c_client *client)
{
#ifdef CONFIG_HAS_EARLYSUSPEND
<------>struct sensor_private_data *sensor =
<------><------>(struct sensor_private_data *) i2c_get_clientdata(client);
<------>if ((sensor->ops->suspend) && (sensor->ops->resume))
<------><------>unregister_early_suspend(&sensor->early_suspend);
#endif
}
EXPORT_SYMBOL(sensor_shutdown);
#ifdef CONFIG_HAS_EARLYSUSPEND
static void sensor_suspend(struct early_suspend *h)
{
<------>struct sensor_private_data *sensor =
<------><------><------>container_of(h, struct sensor_private_data, early_suspend);
<------>if (sensor->ops->suspend)
<------><------>sensor->ops->suspend(sensor->client);
}
static void sensor_resume(struct early_suspend *h)
{
<------>struct sensor_private_data *sensor =
<------><------><------>container_of(h, struct sensor_private_data, early_suspend);
<------>if (sensor->ops->resume)
<------><------>sensor->ops->resume(sensor->client);
}
#endif
#ifdef CONFIG_PM
static int __maybe_unused sensor_of_suspend(struct device *dev)
{
<------>struct sensor_private_data *sensor = dev_get_drvdata(dev);
<------>if (sensor->ops->suspend)
<------><------>sensor->ops->suspend(sensor->client);
<------>return 0;
}
static int __maybe_unused sensor_of_resume(struct device *dev)
{
<------>struct sensor_private_data *sensor = dev_get_drvdata(dev);
<------>if (sensor->ops->resume)
<------><------>sensor->ops->resume(sensor->client);
<------>if (sensor->pdata->power_off_in_suspend)
<------><------>sensor_initial(sensor->client);
<------>return 0;
}
const struct dev_pm_ops sensor_pm_ops = {
<------>SET_SYSTEM_SLEEP_PM_OPS(sensor_of_suspend, sensor_of_resume)
};
EXPORT_SYMBOL(sensor_pm_ops);
#define SENSOR_PM_OPS (&sensor_pm_ops)
#else
#define SENSOR_PM_OPS NULL
#endif
static int angle_dev_open(struct inode *inode, struct file *file)
{
<------>return 0;
}
static int angle_dev_release(struct inode *inode, struct file *file)
{
<------>return 0;
}
static int sensor_enable(struct sensor_private_data *sensor, int enable)
{
<------>int result = 0;
<------>struct i2c_client *client = sensor->client;
<------>if (enable == SENSOR_ON) {
<------><------>result = sensor->ops->active(client, 1, sensor->pdata->poll_delay_ms);
<------><------>if (result < 0) {
<------><------><------>dev_err(&client->dev, "%s:fail to active sensor,ret=%d\n", __func__, result);
<------><------><------>return result;
<------><------>}
<------><------>sensor->status_cur = SENSOR_ON;
<------><------>sensor->stop_work = 0;
<------><------>if (sensor->pdata->irq_enable)
<------><------><------>enable_irq(client->irq);
<------><------>else
<------><------><------>schedule_delayed_work(&sensor->delaywork, msecs_to_jiffies(sensor->pdata->poll_delay_ms));
<------><------>dev_info(&client->dev, "sensor on: starting poll sensor data %dms\n", sensor->pdata->poll_delay_ms);
<------>} else {
<------><------>sensor->stop_work = 1;
<------><------>if (sensor->pdata->irq_enable)
<------><------><------>disable_irq_nosync(client->irq);
<------><------>else
<------><------><------>cancel_delayed_work_sync(&sensor->delaywork);
<------><------>result = sensor->ops->active(client, 0, sensor->pdata->poll_delay_ms);
<------><------>if (result < 0) {
<------><------><------>dev_err(&client->dev, "%s:fail to disable sensor,ret=%d\n", __func__, result);
<------><------><------>return result;
<------><------>}
<------><------>sensor->status_cur = SENSOR_OFF;
<------>}
<------>return result;
}
/* ioctl - I/O control */
static long angle_dev_ioctl(struct file *file,
<------><------><------> unsigned int cmd, unsigned long arg)
{
<------>struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_ANGLE];
<------>struct i2c_client *client = sensor->client;
<------>void __user *argp = (void __user *)arg;
<------>struct sensor_axis axis = {0};
<------>short rate;
<------>int result = 0;
<------>switch (cmd) {
<------>case GSENSOR_IOCTL_APP_SET_RATE:
<------><------>if (copy_from_user(&rate, argp, sizeof(rate))) {
<------><------><------>result = -EFAULT;
<------><------><------>goto error;
<------><------>}
<------><------>break;
<------>default:
<------><------>break;
<------>}
<------>switch (cmd) {
<------>case GSENSOR_IOCTL_START:
<------><------>mutex_lock(&sensor->operation_mutex);
<------><------>if (++sensor->start_count == 1) {
<------><------><------>if (sensor->status_cur == SENSOR_OFF) {
<------><------><------><------>sensor_enable(sensor, SENSOR_ON);
<------><------><------>}
<------><------>}
<------><------>mutex_unlock(&sensor->operation_mutex);
<------><------>break;
<------>case GSENSOR_IOCTL_CLOSE:
<------><------>mutex_lock(&sensor->operation_mutex);
<------><------>if (--sensor->start_count == 0) {
<------><------><------>if (sensor->status_cur == SENSOR_ON) {
<------><------><------><------>sensor_enable(sensor, SENSOR_OFF);
<------><------><------>}
<------><------>}
<------><------>mutex_unlock(&sensor->operation_mutex);
<------><------>break;
<------>case GSENSOR_IOCTL_APP_SET_RATE:
<------><------>mutex_lock(&sensor->operation_mutex);
<------><------>result = sensor_reset_rate(client, rate);
<------><------>if (result < 0) {
<------><------><------>mutex_unlock(&sensor->operation_mutex);
<------><------><------>goto error;
<------><------>}
<------><------>mutex_unlock(&sensor->operation_mutex);
<------><------>break;
<------>case GSENSOR_IOCTL_GETDATA:
<------><------>mutex_lock(&sensor->data_mutex);
<------><------>memcpy(&axis, &sensor->axis, sizeof(sensor->axis));
<------><------>mutex_unlock(&sensor->data_mutex);
<------><------>break;
<------>default:
<------><------>result = -ENOTTY;
<------>goto error;
<------>}
<------>switch (cmd) {
<------>case GSENSOR_IOCTL_GETDATA:
<------><------>if (copy_to_user(argp, &axis, sizeof(axis))) {
<------><------><------>dev_err(&client->dev, "failed to copy sense data to user space.\n");
<------><------><------>result = -EFAULT;
<------><------><------>goto error;
<------><------>}
<------><------>break;
<------>default:
<------><------>break;
<------>}
error:
<------>return result;
}
static int gsensor_dev_open(struct inode *inode, struct file *file)
{
<------>return 0;
}
static int gsensor_dev_release(struct inode *inode, struct file *file)
{
<------>return 0;
}
/* ioctl - I/O control */
static long gsensor_dev_ioctl(struct file *file,
<------><------><------> unsigned int cmd, unsigned long arg)
{
<------>struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_ACCEL];
<------>struct i2c_client *client = sensor->client;
<------>void __user *argp = (void __user *)arg;
<------>struct sensor_axis axis = {0};
<------>short rate;
<------>int result = 0;
<------>wait_event_interruptible(sensor->is_factory_ok, (atomic_read(&sensor->is_factory) == 0));
<------>switch (cmd) {
<------>case GSENSOR_IOCTL_APP_SET_RATE:
