^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) // SPDX-License-Identifier: GPL-2.0-only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * Copyright (c) 2011-2016 Synaptics Incorporated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) * Copyright (c) 2011 Unixphere
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) #include <linux/rmi.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) #include <linux/uaccess.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) #include <linux/of.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) #include <asm/unaligned.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) #include "rmi_driver.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) #define RMI_PRODUCT_ID_LENGTH 10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) #define RMI_PRODUCT_INFO_LENGTH 2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) #define RMI_DATE_CODE_LENGTH 3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) #define PRODUCT_ID_OFFSET 0x10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) #define PRODUCT_INFO_OFFSET 0x1E
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) /* Force a firmware reset of the sensor */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) #define RMI_F01_CMD_DEVICE_RESET 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) /* Various F01_RMI_QueryX bits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) #define RMI_F01_QRY1_CUSTOM_MAP BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) #define RMI_F01_QRY1_NON_COMPLIANT BIT(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) #define RMI_F01_QRY1_HAS_LTS BIT(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) #define RMI_F01_QRY1_HAS_SENSOR_ID BIT(3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) #define RMI_F01_QRY1_HAS_CHARGER_INP BIT(4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) #define RMI_F01_QRY1_HAS_ADJ_DOZE BIT(5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) #define RMI_F01_QRY1_HAS_ADJ_DOZE_HOFF BIT(6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) #define RMI_F01_QRY1_HAS_QUERY42 BIT(7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) #define RMI_F01_QRY5_YEAR_MASK 0x1f
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) #define RMI_F01_QRY6_MONTH_MASK 0x0f
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) #define RMI_F01_QRY7_DAY_MASK 0x1f
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) #define RMI_F01_QRY2_PRODINFO_MASK 0x7f
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) #define RMI_F01_BASIC_QUERY_LEN 21 /* From Query 00 through 20 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) struct f01_basic_properties {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) u8 manufacturer_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) bool has_lts;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) bool has_adjustable_doze;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) bool has_adjustable_doze_holdoff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) char dom[11]; /* YYYY/MM/DD + '\0' */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) u8 product_id[RMI_PRODUCT_ID_LENGTH + 1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) u16 productinfo;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) u32 firmware_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) u32 package_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) /* F01 device status bits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) /* Most recent device status event */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) #define RMI_F01_STATUS_CODE(status) ((status) & 0x0f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) /* The device has lost its configuration for some reason. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) #define RMI_F01_STATUS_UNCONFIGURED(status) (!!((status) & 0x80))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) /* The device is in bootloader mode */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) #define RMI_F01_STATUS_BOOTLOADER(status) ((status) & 0x40)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) /* Control register bits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) * Sleep mode controls power management on the device and affects all
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) * functions of the device.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) #define RMI_F01_CTRL0_SLEEP_MODE_MASK 0x03
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) #define RMI_SLEEP_MODE_NORMAL 0x00
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) #define RMI_SLEEP_MODE_SENSOR_SLEEP 0x01
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) #define RMI_SLEEP_MODE_RESERVED0 0x02
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) #define RMI_SLEEP_MODE_RESERVED1 0x03
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) * This bit disables whatever sleep mode may be selected by the sleep_mode
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) * field and forces the device to run at full power without sleeping.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) #define RMI_F01_CTRL0_NOSLEEP_BIT BIT(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) * When this bit is set, the touch controller employs a noise-filtering
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) * algorithm designed for use with a connected battery charger.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) #define RMI_F01_CTRL0_CHARGER_BIT BIT(5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) * Sets the report rate for the device. The effect of this setting is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) * highly product dependent. Check the spec sheet for your particular
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) * touch sensor.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) #define RMI_F01_CTRL0_REPORTRATE_BIT BIT(6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) * Written by the host as an indicator that the device has been
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) * successfully configured.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) #define RMI_F01_CTRL0_CONFIGURED_BIT BIT(7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) * @ctrl0 - see the bit definitions above.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) * @doze_interval - controls the interval between checks for finger presence
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) * when the touch sensor is in doze mode, in units of 10ms.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) * @wakeup_threshold - controls the capacitance threshold at which the touch
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) * sensor will decide to wake up from that low power state.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) * @doze_holdoff - controls how long the touch sensor waits after the last
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) * finger lifts before entering the doze state, in units of 100ms.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) struct f01_device_control {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) u8 ctrl0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) u8 doze_interval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) u8 wakeup_threshold;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) u8 doze_holdoff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) struct f01_data {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) struct f01_basic_properties properties;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) struct f01_device_control device_control;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) u16 doze_interval_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) u16 wakeup_threshold_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) u16 doze_holdoff_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) bool suspended;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) bool old_nosleep;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) unsigned int num_of_irq_regs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) static int rmi_f01_read_properties(struct rmi_device *rmi_dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) u16 query_base_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) struct