Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0-only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * drivers/i2c/chips/lm8323.c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  * Copyright (C) 2007-2009 Nokia Corporation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  * Written by Daniel Stone <daniel.stone@nokia.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  *            Timo O. Karjalainen <timo.o.karjalainen@nokia.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10)  * Updated by Felipe Balbi <felipe.balbi@nokia.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #include <linux/i2c.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) #include <linux/interrupt.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) #include <linux/sched.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) #include <linux/mutex.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) #include <linux/delay.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #include <linux/input.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #include <linux/leds.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) #include <linux/platform_data/lm8323.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) #include <linux/pm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) /* Commands to send to the chip. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) #define LM8323_CMD_READ_ID		0x80 /* Read chip ID. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) #define LM8323_CMD_WRITE_CFG		0x81 /* Set configuration item. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) #define LM8323_CMD_READ_INT		0x82 /* Get interrupt status. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) #define LM8323_CMD_RESET		0x83 /* Reset, same as external one */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) #define LM8323_CMD_WRITE_PORT_SEL	0x85 /* Set GPIO in/out. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) #define LM8323_CMD_WRITE_PORT_STATE	0x86 /* Set GPIO pullup. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) #define LM8323_CMD_READ_PORT_SEL	0x87 /* Get GPIO in/out. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) #define LM8323_CMD_READ_PORT_STATE	0x88 /* Get GPIO pullup. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) #define LM8323_CMD_READ_FIFO		0x89 /* Read byte from FIFO. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) #define LM8323_CMD_RPT_READ_FIFO	0x8a /* Read FIFO (no increment). */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) #define LM8323_CMD_SET_ACTIVE		0x8b /* Set active time. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) #define LM8323_CMD_READ_ERR		0x8c /* Get error status. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) #define LM8323_CMD_READ_ROTATOR		0x8e /* Read rotator status. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) #define LM8323_CMD_SET_DEBOUNCE		0x8f /* Set debouncing time. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) #define LM8323_CMD_SET_KEY_SIZE		0x90 /* Set keypad size. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) #define LM8323_CMD_READ_KEY_SIZE	0x91 /* Get keypad size. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) #define LM8323_CMD_READ_CFG		0x92 /* Get configuration item. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) #define LM8323_CMD_WRITE_CLOCK		0x93 /* Set clock config. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) #define LM8323_CMD_READ_CLOCK		0x94 /* Get clock config. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) #define LM8323_CMD_PWM_WRITE		0x95 /* Write PWM script. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) #define LM8323_CMD_START_PWM		0x96 /* Start PWM engine. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) #define LM8323_CMD_STOP_PWM		0x97 /* Stop PWM engine. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) /* Interrupt status. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) #define INT_KEYPAD			0x01 /* Key event. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) #define INT_ROTATOR			0x02 /* Rotator event. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) #define INT_ERROR			0x08 /* Error: use CMD_READ_ERR. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) #define INT_NOINIT			0x10 /* Lost configuration. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) #define INT_PWM1			0x20 /* PWM1 stopped. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) #define INT_PWM2			0x40 /* PWM2 stopped. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) #define INT_PWM3			0x80 /* PWM3 stopped. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) /* Errors (signalled by INT_ERROR, read with CMD_READ_ERR). */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) #define ERR_BADPAR			0x01 /* Bad parameter. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) #define ERR_CMDUNK			0x02 /* Unknown command. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) #define ERR_KEYOVR			0x04 /* Too many keys pressed. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) #define ERR_FIFOOVER			0x40 /* FIFO overflow. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) /* Configuration keys (CMD_{WRITE,READ}_CFG). */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) #define CFG_MUX1SEL			0x01 /* Select MUX1_OUT input. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) #define CFG_MUX1EN			0x02 /* Enable MUX1_OUT. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) #define CFG_MUX2SEL			0x04 /* Select MUX2_OUT input. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) #define CFG_MUX2EN			0x08 /* Enable MUX2_OUT. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) #define CFG_PSIZE			0x20 /* Package size (must be 0). */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) #define CFG_ROTEN			0x40 /* Enable rotator. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) /* Clock settings (CMD_{WRITE,READ}_CLOCK). */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) #define CLK_RCPWM_INTERNAL		0x00
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) #define CLK_RCPWM_EXTERNAL		0x03
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) #define CLK_SLOWCLKEN			0x08 /* Enable 32.768kHz clock. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) #define CLK_SLOWCLKOUT			0x40 /* Enable slow pulse output. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) /* The possible addresses corresponding to CONFIG1 and CONFIG2 pin wirings. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) #define LM8323_I2C_ADDR00		(0x84 >> 1)	/* 1000 010x */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) #define LM8323_I2C_ADDR01		(0x86 >> 1)	/* 1000 011x */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) #define LM8323_I2C_ADDR10		(0x88 >> 1)	/* 1000 100x */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) #define LM8323_I2C_ADDR11		(0x8A >> 1)	/* 1000 101x */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) /* Key event fifo length */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) #define LM8323_FIFO_LEN			15
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) /* Commands for PWM engine; feed in with PWM_WRITE. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) /* Load ramp counter from duty cycle field (range 0 - 0xff). */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) #define PWM_SET(v)			(0x4000 | ((v) & 0xff))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) /* Go to start of script. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) #define PWM_GOTOSTART			0x0000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93)  * Stop engine (generates interrupt).  If reset is 1, clear the program