<------><------>if (copy_from_user(&rate, argp, sizeof(rate))) {
<------><------><------>result = -EFAULT;
<------><------><------>goto error;
<------><------>}
<------><------>break;
<------>default:
<------><------>break;
<------>}
<------>switch (cmd) {
<------>case GSENSOR_IOCTL_START:
<------><------>mutex_lock(&sensor->operation_mutex);
<------><------>if (++sensor->start_count == 1) {
<------><------><------>if (sensor->status_cur == SENSOR_OFF) {
<------><------><------><------>sensor_enable(sensor, SENSOR_ON);
<------><------><------>}
<------><------>}
<------><------>mutex_unlock(&sensor->operation_mutex);
<------><------>break;
<------>case GSENSOR_IOCTL_CLOSE:
<------><------>mutex_lock(&sensor->operation_mutex);
<------><------>if (--sensor->start_count == 0) {
<------><------><------>if (sensor->status_cur == SENSOR_ON) {
<------><------><------><------>sensor_enable(sensor, SENSOR_OFF);
<------><------><------>}
<------><------>}
<------><------>mutex_unlock(&sensor->operation_mutex);
<------><------>break;
<------>case GSENSOR_IOCTL_APP_SET_RATE:
<------><------>mutex_lock(&sensor->operation_mutex);
<------><------>result = sensor_reset_rate(client, rate);
<------><------>if (result < 0) {
<------><------><------>mutex_unlock(&sensor->operation_mutex);
<------><------><------>goto error;
<------><------>}
<------><------>mutex_unlock(&sensor->operation_mutex);
<------><------>break;
<------>case GSENSOR_IOCTL_GETDATA:
<------><------>mutex_lock(&sensor->data_mutex);
<------><------>memcpy(&axis, &sensor->axis, sizeof(sensor->axis));
<------><------>mutex_unlock(&sensor->data_mutex);
<------><------>break;
<------>case GSENSOR_IOCTL_GET_CALIBRATION:
<------><------>if (sensor_cali_data.is_accel_calibrated != 1) {
<------><------><------>if (sensor_calibration_data_read(&sensor_cali_data)) {
<------><------><------><------>dev_err(&client->dev, "failed to read accel offset data from storage\n");
<------><------><------><------>result = -EFAULT;
<------><------><------><------>goto error;
<------><------><------>}
<------><------>}
<------><------>if (sensor_cali_data.is_accel_calibrated == 1) {
<------><------><------>if (copy_to_user(argp, sensor_cali_data.accel_offset, sizeof(sensor_cali_data.accel_offset))) {
<------><------><------><------>dev_err(&client->dev, "failed to copy accel offset data to user\n");
<------><------><------><------>result = -EFAULT;
<------><------><------><------>goto error;
<------><------><------>}
<------><------>}
<------><------>break;
<------>default:
<------><------>result = -ENOTTY;
<------>goto error;
<------>}
<------>switch (cmd) {
<------>case GSENSOR_IOCTL_GETDATA:
<------><------>if (copy_to_user(argp, &axis, sizeof(axis))) {
<------><------><------>dev_err(&client->dev, "failed to copy sense data to user space.\n");
<------><------><------>result = -EFAULT;
<------><------><------>goto error;
<------><------>}
<------><------>break;
<------>default:
<------><------>break;
<------>}
error:
<------>return result;
}
static int compass_dev_open(struct inode *inode, struct file *file)
{
<------>struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_COMPASS];
<------>int flag = 0;
<------>flag = atomic_read(&sensor->flags.open_flag);
<------>if (!flag) {
<------><------>atomic_set(&sensor->flags.open_flag, 1);
<------><------>wake_up(&sensor->flags.open_wq);
<------>}
<------>return 0;
}
static int compass_dev_release(struct inode *inode, struct file *file)
{
<------>struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_COMPASS];
<------>int flag = 0;
<------>flag = atomic_read(&sensor->flags.open_flag);
<------>if (flag) {
<------><------>atomic_set(&sensor->flags.open_flag, 0);
<------><------>wake_up(&sensor->flags.open_wq);
<------>}
<------>return 0;
}
#ifdef CONFIG_COMPAT
/* ioctl - I/O control */
static long compass_dev_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
<------>void __user *arg64 = compat_ptr(arg);
<------>int result = 0;
<------>if (!file->f_op || !file->f_op->unlocked_ioctl) {
<------><------>printk(KERN_ERR "file->f_op or file->f_op->unlocked_ioctl is null\n");
<------><------>return -ENOTTY;
<------>}
<------>switch (cmd) {
<------>case COMPAT_ECS_IOCTL_APP_SET_MFLAG:
<------><------>if (file->f_op->unlocked_ioctl)
<------><------><------>result = file->f_op->unlocked_ioctl(file, ECS_IOCTL_APP_SET_MFLAG, (unsigned long)arg64);
<------><------>break;
<------>case COMPAT_ECS_IOCTL_APP_GET_MFLAG:
<------><------>if (file->f_op->unlocked_ioctl)
<------><------><------>result = file->f_op->unlocked_ioctl(file, ECS_IOCTL_APP_GET_MFLAG, (unsigned long)arg64);
<------><------>break;
<------>case COMPAT_ECS_IOCTL_APP_SET_AFLAG:
<------><------>if (file->f_op->unlocked_ioctl)
<------><------><------>result = file->f_op->unlocked_ioctl(file, ECS_IOCTL_APP_SET_AFLAG, (unsigned long)arg64);
<------><------>break;
<------>case COMPAT_ECS_IOCTL_APP_GET_AFLAG:
<------><------>if (file->f_op->unlocked_ioctl)
<------><------><------>result = file->f_op->unlocked_ioctl(file, ECS_IOCTL_APP_GET_AFLAG, (unsigned long)arg64);
<------><------>break;
<------>case COMPAT_ECS_IOCTL_APP_SET_MVFLAG:
<------><------>if (file->f_op->unlocked_ioctl)
<------><------><------>result = file->f_op->unlocked_ioctl(file, ECS_IOCTL_APP_SET_MVFLAG, (unsigned long)arg64);
<------><------>break;
<------>case COMPAT_ECS_IOCTL_APP_GET_MVFLAG:
<------><------>if (file->f_op->unlocked_ioctl)
<------><------><------>result = file->f_op->unlocked_ioctl(file, ECS_IOCTL_APP_GET_MVFLAG, (unsigned long)arg64);
<------><------>break;
<------>case COMPAT_ECS_IOCTL_APP_SET_DELAY:
<------><------>if (file->f_op->unlocked_ioctl)
<------><------><------>result = file->f_op->unlocked_ioctl(file, ECS_IOCTL_APP_SET_DELAY, (unsigned long)arg64);
<------><------>break;
<------>case COMPAT_ECS_IOCTL_APP_GET_DELAY:
<------><------>if (file->f_op->unlocked_ioctl)
<------><------><------>result = file->f_op->unlocked_ioctl(file, ECS_IOCTL_APP_GET_DELAY, (unsigned long)arg64);
<------><------>break;
<------>default:
<------><------>break;
<------>}
<------>return result;
}
#endif
/* ioctl - I/O control */
static long compass_dev_ioctl(struct file *file,
<------><------><------> unsigned int cmd, unsigned long arg)
{
<------>struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_COMPASS];
<------>struct i2c_client *client = sensor->client;
<------>void __user *argp = (void __user *)arg;
<------>int result = 0;
<------>short flag;
<------>switch (cmd) {
<------>case ECS_IOCTL_APP_SET_MFLAG:
<------>case ECS_IOCTL_APP_SET_AFLAG:
<------>case ECS_IOCTL_APP_SET_MVFLAG:
<------><------>if (copy_from_user(&flag, argp, sizeof(flag)))
<------><------><------>return -EFAULT;
<------><------>if (flag < 0 || flag > 1)
<------><------><------>return -EINVAL;