f01_basic_properties *props)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) u8 queries[RMI_F01_BASIC_QUERY_LEN];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) int query_offset = query_base_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) bool has_ds4_queries = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) bool has_query42 = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) bool has_sensor_id = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) bool has_package_id_query = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) bool has_build_id_query = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) u16 prod_info_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) u8 ds4_query_len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) ret = rmi_read_block(rmi_dev, query_offset,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) queries, RMI_F01_BASIC_QUERY_LEN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) dev_err(&rmi_dev->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) "Failed to read device query registers: %d\n", ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) prod_info_addr = query_offset + 17;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) query_offset += RMI_F01_BASIC_QUERY_LEN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) /* Now parse what we got */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) props->manufacturer_id = queries[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) props->has_lts = queries[1] & RMI_F01_QRY1_HAS_LTS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) props->has_adjustable_doze =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) queries[1] & RMI_F01_QRY1_HAS_ADJ_DOZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) props->has_adjustable_doze_holdoff =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) queries[1] & RMI_F01_QRY1_HAS_ADJ_DOZE_HOFF;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) has_query42 = queries[1] & RMI_F01_QRY1_HAS_QUERY42;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) has_sensor_id = queries[1] & RMI_F01_QRY1_HAS_SENSOR_ID;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) snprintf(props->dom, sizeof(props->dom), "20%02d/%02d/%02d",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) queries[5] & RMI_F01_QRY5_YEAR_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) queries[6] & RMI_F01_QRY6_MONTH_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) queries[7] & RMI_F01_QRY7_DAY_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) memcpy(props->product_id, &queries[11],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) RMI_PRODUCT_ID_LENGTH);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) props->product_id[RMI_PRODUCT_ID_LENGTH] = '\0';
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) props->productinfo =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) ((queries[2] & RMI_F01_QRY2_PRODINFO_MASK) << 7) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) (queries[3] & RMI_F01_QRY2_PRODINFO_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) if (has_sensor_id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) query_offset++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) if (has_query42) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) ret = rmi_read(rmi_dev, query_offset, queries);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) dev_err(&rmi_dev->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) "Failed to read query 42 register: %d\n", ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) has_ds4_queries = !!(queries[0] & BIT(0));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) query_offset++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) if (has_ds4_queries) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) ret = rmi_read(rmi_dev, query_offset, &ds4_query_len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) dev_err(&rmi_dev->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) "Failed to read DS4 queries length: %d\n", ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) query_offset++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) if (ds4_query_len > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) ret = rmi_read(rmi_dev, query_offset, queries);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) dev_err(&rmi_dev->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) "Failed to read DS4 queries: %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) has_package_id_query = !!(queries[0] & BIT(0));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) has_build_id_query = !!(queries[0] & BIT(1));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) if (has_package_id_query) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) ret = rmi_read_block(rmi_dev, prod_info_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) queries, sizeof(__le64));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) dev_err(&rmi_dev->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) "Failed to read package info: %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) props->package_id = get_unaligned_le64(queries);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) prod_info_addr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) if (has_build_id_query) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) ret = rmi_read_block(rmi_dev, prod_info_addr, queries,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) dev_err(&rmi_dev->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) "Failed to read product info: %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) props->firmware_id = queries[1] << 8 | queries[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) props->firmware_id += queries[2] * 65536;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) const char *rmi_f01_get_product_ID(struct rmi_function *fn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) struct f01_data *f01 = dev_get_drvdata(&fn->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) return f01->properties.product_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) static ssize_t rmi_driver_manufacturer_id_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) struct device_attribute *dattr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) struct rmi_driver_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) struct f01_data *f01 = dev_get_drvdata(&data->f01_container->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) return scnprintf(buf, PAGE_SIZE, "%d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) f01->properties.manufacturer_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) static DEVICE_ATTR(manufacturer_id, 0444,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) rmi_driver_manufacturer_id_show, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) static ssize_t rmi_driver_dom_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) struct device_attribute *dattr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) struct rmi_driver_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) struct f01_data *f01 = dev_get_drvdata(&data->f01_container->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) return scnprintf(buf, PAGE_SIZE, "%s\n", f01->properties.dom);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) static DEVICE_ATTR(date_of_manufacture, 0444, rmi_driver_dom_show, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) static ssize_t rmi_driver_product_id_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) struct device_attribute *dattr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) struct rmi_driver_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) struct f01_data *f01 = dev_get_drvdata(&data->f01_container->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) return scnprintf(buf, PAGE_SIZE, "%s\n", f01->properties.product_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) static DEVICE_ATTR(product_id, 0444, rmi_driver_product_id_show, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) static ssize_t rmi_driver_firmware_id_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) struct device_attribute *dattr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) struct rmi_driver_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) struct f01_data *f01 = dev_get_drvdata(&data->f01_container->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) return scnprintf(buf, PAGE_SIZE, "%d\n", f01->properties.firmware_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) static DEVICE_ATTR(firmware_id, 0444, rmi_driver_firmware_id_show, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) static ssize_t rmi_driver_package_id_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) struct device_attribute *dattr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) struct rmi_driver_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) struct f01_data *f01 = dev_get_drvdata(&data->f01_container->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) u32 package_id = f01->properties.package_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) return scnprintf(buf, PAGE_SIZE, "%04x.