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94)  * counter, else leave it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) #define PWM_END(reset)			(0xc000 | (!!(reset) << 11))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98)  * Ramp.  If s is 1, divide clock by 512, else divide clock by 16.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99)  * Take t clock scales (up to 63) per step, for n steps (up to 126).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100)  * If u is set, ramp up, else ramp down.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) #define PWM_RAMP(s, t, n, u)		((!!(s) << 14) | ((t) & 0x3f) << 8 | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 					 ((n) & 0x7f) | ((u) ? 0 : 0x80))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105)  * Loop (i.e. jump back to pos) for a given number of iterations (up to 63).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106)  * If cnt is zero, execute until PWM_END is encountered.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) #define PWM_LOOP(cnt, pos)		(0xa000 | (((cnt) & 0x3f) << 7) | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 					 ((pos) & 0x3f))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111)  * Wait for trigger.  Argument is a mask of channels, shifted by the channel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112)  * number, e.g. 0xa for channels 3 and 1.  Note that channels are numbered
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113)  * from 1, not 0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) #define PWM_WAIT_TRIG(chans)		(0xe000 | (((chans) & 0x7) << 6))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) /* Send trigger.  Argument is same as PWM_WAIT_TRIG. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) #define PWM_SEND_TRIG(chans)		(0xe000 | ((chans) & 0x7))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) struct lm8323_pwm {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 	int			id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 	int			fade_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 	int			brightness;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 	int			desired_brightness;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 	bool			enabled;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 	bool			running;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 	/* pwm lock */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 	struct mutex		lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 	struct work_struct	work;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 	struct led_classdev	cdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 	struct lm8323_chip	*chip;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) struct lm8323_chip {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 	/* device lock */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 	struct mutex		lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 	struct i2c_client	*client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 	struct input_dev	*idev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 	bool			kp_enabled;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 	bool			pm_suspend;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 	unsigned		keys_down;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 	char			phys[32];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 	unsigned short		keymap[LM8323_KEYMAP_SIZE];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 	int			size_x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 	int			size_y;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 	int			debounce_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 	int			active_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 	struct lm8323_pwm	pwm[LM8323_NUM_PWMS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) #define client_to_lm8323(c)	container_of(c, struct lm8323_chip, client)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) #define dev_to_lm8323(d)	container_of(d, struct lm8323_chip, client->dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) #define cdev_to_pwm(c)		container_of(c, struct lm8323_pwm, cdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) #define work_to_pwm(w)		container_of(w, struct lm8323_pwm, work)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) #define LM8323_MAX_DATA 8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158)  * To write, we just access the chip's address in write mode, and dump the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159)  * command and data out on the bus.  The command byte and data are taken as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160)  * sequential u8s out of varargs, to a maximum of LM8323_MAX_DATA.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) static int lm8323_write(struct lm8323_chip *lm, int len, ...)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 	int ret, i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 	va_list ap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 	u8 data[LM8323_MAX_DATA];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 	va_start(ap, len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 	if (unlikely(len > LM8323_MAX_DATA)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 		dev_err(&lm->client->dev, "tried to send %d bytes\n", len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 		va_end(ap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 	for (i = 0; i < len; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 		data[i] = va_arg(ap, int);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 	va_end(ap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 	 * If the host is asleep while we send the data, we can get a NACK
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 	 * back while it wakes up, so try again, once.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 	ret = i2c_master_send(lm->client, data, len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 	if (unlikely(ret == -EREMOTEIO))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 		ret = i2c_master_send(lm->client, data, len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 	if (unlikely(ret != len))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 		dev_err(&lm->client->dev, "sent %d bytes of %d total\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 			len, ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196)  * To read, we first send the command byte to the chip and end the transaction,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197)  * then access the chip in read mode, at which point it will send the data.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) static int lm8323_read(struct lm8323_chip *lm, u8 cmd, u8 *buf, int len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 	 * If the host is asleep while we send the byte, we can get a NACK