<------><------>break;
<------>case ECS_IOCTL_APP_SET_DELAY:
<------><------>if (copy_from_user(&flag, argp, sizeof(flag)))
<------><------><------>return -EFAULT;
<------><------>break;
<------>default:
<------><------>break;
<------>}
<------>switch (cmd) {
<------>case ECS_IOCTL_APP_SET_MFLAG:
<------><------>atomic_set(&sensor->flags.m_flag, flag);
<------><------>break;
<------>case ECS_IOCTL_APP_GET_MFLAG:
<------><------>flag = atomic_read(&sensor->flags.m_flag);
<------><------>break;
<------>case ECS_IOCTL_APP_SET_AFLAG:
<------><------>atomic_set(&sensor->flags.a_flag, flag);
<------><------>break;
<------>case ECS_IOCTL_APP_GET_AFLAG:
<------><------>flag = atomic_read(&sensor->flags.a_flag);
<------><------>break;
<------>case ECS_IOCTL_APP_SET_MVFLAG:
<------><------>atomic_set(&sensor->flags.mv_flag, flag);
<------><------>break;
<------>case ECS_IOCTL_APP_GET_MVFLAG:
<------><------>flag = atomic_read(&sensor->flags.mv_flag);
<------><------>break;
<------>case ECS_IOCTL_APP_SET_DELAY:
<------><------>sensor->flags.delay = flag;
<------><------>mutex_lock(&sensor->operation_mutex);
<------><------>result = sensor_reset_rate(client, flag);
<------><------>if (result < 0) {
<------><------><------>mutex_unlock(&sensor->operation_mutex);
<------><------><------>return result;
<------><------>}
<------><------>mutex_unlock(&sensor->operation_mutex);
<------><------>break;
<------>case ECS_IOCTL_APP_GET_DELAY:
<------><------>flag = sensor->flags.delay;
<------><------>break;
<------>default:
<------><------>return -ENOTTY;
<------>}
<------>switch (cmd) {
<------>case ECS_IOCTL_APP_GET_MFLAG:
<------>case ECS_IOCTL_APP_GET_AFLAG:
<------>case ECS_IOCTL_APP_GET_MVFLAG:
<------>case ECS_IOCTL_APP_GET_DELAY:
<------><------>if (copy_to_user(argp, &flag, sizeof(flag)))
<------><------><------>return -EFAULT;
<------><------>break;
<------>default:
<------><------>break;
<------>}
<------>return result;
}
static int gyro_dev_open(struct inode *inode, struct file *file)
{
<------>return 0;
}
static int gyro_dev_release(struct inode *inode, struct file *file)
{
<------>return 0;
}
/* ioctl - I/O control */
static long gyro_dev_ioctl(struct file *file,
<------><------><------> unsigned int cmd, unsigned long arg)
{
<------>struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_GYROSCOPE];
<------>struct i2c_client *client = sensor->client;
<------>void __user *argp = (void __user *)arg;
<------>int result = 0;
<------>int rate;
<------>wait_event_interruptible(sensor->is_factory_ok, (atomic_read(&sensor->is_factory) == 0));
<------>switch (cmd) {
<------>case L3G4200D_IOCTL_GET_ENABLE:
<------><------>result = !sensor->status_cur;
<------><------>if (copy_to_user(argp, &result, sizeof(result))) {
<------><------><------>dev_err(&client->dev, "%s:failed to copy status to user space.\n", __func__);
<------><------><------>return -EFAULT;
<------><------>}
<------><------>break;
<------>case L3G4200D_IOCTL_SET_ENABLE:
<------><------>if (copy_from_user(&result, argp, sizeof(result))) {
<------><------><------>dev_err(&client->dev, "%s:failed to copy gyro sensor status from user space.\n", __func__);
<------><------><------>return -EFAULT;
<------><------>}
<------><------>mutex_lock(&sensor->operation_mutex);
<------><------>if (result) {
<------><------><------>if (sensor->status_cur == SENSOR_OFF)
<------><------><------><------>sensor_enable(sensor, SENSOR_ON);
<------><------>} else {
<------><------><------>if (sensor->status_cur == SENSOR_ON)
<------><------><------><------>sensor_enable(sensor, SENSOR_OFF);
<------><------>}
<------><------>result = sensor->status_cur;
<------><------>if (copy_to_user(argp, &result, sizeof(result))) {
<------><------><------>mutex_unlock(&sensor->operation_mutex);
<------><------><------>dev_err(&client->dev, "%s:failed to copy sense data to user space.\n", __func__);
<------><------><------>return -EFAULT;
<------><------>}
<------><------>mutex_unlock(&sensor->operation_mutex);
<------><------>break;
<------>case L3G4200D_IOCTL_SET_DELAY:
<------><------>if (copy_from_user(&rate, argp, sizeof(rate))) {
<------><------><------>dev_err(&client->dev, "L3G4200D_IOCTL_SET_DELAY: copy form user failed\n");
<------><------><------>return -EFAULT;
<------><------>}
<------><------>mutex_lock(&sensor->operation_mutex);
<------><------>result = sensor_reset_rate(client, rate);
<------><------>if (result < 0) {
<------><------><------>dev_err(&client->dev, "gyro reset rate failed\n");
<------><------><------>mutex_unlock(&sensor->operation_mutex);
<------><------><------>goto error;
<------><------>}
<------><------>mutex_unlock(&sensor->operation_mutex);
<------><------>break;
<------>case L3G4200D_IOCTL_GET_CALIBRATION:
<------><------>if (sensor_cali_data.is_gyro_calibrated != 1) {
<------><------><------>if (sensor_calibration_data_read(&sensor_cali_data)) {
<------><------><------><------>dev_err(&client->dev, "failed to read gyro offset data from storage\n");
<------><------><------><------>result = -EFAULT;
<------><------><------><------>goto error;
<------><------><------>}
<------><------>}
<------><------>if (sensor_cali_data.is_gyro_calibrated == 1) {
<------><------><------>if (copy_to_user(argp, sensor_cali_data.gyro_offset, sizeof(sensor_cali_data.gyro_offset))) {
<------><------><------><------>dev_err(&client->dev, "failed to copy gyro offset data to user\n");
<------><------><------><------>result = -EFAULT;
<------><------><------><------>goto error;
<------><------><------>}
<------><------>}
<------><------>break;
<------>default:
<------><------>return -ENOTTY;
<------>}
error:
<------>return result;
}
static int light_dev_open(struct inode *inode, struct file *file)
{
<------>return 0;
}
static int light_dev_release(struct inode *inode, struct file *file)
{
<------>return 0;
}
#ifdef CONFIG_COMPAT
static long light_dev_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
<------>long ret = 0;
<------>void __user *arg64 = compat_ptr(arg);
<------>if (!file->f_op || !file->f_op->unlocked_ioctl) {
<------><------>printk(KERN_ERR "[DEBUG] file->f_op or file->f_op->unlocked_ioctl is null\n");
<------><------>return -ENOTTY;
<------>}
<------>switch (cmd) {
<------>case COMPAT_LIGHTSENSOR_IOCTL_GET_ENABLED:
<------><------>if (file->f_op->unlocked_ioctl)
<------><------><------>ret = file->f_op->unlocked_ioctl(file, LIGHTSENSOR_IOCTL_GET_ENABLED, (unsigned long)arg64);
<------><------>break;
<------>case COMPAT_LIGHTSENSOR_IOCTL_ENABLE:
<------><------>if (file->f_op->unlocked_ioctl)
<------><------><------>ret = file->f_op->unlocked_ioctl(file, LIGHTSENSOR_IOCTL_ENABLE, (unsigned long)arg64);
<------><------>break;
<------>case COMPAT_LIGHTSENSOR_IOCTL_SET_RATE:
<------><------>if (file->f_op->unlocked_ioctl)