%04x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) package_id & 0xffff, (package_id >> 16) & 0xffff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) static DEVICE_ATTR(package_id, 0444, rmi_driver_package_id_show, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) static struct attribute *rmi_f01_attrs[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) &dev_attr_manufacturer_id.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) &dev_attr_date_of_manufacture.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) &dev_attr_product_id.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) &dev_attr_firmware_id.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) &dev_attr_package_id.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) NULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) static const struct attribute_group rmi_f01_attr_group = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) .attrs = rmi_f01_attrs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) #ifdef CONFIG_OF
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) static int rmi_f01_of_probe(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) struct rmi_device_platform_data *pdata)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) int retval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) u32 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) retval = rmi_of_property_read_u32(dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) (u32 *)&pdata->power_management.nosleep,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) "syna,nosleep-mode", 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) if (retval)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) return retval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) retval = rmi_of_property_read_u32(dev, &val,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) "syna,wakeup-threshold", 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) if (retval)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) return retval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) pdata->power_management.wakeup_threshold = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) retval = rmi_of_property_read_u32(dev, &val,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) "syna,doze-holdoff-ms", 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) if (retval)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) return retval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) pdata->power_management.doze_holdoff = val * 100;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) retval = rmi_of_property_read_u32(dev, &val,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) "syna,doze-interval-ms", 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) if (retval)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) return retval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) pdata->power_management.doze_interval = val / 10;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) static inline int rmi_f01_of_probe(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) struct rmi_device_platform_data *pdata)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) static int rmi_f01_probe(struct rmi_function *fn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) struct rmi_device *rmi_dev = fn->rmi_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) struct rmi_driver_data *driver_data = dev_get_drvdata(&rmi_dev->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) struct f01_data *f01;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) int error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) u16 ctrl_base_addr = fn->fd.control_base_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) u8 device_status;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) u8 temp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) if (fn->dev.of_node) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) error = rmi_f01_of_probe(&fn->dev, pdata);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) if (error)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) f01 = devm_kzalloc(&fn->dev, sizeof(struct f01_data), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) if (!f01)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) f01->num_of_irq_regs = driver_data->num_of_irq_regs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) * Set the configured bit and (optionally) other important stuff
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) * in the device control register.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) error = rmi_read(rmi_dev, fn->fd.control_base_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) &f01->device_control.ctrl0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) if (error) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) dev_err(&fn->dev, "Failed to read F01 control: %d\n", error);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) switch (pdata->power_management.nosleep) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) case RMI_REG_STATE_DEFAULT:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) case RMI_REG_STATE_OFF:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) f01->device_control.ctrl0 &= ~RMI_F01_CTRL0_NOSLEEP_BIT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) case RMI_REG_STATE_ON:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) f01->device_control.ctrl0 |= RMI_F01_CTRL0_NOSLEEP_BIT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) * Sleep mode might be set as a hangover from a system crash or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) * reboot without power cycle. If so, clear it so the sensor
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) * is certain to function.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) if ((f01->device_control.ctrl0 & RMI_F01_CTRL0_SLEEP_MODE_MASK) !=
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) RMI_SLEEP_MODE_NORMAL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) dev_warn(&fn->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) "WARNING: Non-zero sleep mode found. Clearing...\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) f01->device_control.ctrl0 &= ~RMI_F01_CTRL0_SLEEP_MODE_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) f01->device_control.ctrl0 |= RMI_F01_CTRL0_CONFIGURED_BIT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) error = rmi_write(rmi_dev, fn->fd.control_base_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) f01->device_control.ctrl0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) if (error) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) dev_err(&fn->dev, "Failed to write F01 control: %d\n", error);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) /* Dummy read in order to clear irqs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) error = rmi_read(rmi_dev, fn->fd.data_base_addr + 1, &temp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) if (error < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) dev_err(&fn->dev, "Failed to read Interrupt Status.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) error = rmi_f01_read_properties(rmi_dev, fn->fd.query_base_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) &f01->properties);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) if (error < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) dev_err(&fn->dev, "Failed to read F01 properties.