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 	 * back while it wakes up, so try again, once.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 	ret = i2c_master_send(lm->client, &cmd, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 	if (unlikely(ret == -EREMOTEIO))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 		ret = i2c_master_send(lm->client, &cmd, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 	if (unlikely(ret != 1)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 		dev_err(&lm->client->dev, "sending read cmd 0x%02x failed\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 			cmd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 	ret = i2c_master_recv(lm->client, buf, len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 	if (unlikely(ret != len))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 		dev_err(&lm->client->dev, "wanted %d bytes, got %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 			len, ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225)  * Set the chip active time (idle time before it enters halt).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) static void lm8323_set_active_time(struct lm8323_chip *lm, int time)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 	lm8323_write(lm, 2, LM8323_CMD_SET_ACTIVE, time >> 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233)  * The signals are AT-style: the low 7 bits are the keycode, and the top
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234)  * bit indicates the state (1 for down, 0 for up).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) static inline u8 lm8323_whichkey(u8 event)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 	return event & 0x7f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) static inline int lm8323_ispress(u8 event)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 	return (event & 0x80) ? 1 : 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) static void process_keys(struct lm8323_chip *lm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 	u8 event;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 	u8 key_fifo[LM8323_FIFO_LEN + 1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 	int old_keys_down = lm->keys_down;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 	int i = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 	 * Read all key events from the FIFO at once. Next READ_FIFO clears the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 	 * FIFO even if we didn't read all events previously.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 	ret = lm8323_read(lm, LM8323_CMD_READ_FIFO, key_fifo, LM8323_FIFO_LEN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 	if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 		dev_err(&lm->client->dev, "Failed reading fifo \n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 	key_fifo[ret] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 	while ((event = key_fifo[i++])) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) 		u8 key = lm8323_whichkey(event);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 		int isdown = lm8323_ispress(event);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 		unsigned short keycode = lm->keymap[key];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) 		dev_vdbg(&lm->client->dev, "key 0x%02x %s\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 			 key, isdown ? "down" : "up");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 		if (lm->kp_enabled) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) 			input_event(lm->idev, EV_MSC, MSC_SCAN, key);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 			input_report_key(lm->idev, keycode, isdown);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 			input_sync(lm->idev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) 		if (isdown)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 			lm->keys_down++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 			lm->keys_down--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 	 * Errata: We need to ensure that the chip never enters halt mode
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 	 * during a keypress, so set active time to 0.  When it's released,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 	 * we can enter halt again, so set the active time back to normal.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 	if (!old_keys_down && lm->keys_down)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) 		lm8323_set_active_time(lm, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 	if (old_keys_down && !lm->keys_down)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 		lm8323_set_active_time(lm, lm->active_time);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) static void lm8323_process_error(struct lm8323_chip *lm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 	u8 error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 	if (lm8323_read(lm, LM8323_CMD_READ_ERR, &error, 1) == 1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 		if (error & ERR_FIFOOVER)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 			dev_vdbg(&lm->client->dev, "fifo overflow!\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 		if (error & ERR_KEYOVR)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 			dev_vdbg(&lm->client->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 					"more than two keys pressed\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 		if (error & ERR_CMDUNK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 			dev_vdbg(&lm->client->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 					"unknown command submitted\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 		if (error & ERR_BADPAR)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) 			dev_vdbg(&lm->client->dev, "bad command parameter\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) static void lm8323_reset(struct lm8323_chip *lm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) 	/* The docs say we must pass 0xAA as the data byte. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) 	lm8323_write(lm, 2, LM8323_CMD_RESET, 0xAA);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) static int lm8323_configure(struct lm8323_chip *lm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) 	int keysize = (lm->size_x << 4) | lm->size_y;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) 	int clock = (CLK_SLOWCLKEN | CLK_RCPWM_EXTERNAL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 	int debounce = lm->debounce_time >> 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 	int active = lm->active_time >> 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 	 * Active time must be greater than the debounce time: if it's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 	 * a close-run thing, give ourselves a 12ms buffer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) 	if (debounce >= active)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 		active = debounce + 3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 	lm8323_write(lm, 2, LM8323_CMD_WRITE_CFG, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) 	lm8323_write(lm, 2, LM8323_CMD_WRITE_CLOCK, clock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) 	lm8323_write(lm, 2, LM8323_CMD_SET_KEY_SIZE, keysize);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) 	lm8323_set_active_time(lm, lm->active_time);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) 	lm8323_write(lm, 2, LM8323_CMD_SET_DEBOUNCE, debounce);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) 	lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_STATE, 0xff, 0xff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) 	lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_SEL, 0, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) 	 * Not much we can do about errors at this point, so just hope