<------><------><------>ret = file->f_op->unlocked_ioctl(file, LIGHTSENSOR_IOCTL_SET_RATE, (unsigned long)arg64);
<------><------>break;
<------>default:
<------><------>break;
<------>}
<------>return ret;
}
#endif
/* ioctl - I/O control */
static long light_dev_ioctl(struct file *file,
<------><------><------> unsigned int cmd, unsigned long arg)
{
<------>struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_LIGHT];
<------>struct i2c_client *client = sensor->client;
<------>void __user *argp = (void __user *)arg;
<------>int result = 0;
<------>short rate;
<------>switch (cmd) {
<------>case LIGHTSENSOR_IOCTL_SET_RATE:
<------><------>if (copy_from_user(&rate, argp, sizeof(rate))) {
<------><------><------>dev_err(&client->dev, "%s:failed to copy light sensor rate from user space.\n", __func__);
<------><------><------>return -EFAULT;
<------><------>}
<------><------>mutex_lock(&sensor->operation_mutex);
<------><------>result = sensor_reset_rate(client, rate);
<------><------>if (result < 0) {
<------><------><------>mutex_unlock(&sensor->operation_mutex);
<------><------><------>goto error;
<------><------>}
<------><------>mutex_unlock(&sensor->operation_mutex);
<------><------>break;
<------>case LIGHTSENSOR_IOCTL_GET_ENABLED:
<------><------>result = sensor->status_cur;
<------><------>if (copy_to_user(argp, &result, sizeof(result))) {
<------><------><------>dev_err(&client->dev, "%s:failed to copy light sensor status to user space.\n", __func__);
<------><------><------>return -EFAULT;
<------><------>}
<------><------>break;
<------>case LIGHTSENSOR_IOCTL_ENABLE:
<------><------>if (copy_from_user(&result, argp, sizeof(result))) {
<------><------><------>dev_err(&client->dev, "%s:failed to copy light sensor status from user space.\n", __func__);
<------><------><------>return -EFAULT;
<------><------>}
<------><------>mutex_lock(&sensor->operation_mutex);
<------><------>if (result) {
<------><------><------>if (sensor->status_cur == SENSOR_OFF)
<------><------><------><------>sensor_enable(sensor, SENSOR_ON);
<------><------>} else {
<------><------><------>if (sensor->status_cur == SENSOR_ON)
<------><------><------><------>sensor_enable(sensor, SENSOR_OFF);
<------><------>}
<------><------>mutex_unlock(&sensor->operation_mutex);
<------><------>break;
<------>default:
<------><------>break;
<------>}
error:
<------>return result;
}
static int proximity_dev_open(struct inode *inode, struct file *file)
{
<------>return 0;
}
static int proximity_dev_release(struct inode *inode, struct file *file)
{
<------>return 0;
}
#ifdef CONFIG_COMPAT
static long proximity_dev_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
<------>long ret = 0;
<------>void __user *arg64 = compat_ptr(arg);
<------>if (!file->f_op || !file->f_op->unlocked_ioctl) {
<------><------>printk(KERN_ERR "file->f_op or file->f_op->unlocked_ioctl is null\n");
<------><------>return -ENOTTY;
<------>}
<------>switch (cmd) {
<------>case COMPAT_PSENSOR_IOCTL_GET_ENABLED:
<------><------>if (file->f_op->unlocked_ioctl)
<------><------><------>ret = file->f_op->unlocked_ioctl(file, PSENSOR_IOCTL_GET_ENABLED, (unsigned long)arg64);
<------><------>break;
<------>case COMPAT_PSENSOR_IOCTL_ENABLE:
<------><------>if (file->f_op->unlocked_ioctl)
<------><------><------>ret = file->f_op->unlocked_ioctl(file, PSENSOR_IOCTL_ENABLE, (unsigned long)arg64);
<------><------>break;
<------>default:
<------><------>break;
<------>}
<------>return ret;
}
#endif
/* ioctl - I/O control */
static long proximity_dev_ioctl(struct file *file,
<------><------><------> unsigned int cmd, unsigned long arg)
{
<------>struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_PROXIMITY];
<------>void __user *argp = (void __user *)arg;
<------>int result = 0;
<------>switch (cmd) {
<------>case PSENSOR_IOCTL_GET_ENABLED:
<------><------>result = sensor->status_cur;
<------><------>if (copy_to_user(argp, &result, sizeof(result))) {
<------><------><------>dev_err(&sensor->client->dev, "%s:failed to copy psensor status to user space.\n", __func__);
<------><------><------>return -EFAULT;
<------><------>}
<------><------>break;
<------>case PSENSOR_IOCTL_ENABLE:
<------><------>if (copy_from_user(&result, argp, sizeof(result))) {
<------><------><------>dev_err(&sensor->client->dev, "%s:failed to copy psensor status from user space.\n", __func__);
<------><------><------>return -EFAULT;
<------><------>}
<------><------>mutex_lock(&sensor->operation_mutex);
<------><------>if (result) {
<------><------><------>if (sensor->status_cur == SENSOR_OFF)
<------><------><------><------>sensor_enable(sensor, SENSOR_ON);
<------><------>} else {
<------><------><------>if (sensor->status_cur == SENSOR_ON)
<------><------><------><------>sensor_enable(sensor, SENSOR_OFF);
<------><------>}
<------><------>mutex_unlock(&sensor->operation_mutex);
<------><------>break;
<------>default:
<------><------>break;
<------>}
<------>return result;
}
static int temperature_dev_open(struct inode *inode, struct file *file)
{
<------>return 0;
}
static int temperature_dev_release(struct inode *inode, struct file *file)
{
<------>return 0;
}
/* ioctl - I/O control */
static long temperature_dev_ioctl(struct file *file,
<------><------><------> unsigned int cmd, unsigned long arg)
{
<------>struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_TEMPERATURE];
<------>void __user *argp = (void __user *)arg;
<------>int result = 0;
<------>switch (cmd) {
<------>case TEMPERATURE_IOCTL_GET_ENABLED:
<------><------>result = sensor->status_cur;
<------><------>if (copy_to_user(argp, &result, sizeof(result))) {
<------><------><------>dev_err(&sensor->client->dev, "%s:failed to copy temperature sensor status to user space.\n", __func__);
<------><------><------>return -EFAULT;
<------><------>}
<------><------>break;
<------>case TEMPERATURE_IOCTL_ENABLE:
<------><------>if (copy_from_user(&result, argp, sizeof(result))) {
<------><------><------>dev_err(&sensor->client->dev, "%s:failed to copy temperature sensor status from user space.\n", __func__);
<------><------><------>return -EFAULT;
<------><------>}
<------><------>mutex_lock(&sensor->operation_mutex);
<------><------>if (result) {
<------><------><------>if (sensor->status_cur == SENSOR_OFF)
<------><------><------><------>sensor_enable(sensor, SENSOR_ON);
<------><------>} else {
<------><------><------>if (sensor->status_cur == SENSOR_ON)
<------><------><------><------>sensor_enable(sensor, SENSOR_OFF);
<------><------>}
<------><------>mutex_unlock(&sensor->operation_mutex);
<------><------>break;
<------>default:
<------><------>break;
<------>}
<------>return result;
}
static int pressure_dev_open(struct inode *inode, struct file *file)
{
<------>return 0;
}