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) dev_info(&fn->dev, "found RMI device, manufacturer: %s, product: %s, fw id: %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) f01->properties.manufacturer_id == 1 ? "Synaptics" : "unknown",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) f01->properties.product_id, f01->properties.firmware_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) /* Advance to interrupt control registers, then skip over them. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) ctrl_base_addr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) ctrl_base_addr += f01->num_of_irq_regs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) /* read control register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) if (f01->properties.has_adjustable_doze) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) f01->doze_interval_addr = ctrl_base_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) ctrl_base_addr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) if (pdata->power_management.doze_interval) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) f01->device_control.doze_interval =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) pdata->power_management.doze_interval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) error = rmi_write(rmi_dev, f01->doze_interval_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) f01->device_control.doze_interval);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) if (error) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) dev_err(&fn->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) "Failed to configure F01 doze interval register: %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) error);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) error = rmi_read(rmi_dev, f01->doze_interval_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) &f01->device_control.doze_interval);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) if (error) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) dev_err(&fn->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) "Failed to read F01 doze interval register: %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) error);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) f01->wakeup_threshold_addr = ctrl_base_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) ctrl_base_addr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) if (pdata->power_management.wakeup_threshold) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) f01->device_control.wakeup_threshold =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) pdata->power_management.wakeup_threshold;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) error = rmi_write(rmi_dev, f01->wakeup_threshold_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) f01->device_control.wakeup_threshold);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) if (error) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) dev_err(&fn->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) "Failed to configure F01 wakeup threshold register: %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) error);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) error = rmi_read(rmi_dev, f01->wakeup_threshold_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) &f01->device_control.wakeup_threshold);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) if (error < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) dev_err(&fn->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) "Failed to read F01 wakeup threshold register: %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) error);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) if (f01->properties.has_lts)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) ctrl_base_addr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) if (f01->properties.has_adjustable_doze_holdoff) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) f01->doze_holdoff_addr = ctrl_base_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) ctrl_base_addr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) if (pdata->power_management.doze_holdoff) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) f01->device_control.doze_holdoff =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) pdata->power_management.doze_holdoff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) error = rmi_write(rmi_dev, f01->doze_holdoff_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) f01->device_control.doze_holdoff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) if (error) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) dev_err(&fn->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) "Failed to configure F01 doze holdoff register: %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) error);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) error = rmi_read(rmi_dev, f01->doze_holdoff_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) &f01->device_control.doze_holdoff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) if (error) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) dev_err(&fn->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) "Failed to read F01 doze holdoff register: %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) error);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) error = rmi_read(rmi_dev, fn->fd.data_base_addr, &device_status);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) if (error < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) dev_err(&fn->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) "Failed to read device status: %d\n", error);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) if (RMI_F01_STATUS_UNCONFIGURED(device_status)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) dev_err(&fn->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) "Device was reset during configuration process, status: %#02x!\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) RMI_F01_STATUS_CODE(device_status));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) dev_set_drvdata(&fn->dev, f01);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) error = sysfs_create_group(&fn->rmi_dev->dev.kobj, &rmi_f01_attr_group);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) if (error)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) dev_warn(&fn->dev, "Failed to create sysfs group: %d\n", error);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) static void rmi_f01_remove(struct rmi_function *fn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) /* Note that the bus device is used, not the F01 device */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) sysfs_remove_group(&fn->rmi_dev->dev.kobj, &rmi_f01_attr_group);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) static int rmi_f01_config(struct rmi_function *fn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) struct f01_data *f01 = dev_get_drvdata(&fn->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) int error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) error = rmi_write(fn->rmi_dev, fn->fd.control_base_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) f01->device_control.ctrl0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) if (error) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) dev_err(&fn->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) "Failed to write device_control register: %d\n", error);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) if (f01->properties.has_adjustable_doze) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) error = rmi_write(fn->rmi_dev, f01->doze_interval_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) f01->device_control.doze_interval);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) if (error) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600) dev_err(&fn->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) "Failed to write doze interval: %d\n", error);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) error = rmi_write_block(fn->rmi_dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) f01->wakeup_threshold_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) &f01->device_control.wakeup_threshold,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) sizeof(u8));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) if (error) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) dev_err(&fn->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611) "Failed to write wakeup threshold: %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) error);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) if (f01->properties.has_adjustable_doze_holdoff) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618) error = rmi_write(fn->rmi_dev, f01->doze_holdoff_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619) f01->device_control.doze_holdoff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620) if (error) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621) dev_err(&fn->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622) "Failed to write doze holdoff: %d\n", error);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630) static int rmi_f01_suspend(struct rmi_function *fn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632) struct f01_data *f01 = dev_get_drvdata(&fn->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633) int error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635) f01->old_nosleep =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636) f01->device_control.ctrl0 & RMI_F01_CTRL0_NOSLEEP_BIT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637) f01->device_control.ctrl0 &= ~RMI_F01_CTRL0_NOSLEEP_BIT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639) f01->device_control.ctrl0 &= ~RMI_F01_CTRL0_SLEEP_MODE_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640) if (device_may_wakeup(fn->rmi_dev->xport->dev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641) f01->device_control.ctrl0 |= RMI_SLEEP_MODE_RESERVED1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643) f01->device_control.ctrl0 |= RMI_SLEEP_MODE_SENSOR_SLEEP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 645) error = rmi_write(fn->rmi_dev, fn->fd.control_base_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 646) f01->device_control.ctrl0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 647) if (error) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 648) dev_err(&fn->dev, "Failed to write sleep mode: %d.\n", error);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 649) if (f01->old_nosleep)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 650) f01->device_control.ctrl0 |= RMI_F01_CTRL0_NOSLEEP_BIT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 651) f01->device_control.ctrl0 &= ~RMI_F01_CTRL0_SLEEP_MODE_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 652) f01->device_control.ctrl0 |= RMI_SLEEP_MODE_NORMAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 653) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 654) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 655)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 656) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 657) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 658)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 659) static int rmi_f01_resume(struct rmi_function *fn)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 660) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 661) struct f01_data *f01 = dev_get_drvdata(&fn->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 662) int error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 663)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 664) if (f01->old_nosleep)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 665) f01->device_control.ctrl0 |= RMI_F01_CTRL0_NOSLEEP_BIT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 666)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 667) f01->device_control.ctrl0 &= ~RMI_F01_CTRL0_SLEEP_MODE_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 668) f01->device_control.ctrl0 |= RMI_SLEEP_MODE_NORMAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 669)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 670) error = rmi_write(fn->rmi_dev, fn->fd.control_base_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 671) f01->device_control.ctrl0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 672) if (error) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 673) dev_err(&fn->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 674) "Failed to restore normal operation: %d.\n", error);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 675) return error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 676) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 677)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 678) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 679) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 680)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 681) static irqreturn_t rmi_f01_attention(int irq, void *ctx)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 682) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 683) struct rmi_function *fn = ctx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 684) struct rmi_device *rmi_dev = fn->rmi_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 685) int error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 686) u8 device_status;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 687)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 688) error = rmi_read(rmi_dev, fn->fd.data_base_addr, &device_status);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 689) if (error) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 690) dev_err(&fn->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 691) "Failed to read device status: %d.\n", error);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 692) return IRQ_RETVAL(error);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 693) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 694)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 695) if (RMI_F01_STATUS_BOOTLOADER(device_status))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 696) dev_warn(&fn->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 697) "Device in bootloader mode, please update firmware\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 698)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 699) if (RMI_F01_STATUS_UNCONFIGURED(device_status)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 700) dev_warn(&fn->dev, "Device reset detected.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 701) error = rmi_dev->driver->reset_handler(rmi_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 702) if (error) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 703) dev_err(&fn->dev, "Device reset failed: %d\n", error);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 704) return IRQ_RETVAL(error);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 705) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 706) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 707)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 708) return IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 709) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 710)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 711) struct rmi_function_handler rmi_f01_handler = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 712) .driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 713) .name = "rmi4_f01",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 714) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 715) * Do not allow user unbinding F01 as it is critical
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 716) * function.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 717) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 718) .suppress_bind_attrs = true,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 719) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 720) .func = 0x01,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 721) .probe = rmi_f01_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 722) .remove = rmi_f01_remove,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 723) .config = rmi_f01_config,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 724) .attention = rmi_f01_attention,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 725) .suspend = rmi_f01_suspend,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 726) .resume = rmi_f01_resume,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 727) };