static int pressure_dev_release(struct inode *inode, struct file *file)
{
<------>return 0;
}
/* ioctl - I/O control */
static long pressure_dev_ioctl(struct file *file,
<------><------><------> unsigned int cmd, unsigned long arg)
{
<------>struct sensor_private_data *sensor = g_sensor[SENSOR_TYPE_PRESSURE];
<------>void __user *argp = (void __user *)arg;
<------>int result = 0;
<------>switch (cmd) {
<------>case PRESSURE_IOCTL_GET_ENABLED:
<------><------>result = sensor->status_cur;
<------><------>if (copy_to_user(argp, &result, sizeof(result))) {
<------><------><------>dev_err(&sensor->client->dev, "%s:failed to copy pressure sensor status to user space.\n", __func__);
<------><------><------>return -EFAULT;
<------><------>}
<------><------>break;
<------>case PRESSURE_IOCTL_ENABLE:
<------><------>if (copy_from_user(&result, argp, sizeof(result))) {
<------><------><------>dev_err(&sensor->client->dev, "%s:failed to copy pressure sensor status from user space.\n", __func__);
<------><------><------>return -EFAULT;
<------><------>}
<------><------>mutex_lock(&sensor->operation_mutex);
<------><------>if (result) {
<------><------><------>if (sensor->status_cur == SENSOR_OFF)
<------><------><------><------>sensor_enable(sensor, SENSOR_ON);
<------><------>} else {
<------><------><------>if (sensor->status_cur == SENSOR_ON)
<------><------><------><------>sensor_enable(sensor, SENSOR_OFF);
<------><------>}
<------><------>mutex_unlock(&sensor->operation_mutex);
<------><------>break;
<------>default:
<------><------>break;
<------>}
<------>return result;
}
static int sensor_misc_device_register(struct sensor_private_data *sensor, int type)
{
<------>int result = 0;
<------>switch (type) {
<------>case SENSOR_TYPE_ANGLE:
<------><------>if (!sensor->ops->misc_dev) {
<------><------><------>sensor->fops.owner = THIS_MODULE;
<------><------><------>sensor->fops.unlocked_ioctl = angle_dev_ioctl;
<------><------><------>sensor->fops.open = angle_dev_open;
<------><------><------>sensor->fops.release = angle_dev_release;
<------><------><------>sensor->miscdev.minor = MISC_DYNAMIC_MINOR;
<------><------><------>sensor->miscdev.name = "angle";
<------><------><------>sensor->miscdev.fops = &sensor->fops;
<------><------>} else {
<------><------><------>memcpy(&sensor->miscdev, sensor->ops->misc_dev, sizeof(*sensor->ops->misc_dev));
<------><------>}
<------><------>break;
<------>case SENSOR_TYPE_ACCEL:
<------><------>if (!sensor->ops->misc_dev) {
<------><------><------>sensor->fops.owner = THIS_MODULE;
<------><------><------>sensor->fops.unlocked_ioctl = gsensor_dev_ioctl;
<------><------><------>#ifdef CONFIG_COMPAT
<------><------><------>sensor->fops.compat_ioctl = gsensor_dev_ioctl;
<------><------><------>#endif
<------><------><------>sensor->fops.open = gsensor_dev_open;
<------><------><------>sensor->fops.release = gsensor_dev_release;
<------><------><------>sensor->miscdev.minor = MISC_DYNAMIC_MINOR;
<------><------><------>sensor->miscdev.name = "mma8452_daemon";
<------><------><------>sensor->miscdev.fops = &sensor->fops;
<------><------>} else {
<------><------><------>memcpy(&sensor->miscdev, sensor->ops->misc_dev, sizeof(*sensor->ops->misc_dev));
<------><------>}
<------><------>break;
<------>case SENSOR_TYPE_COMPASS:
<------><------>if (!sensor->ops->misc_dev) {
<------><------><------>sensor->fops.owner = THIS_MODULE;
<------><------><------>sensor->fops.unlocked_ioctl = compass_dev_ioctl;
<------><------><------>#ifdef CONFIG_COMPAT
<------><------><------>sensor->fops.compat_ioctl = compass_dev_compat_ioctl;
<------><------><------>#endif
<------><------><------>sensor->fops.open = compass_dev_open;
<------><------><------>sensor->fops.release = compass_dev_release;
<------><------><------>sensor->miscdev.minor = MISC_DYNAMIC_MINOR;
<------><------><------>sensor->miscdev.name = "compass";
<------><------><------>sensor->miscdev.fops = &sensor->fops;
<------><------>} else {
<------><------><------>memcpy(&sensor->miscdev, sensor->ops->misc_dev, sizeof(*sensor->ops->misc_dev));
<------><------>}
<------><------>break;
<------>case SENSOR_TYPE_GYROSCOPE:
<------><------>if (!sensor->ops->misc_dev) {
<------><------><------>sensor->fops.owner = THIS_MODULE;
<------><------><------>sensor->fops.unlocked_ioctl = gyro_dev_ioctl;
<------><------><------>sensor->fops.open = gyro_dev_open;
<------><------><------>sensor->fops.release = gyro_dev_release;
<------><------><------>sensor->miscdev.minor = MISC_DYNAMIC_MINOR;
<------><------><------>sensor->miscdev.name = "gyrosensor";
<------><------><------>sensor->miscdev.fops = &sensor->fops;
<------><------>} else {
<------><------><------>memcpy(&sensor->miscdev, sensor->ops->misc_dev, sizeof(*sensor->ops->misc_dev));
<------><------>}
<------><------>break;
<------>case SENSOR_TYPE_LIGHT:
<------><------>if (!sensor->ops->misc_dev) {
<------><------><------>sensor->fops.owner = THIS_MODULE;
<------><------><------>sensor->fops.unlocked_ioctl = light_dev_ioctl;
<------><------><------>#ifdef CONFIG_COMPAT
<------><------><------>sensor->fops.compat_ioctl = light_dev_compat_ioctl;
<------><------><------>#endif
<------><------><------>sensor->fops.open = light_dev_open;
<------><------><------>sensor->fops.release = light_dev_release;
<------><------><------>sensor->miscdev.minor = MISC_DYNAMIC_MINOR;
<------><------><------>sensor->miscdev.name = "lightsensor";
<------><------><------>sensor->miscdev.fops = &sensor->fops;
<------><------>} else {
<------><------><------>memcpy(&sensor->miscdev, sensor->ops->misc_dev, sizeof(*sensor->ops->misc_dev));
<------><------>}
<------><------>break;
<------>case SENSOR_TYPE_PROXIMITY:
<------><------>if (!sensor->ops->misc_dev) {
<------><------><------>sensor->fops.owner = THIS_MODULE;
<------><------><------>sensor->fops.unlocked_ioctl = proximity_dev_ioctl;
<------><------><------>#ifdef CONFIG_COMPAT
<------><------><------>sensor->fops.compat_ioctl = proximity_dev_compat_ioctl;
<------><------><------>#endif
<------><------><------>sensor->fops.open = proximity_dev_open;
<------><------><------>sensor->fops.release = proximity_dev_release;
<------><------><------>sensor->miscdev.minor = MISC_DYNAMIC_MINOR;
<------><------><------>sensor->miscdev.name = "psensor";
<------><------><------>sensor->miscdev.fops = &sensor->fops;
<------><------>} else {
<------><------><------>memcpy(&sensor->miscdev, sensor->ops->misc_dev, sizeof(*sensor->ops->misc_dev));
<------><------>}
<------><------>break;
<------>case SENSOR_TYPE_TEMPERATURE:
<------><------>if (!sensor->ops->misc_dev) {
<------><------><------>sensor->fops.owner = THIS_MODULE;
<------><------><------>sensor->fops.unlocked_ioctl = temperature_dev_ioctl;
<------><------><------>sensor->fops.open = temperature_dev_open;
<------><------><------>sensor->fops.release = temperature_dev_release;
<------><------><------>sensor->miscdev.minor = MISC_DYNAMIC_MINOR;
<------><------><------>sensor->miscdev.name = "temperature";
<------><------><------>sensor->miscdev.fops = &sensor->fops;
<------><------>} else {
<------><------><------>memcpy(&sensor->miscdev, sensor->ops->misc_dev, sizeof(*sensor->ops->misc_dev));
<------><------>}
<------><------>break;
<------>case SENSOR_TYPE_PRESSURE:
<------><------>if (!sensor->ops->misc_dev) {
<------><------><------>sensor->fops.owner = THIS_MODULE;
<------><------><------>sensor->fops.unlocked_ioctl = pressure_dev_ioctl;
<------><------><------>sensor->fops.open = pressure_dev_open;
<------><------><------>sensor->fops.release = pressure_dev_release;
<------><------><------>sensor->miscdev.minor = MISC_DYNAMIC_MINOR;
<------><------><------>sensor->miscdev.name = "pressure";
<------><------><------>sensor->miscdev.fops = &sensor->fops;
<------><------>} else {
<------><------><------>memcpy(&sensor->miscdev, sensor->ops->misc_dev, sizeof(*sensor->ops->misc_dev));
<------><------>}
<------><------>break;
<------>default:
<------><------>dev_err(&sensor->client->dev, "%s:unknow sensor type=%d\n", __func__, type);
<------><------>result = -1;
<------><------>goto error;
<------>}
<------>sensor->miscdev.parent = &sensor->client->dev;
<------>result = misc_register(&sensor->miscdev);
<------>if (result < 0) {
<------><------>dev_err(&sensor->client->dev,
<------><------><------>"fail to register misc device %s\n", sensor->miscdev.name);
<------><------>goto error;
<------>}
<------>dev_info(&sensor->client->dev, "%s:miscdevice: %s\n", __func__, sensor->miscdev.name);
error:
<------>return result;
}
static int sensor_probe(struct i2c_client *client, const struct i2c_device_id *devid)
{
<------>struct sensor_private_data *sensor;
<------>struct sensor_platform_data *pdata;
<------>struct device_node *np = client->dev.of_node;
<------>enum of_gpio_flags rst_flags, pwr_flags;
<------>unsigned long irq_flags;
<------>int result = 0;
<------>int type = 0;
<------>int reprobe_en = 0;
<------>dev_info(&client->adapter->dev, "%s: %s,%p\n", __func__, devid->name, client);
<------>if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
<------><------>result = -ENODEV;
<------><------>goto out_no_free;
<------>}
<------>if (!np) {
<------><------>dev_err(&client->dev, "no device tree\n");
<------><------>return -EINVAL;
<------>}
<------>pdata = devm_kzalloc(&client->dev, sizeof(*pdata), GFP_KERNEL);
<------>if (!pdata) {
<------><------>result = -ENOMEM;
<------><------>goto out_no_free;
<------>}
<------>sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL);
<------>if (!sensor) {
<------><------>result = -ENOMEM;
<------><------>goto out_no_free;
<------>}
<------>of_property_read_u32(np, "type", &(pdata->type));
<------>pdata->irq_pin = of_get_named_gpio_flags(np, "irq-gpio", 0, (enum of_gpio_flags *)&irq_flags);
<------>pdata->reset_pin = of_get_named_gpio_flags(np, "reset-gpio", 0, &rst_flags);
<------>pdata->power_pin = of_get_named_gpio_flags(np, "power-gpio", 0, &pwr_flags);
<------>of_property_read_u32(np, "irq_enable", &(pdata->irq_enable));
<------>of_property_read_u32(np, "poll_delay_ms", &(pdata->poll_delay_ms));
<------>of_property_read_u32(np, "x_min", &(pdata->x_min));
<------>of_property_read_u32(np, "y_min", &(pdata->y_min));
<------>of_property_read_u32(np, "z_min", &(pdata->z_min));
<------>of_property_read_u32(np, "factory", &(pdata->factory));
<------>of_property_read_u32(np, "layout", &(pdata->layout));
<------>of_property_read_u32(np, "reprobe_en", &reprobe_en);
<------>of_property_read_u8(np, "address", &(pdata->address));
<------>of_get_property(np, "project_name", pdata->project_name);
<------>of_property_read_u32(np, "power-off-in-suspend",
<------><------><------> &pdata->power_off_in_suspend);
<------>switch (pdata->layout) {
<------>case 1:
<------><------>pdata->orientation[0] = 1;
<------><------>pdata->orientation[1] = 0;
<------><------>pdata->orientation[2] = 0;
<------><------>pdata->orientation[3] = 0;
<------><------>pdata->orientation[4] = 1;
<------><------>pdata->orientation[5] = 0;
<------><------>pdata->orientation[6] = 0;
<------><------>pdata->orientation[7] = 0;
<------><------>pdata->orientation[8] = 1;
<------><------>break;
<------>case 2:
<------><------>pdata->orientation[0] = 0;
<------><------>pdata->orientation[1] = -1;
<------><------>pdata->orientation[2] = 0;
<------><------>pdata->orientation[3] = 1;
<------><------>pdata->orientation[4] = 0;
<------><------>pdata->orientation[5] = 0;
<------><------>pdata->orientation[6] = 0;
<------><------>pdata->orientation[7] = 0;
<------><------>pdata->orientation[8] = 1;
<------><------>break;
<------>case 3:
<------><------>pdata->orientation[0] = -1;
<------><------>pdata->orientation[1] = 0;
<------><------>pdata->orientation[2] = 0;
<------><------>pdata->orientation[3] = 0;
<------><------>pdata->orientation[4] = -1;
<------><------>pdata->orientation[5] = 0;
<------><------>pdata->orientation[6] = 0;
<------><------>pdata->orientation[7] = 0;
<------><------>pdata->orientation[8] = 1;
<------><------>break;
<------>case 4:
<------><------>pdata->orientation[0] = 0;
<------><------>pdata->orientation[1] = 1;
<------><------>pdata->orientation[2] = 0;
<------><------>pdata->orientation[3] = -1;
<------><------>pdata->orientation[4] = 0;
<------><------>pdata->orientation[5] = 0;
<------><------>pdata->orientation[6] = 0;
<------><------>pdata->orientation[7] = 0;
<------><------>pdata->orientation[8] = 1;
<------><------>break;
<------>case 5:
<------><------>pdata->orientation[0] = 1;
<------><------>pdata->orientation[1] = 0;
<------><------>pdata->orientation[2] = 0;
<------><------>pdata->orientation[3] = 0;
<------><------>pdata->orientation[4] = -1;
<------><------>pdata->orientation[5] = 0;
<------><------>pdata->orientation[6] = 0;
<------><------>pdata->orientation[7] = 0;
<------><------>pdata->orientation[8] = -1;
<------><------>break;
<------>case 6:
<------><------>pdata->orientation[0] = 0;
<------><------>pdata->orientation[1] = -1;
<------><------>pdata->orientation[2] = 0;
<------><------>pdata->orientation[3] = -1;
<------><------>pdata->orientation[4] = 0;
<------><------>pdata->orientation[5] = 0;
<------><------>pdata->orientation[6] = 0;
<------><------>pdata->orientation[7] = 0;
<------><------>pdata->orientation[8] = -1;
<------><------>break;
<------>case 7:
<------><------>pdata->orientation[0] = -1;
<------><------>pdata->orientation[1] = 0;
<------><------>pdata->orientation[2] = 0;
<------><------>pdata->orientation[3] = 0;
<------><------>pdata->orientation[4] = 1;
<------><------>pdata->orientation[5] = 0;
<------><------>pdata->orientation[6] = 0;
<------><------>pdata->orientation[7] = 0;
<------><------>pdata->orientation[8] = -1;
<------><------>break;
<------>case 8:
<------><------>pdata->orientation[0] = 0;
<------><------>pdata->orientation[1] = 1;
<------><------>pdata->orientation[2] = 0;
<------><------>pdata->orientation[3] = 1;
<------><------>pdata->orientation[4] = 0;
<------><------>pdata->orientation[5] = 0;
<------><------>pdata->orientation[6] = 0;
<------><------>pdata->orientation[7] = 0;
<------><------>pdata->orientation[8] = -1;
<------><------>break;
<------>case 9:
<------><------>pdata->orientation[0] = -1;
<------><------>pdata->orientation[1] = 0;
<------><------>pdata->orientation[2] = 0;
<------><------>pdata->orientation[3] = 0;
<------><------>pdata->orientation[4] = -1;
<------><------>pdata->orientation[5] = 0;
<------><------>pdata->orientation[6] = 0;
<------><------>pdata->orientation[7] = 0;
<------><------>pdata->orientation[8] = -1;
<------><------>break;
<------>default:
<------><------>pdata->orientation[0] = 1;
<------><------>pdata->orientation[1] = 0;
<------><------>pdata->orientation[2] = 0;
<------><------>pdata->orientation[3] = 0;
<------><------>pdata->orientation[4] = 1;
<------><------>pdata->orientation[5] = 0;
<------><------>pdata->orientation[6] = 0;
<------><------>pdata->orientation[7] = 0;
<------><------>pdata->orientation[8] = 1;
<------><------>break;
<------>}
<------>client->irq = pdata->irq_pin;
<------>type = pdata->type;
<------>pdata->irq_flags = irq_flags;
<------>pdata->poll_delay_ms = 30;
<------>if ((type >= SENSOR_NUM_TYPES) || (type <= SENSOR_TYPE_NULL)) {
<------><------>dev_err(&client->adapter->dev, "sensor type is error %d\n", type);
<------><------>result = -EFAULT;
<------><------>goto out_no_free;
<------>}
<------>if (((int)devid->driver_data >= SENSOR_NUM_ID) || ((int)devid->driver_data <= ID_INVALID)) {
<------><------>dev_err(&client->adapter->dev, "sensor id is error %d\n", (int)devid->driver_data);
<------><------>result = -EFAULT;
<------><------>goto out_no_free;
<------>}
<------>i2c_set_clientdata(client, sensor);
<------>sensor->client = client;
<------>sensor->pdata = pdata;
<------>sensor->type = type;
<------>sensor->i2c_id = (struct i2c_device_id *)devid;
<------>memset(&(sensor->axis), 0, sizeof(struct sensor_axis));
<------>mutex_init(&sensor->data_mutex);
<------>mutex_init(&sensor->operation_mutex);
<------>mutex_init(&sensor->sensor_mutex);
<------>mutex_init(&sensor->i2c_mutex);
<------>atomic_set(&sensor->is_factory, 0);
<------>init_waitqueue_head(&sensor->is_factory_ok);
<------>/* As default, report all information */
<------>atomic_set(&sensor->flags.m_flag, 1);
<------>atomic_set(&sensor->flags.a_flag, 1);
<------>atomic_set(&sensor->flags.mv_flag, 1);
<------>atomic_set(&sensor->flags.open_flag, 0);
<------>atomic_set(&sensor->flags.debug_flag, 1);
<------>init_waitqueue_head(&sensor->flags.open_wq);
<------>sensor->flags.delay = 100;
<------>sensor->status_cur = SENSOR_OFF;
<------>sensor->axis.x = 0;
<------>sensor->axis.y = 0;
<------>sensor->axis.z = 0;
<------>result = sensor_chip_init(sensor->client);
<------>if (result < 0) {
<------><------>if (reprobe_en && (result == -2)) {
<------><------><------>sensor_probe_times[sensor->ops->id_i2c]++;
<------><------><------>if (sensor_probe_times[sensor->ops->id_i2c] < 3)
<------><------><------><------>result = -EPROBE_DEFER;
<------><------>}
<------><------>goto out_free_memory;
<------>}
<------>sensor->input_dev = devm_input_allocate_device(&client->dev);
<------>if (!sensor->input_dev) {
<------><------>result = -ENOMEM;
<------><------>dev_err(&client->dev,
<------><------><------>"Failed to allocate input device\n");
<------><------>goto out_free_memory;
<------>}
<------>switch (type) {
<------>case SENSOR_TYPE_ANGLE:
<------><------>sensor->input_dev->name = "angle";
<------><------>set_bit(EV_ABS, sensor->input_dev->evbit);
<------><------>/* x-axis acceleration */
<------><------>input_set_abs_params(sensor->input_dev, ABS_X, sensor->ops->range[0], sensor->ops->range[1], 0, 0);
<------><------>/* y-axis acceleration */
<------><------>input_set_abs_params(sensor->input_dev, ABS_Y, sensor->ops->range[0], sensor->ops->range[1], 0, 0);
<------><------>/* z-axis acceleration */
<------><------>input_set_abs_params(sensor->input_dev, ABS_Z, sensor->ops->range[0], sensor->ops->range[1], 0, 0);
<------><------>break;
<------>case SENSOR_TYPE_ACCEL:
<------><------>sensor->input_dev->name = "gsensor";
<------><------>set_bit(EV_ABS, sensor->input_dev->evbit);
<------><------>/* x-axis acceleration */
<------><------>input_set_abs_params(sensor->input_dev, ABS_X, sensor->ops->range[0], sensor->ops->range[1], 0, 0);
<------><------>/* y-axis acceleration */
<------><------>input_set_abs_params(sensor->input_dev, ABS_Y, sensor->ops->range[0], sensor->ops->range[1], 0, 0);
<------><------>/* z-axis acceleration */
<------><------>input_set_abs_params(sensor->input_dev, ABS_Z, sensor->ops->range[0], sensor->ops->range[1], 0, 0);
<------><------>break;
<------>case SENSOR_TYPE_COMPASS:
<------><------>sensor->input_dev->name = "compass";
<------><------>/* Setup input device */
<------><------>set_bit(EV_ABS, sensor->input_dev->evbit);
<------><------>/* yaw (0, 360) */
<------><------>input_set_abs_params(sensor->input_dev, ABS_RX, 0, 23040, 0, 0);
<------><------>/* pitch (-180, 180) */
<------><------>input_set_abs_params(sensor->input_dev, ABS_RY, -11520, 11520, 0, 0);
<------><------>/* roll (-90, 90) */
<------><------>input_set_abs_params(sensor->input_dev, ABS_RZ, -5760, 5760, 0, 0);
<------><------>/* x-axis acceleration (720 x 8G) */
<------><------>input_set_abs_params(sensor->input_dev, ABS_X, -5760, 5760, 0, 0);
<------><------>/* y-axis acceleration (720 x 8G) */
<------><------>input_set_abs_params(sensor->input_dev, ABS_Y, -5760, 5760, 0, 0);
<------><------>/* z-axis acceleration (720 x 8G) */
<------><------>input_set_abs_params(sensor->input_dev, ABS_Z, -5760, 5760, 0, 0);
<------><------>/* status of magnetic sensor */
<------><------>input_set_abs_params(sensor->input_dev, ABS_RUDDER, -32768, 3, 0, 0);
<------><------>/* status of acceleration sensor */
<------><------>input_set_abs_params(sensor->input_dev, ABS_WHEEL, -32768, 3, 0, 0);
<------><------>/* x-axis of raw magnetic vector (-4096, 4095) */
<------><------>input_set_abs_params(sensor->input_dev, ABS_HAT0X, -20480, 20479, 0, 0);
<------><------>/* y-axis of raw magnetic vector (-4096, 4095) */
<------><------>input_set_abs_params(sensor->input_dev, ABS_HAT0Y, -20480, 20479, 0, 0);
<------><------>/* z-axis of raw magnetic vector (-4096, 4095) */
<------><------>input_set_abs_params(sensor->input_dev, ABS_BRAKE, -20480, 20479, 0, 0);
<------><------>break;
<------>case SENSOR_TYPE_GYROSCOPE:
<------><------>sensor->input_dev->name = "gyro";
<------><------>/* x-axis acceleration */
<------><------>input_set_capability(sensor->input_dev, EV_REL, REL_RX);
<------><------>input_set_abs_params(sensor->input_dev, ABS_RX, sensor->ops->range[0], sensor->ops->range[1], 0, 0);
<------><------>/* y-axis acceleration */
<------><------>input_set_capability(sensor->input_dev, EV_REL, REL_RY);
<------><------>input_set_abs_params(sensor->input_dev, ABS_RY, sensor->ops->range[0], sensor->ops->range[1], 0, 0);
<------><------>/* z-axis acceleration */
<------><------>input_set_capability(sensor->input_dev, EV_REL, REL_RZ);
<------><------>input_set_abs_params(sensor->input_dev, ABS_RZ, sensor->ops->range[0], sensor->ops->range[1], 0, 0);
<------><------>break;
<------>case SENSOR_TYPE_LIGHT:
<------><------>sensor->input_dev->name = "lightsensor-level";
<------><------>set_bit(EV_ABS, sensor->input_dev->evbit);
<------><------>input_set_abs_params(sensor->input_dev, ABS_MISC, sensor->ops->range[0], sensor->ops->range[1], 0, 0);
<------><------>input_set_abs_params(sensor->input_dev, ABS_TOOL_WIDTH, sensor->ops->brightness[0], sensor->ops->brightness[1], 0, 0);
<------><------>break;
<------>case SENSOR_TYPE_PROXIMITY:
<------><------>sensor->input_dev->name = "proximity";
<------><------>set_bit(EV_ABS, sensor->input_dev->evbit);
<------><------>input_set_abs_params(sensor->input_dev, ABS_DISTANCE, sensor->ops->range[0], sensor->ops->range[1], 0, 0);
<------><------>break;
<------>case SENSOR_TYPE_TEMPERATURE:
<------><------>sensor->input_dev->name = "temperature";
<------><------>set_bit(EV_ABS, sensor->input_dev->evbit);
<------><------>input_set_abs_params(sensor->input_dev, ABS_THROTTLE, sensor->ops->range[0], sensor->ops->range[1], 0, 0);
<------><------>break;
<------>case SENSOR_TYPE_PRESSURE:
<------><------>sensor->input_dev->name = "pressure";
<------><------>set_bit(EV_ABS, sensor->input_dev->evbit);
<------><------>input_set_abs_params(sensor->input_dev, ABS_PRESSURE, sensor->ops->range[0], sensor->ops->range[1], 0, 0);
<------><------>break;
<------>default:
<------><------>dev_err(&client->dev, "%s:unknow sensor type=%d\n", __func__, type);
<------><------>break;
<------>}
<------>sensor->input_dev->dev.parent = &client->dev;
<------>result = input_register_device(sensor->input_dev);
<------>if (result) {
<------><------>dev_err(&client->dev,
<------><------><------>"Unable to register input device %s\n", sensor->input_dev->name);
<------><------>goto out_input_register_device_failed;
<------>}
<------>result = sensor_irq_init(sensor->client);
<------>if (result) {
<------><------>dev_err(&client->dev,
<------><------><------>"fail to init sensor irq,ret=%d\n", result);
<------><------>goto out_input_register_device_failed;
<------>}
<------>sensor->miscdev.parent = &client->dev;
<------>result = sensor_misc_device_register(sensor, type);
<------>if (result) {
<------><------>dev_err(&client->dev,
<------><------><------>"fail to register misc device %s\n", sensor->miscdev.name);
<------><------>goto out_misc_device_register_device_failed;
<------>}
<------>g_sensor[type] = sensor;
#ifdef CONFIG_HAS_EARLYSUSPEND
<------>if ((sensor->ops->suspend) && (sensor->ops->resume)) {
<------><------>sensor->early_suspend.suspend = sensor_suspend;
<------><------>sensor->early_suspend.resume = sensor_resume;
<------><------>sensor->early_suspend.level = 0x02;
<------><------>register_early_suspend(&sensor->early_suspend);
<------>}
#endif
<------>dev_info(&client->dev, "%s:initialized ok,sensor name:%s,type:%d,id=%d\n\n", __func__, sensor->ops->name, type, (int)sensor->i2c_id->driver_data);
<------>return result;
out_misc_device_register_device_failed:
out_input_register_device_failed:
out_free_memory:
out_no_free:
<------>dev_err(&client->adapter->dev, "%s failed %d\n\n", __func__, result);
<------>return result;
}
static int sensor_remove(struct i2c_client *client)
{
<------>struct sensor_private_data *sensor =
<------> (struct sensor_private_data *) i2c_get_clientdata(client);
<------>sensor->stop_work = 1;
<------>cancel_delayed_work_sync(&sensor->delaywork);
<------>misc_deregister(&sensor->miscdev);
#ifdef CONFIG_HAS_EARLYSUSPEND
<------>if ((sensor->ops->suspend) && (sensor->ops->resume))
<------><------>unregister_early_suspend(&sensor->early_suspend);
#endif
<------>return 0;
}
int sensor_register_device(struct i2c_client *client,
<------><------><------>struct sensor_platform_data *slave_pdata,
<------><------><------>const struct i2c_device_id *devid,
<------><------><------>struct sensor_operate *ops)
{
<------>int result = 0;
<------>if (!client || !ops) {
<------><------>dev_err(&client->dev, "%s: no device or ops.\n", __func__);
<------><------>return -ENODEV;
<------>}
<------>if ((ops->id_i2c >= SENSOR_NUM_ID) || (ops->id_i2c <= ID_INVALID) ||
<------><------>(((int)devid->driver_data) != ops->id_i2c)) {
<------><------>dev_err(&client->dev, "%s: %s id is error %d\n",
<------><------><------>__func__, ops->name, ops->id_i2c);
<------><------>return -EINVAL;
<------>}
<------>sensor_ops[ops->id_i2c] = ops;
<------>dev_info(&client->dev, "%s: %s, id = %d\n",
<------><------> __func__, sensor_ops[ops->id_i2c]->name, ops->id_i2c);
<------>sensor_probe(client, devid);
<------>return result;
}
EXPORT_SYMBOL(sensor_register_device);
int sensor_unregister_device(struct i2c_client *client,
<------><------>struct sensor_platform_data *slave_pdata,
<------><------>struct sensor_operate *ops)
{
<------>int result = 0;
<------>if (!client || !ops) {
<------><------>dev_err(&client->dev, "%s: no device or ops.\n", __func__);
<------><------>return -ENODEV;
<------>}
<------>if ((ops->id_i2c >= SENSOR_NUM_ID) || (ops->id_i2c <= ID_INVALID)) {
<------><------>dev_err(&client->dev, "%s: %s id is error %d\n",
<------><------><------> __func__, ops->name, ops->id_i2c);
<------><------>return -EINVAL;
<------>}
<------>sensor_remove(client);
<------>dev_info(&client->dev, "%s: %s, id = %d\n",
<------><------> __func__, sensor_ops[ops->id_i2c]->name, ops->id_i2c);
<------>sensor_ops[ops->id_i2c] = NULL;
<------>return result;
}
EXPORT_SYMBOL(sensor_unregister_device);
static int __init sensor_init(void)
{
<------>sensor_class_init();
<------>return 0;
}
static void __exit sensor_exit(void)
{
<------>class_remove_file(sensor_class, &class_attr_gyro_calibration);
<------>class_remove_file(sensor_class, &class_attr_accel_calibration);
<------>class_destroy(sensor_class);
}
module_init(sensor_init);
module_exit(sensor_exit);
MODULE_AUTHOR("ROCKCHIP Corporation:lw@rock-chips.com");
MODULE_DESCRIPTION("User space character device interface for sensors");
MODULE_LICENSE("GPL");