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) 	 * for the best.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) static void pwm_done(struct lm8323_pwm *pwm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) 	mutex_lock(&pwm->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) 	pwm->running = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 	if (pwm->desired_brightness != pwm->brightness)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) 		schedule_work(&pwm->work);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) 	mutex_unlock(&pwm->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361)  * Bottom half: handle the interrupt by posting key events, or dealing with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362)  * errors appropriately.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) static irqreturn_t lm8323_irq(int irq, void *_lm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) 	struct lm8323_chip *lm = _lm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 	u8 ints;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) 	mutex_lock(&lm->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) 	while ((lm8323_read(lm, LM8323_CMD_READ_INT, &ints, 1) == 1) && ints) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) 		if (likely(ints & INT_KEYPAD))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) 			process_keys(lm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) 		if (ints & INT_ROTATOR) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) 			/* We don't currently support the rotator. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) 			dev_vdbg(&lm->client->dev, "rotator fired\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) 		if (ints & INT_ERROR) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) 			dev_vdbg(&lm->client->dev, "error!\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) 			lm8323_process_error(lm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) 		if (ints & INT_NOINIT) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 			dev_err(&lm->client->dev, "chip lost config; "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) 						  "reinitialising\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 			lm8323_configure(lm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) 		for (i = 0; i < LM8323_NUM_PWMS; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) 			if (ints & (INT_PWM1 << i)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) 				dev_vdbg(&lm->client->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) 					 "pwm%d engine completed\n", i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) 				pwm_done(&lm->pwm[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) 	mutex_unlock(&lm->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) 	return IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403)  * Read the chip ID.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) static int lm8323_read_id(struct lm8323_chip *lm, u8 *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) 	int bytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) 	bytes = lm8323_read(lm, LM8323_CMD_READ_ID, buf, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) 	if (unlikely(bytes != 2))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) 		return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) static void lm8323_write_pwm_one(struct lm8323_pwm *pwm, int pos, u16 cmd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) 	lm8323_write(pwm->chip, 4, LM8323_CMD_PWM_WRITE, (pos << 2) | pwm->id,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) 		     (cmd & 0xff00) >> 8, cmd & 0x00ff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423)  * Write a script into a given PWM engine, concluding with PWM_END.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424)  * If 'kill' is nonzero, the engine will be shut down at the end
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425)  * of the script, producing a zero output. Otherwise the engine
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426)  * will be kept running at the final PWM level indefinitely.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) static void lm8323_write_pwm(struct lm8323_pwm *pwm, int kill,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) 			     int len, const u16 *cmds)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) 	for (i = 0; i < len; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) 		lm8323_write_pwm_one(pwm, i, cmds[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) 	lm8323_write_pwm_one(pwm, i++, PWM_END(kill));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) 	lm8323_write(pwm->chip, 2, LM8323_CMD_START_PWM, pwm->id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) 	pwm->running = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) static void lm8323_pwm_work(struct work_struct *work)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) 	struct lm8323_pwm *pwm = work_to_pwm(work);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) 	int div512, perstep, steps, hz, up, kill;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) 	u16 pwm_cmds[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) 	int num_cmds = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) 	mutex_lock(&pwm->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) 	 * Do nothing if we're already at the requested level,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) 	 * or previous setting is not yet complete. In the latter
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) 	 * case we will be called again when the previous PWM script
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) 	 * finishes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) 	if (pwm->running || pwm->desired_brightness == pwm->brightness)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) 	kill = (pwm->desired_brightness == 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) 	up = (pwm->desired_brightness > pwm->brightness);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) 	steps = abs(pwm->desired_brightness - pwm->brightness);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) 	 * Convert time (in ms) into a divisor (512 or 16 on a refclk of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) 	 * 32768Hz), and number of ticks per step.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) 	if ((pwm->fade_time / steps) > (32768 / 512)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) 		div512 = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) 		hz = 32768 / 512;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) 		div512 = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) 		hz = 32768 / 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) 	perstep = (hz * pwm->fade_time) / (steps * 1000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) 	if (perstep == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) 		perstep = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) 	else if (perstep > 63)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) 		perstep = 63;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) 	while (steps) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) 		int s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) 		s = min(126, steps);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) 		pwm_cmds[num_cmds++] = PWM_RAMP(div512, perstep, s, up);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) 		steps -= s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) 	lm8323_write_pwm(pwm, kill, num_cmds, pwm_cmds);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) 	pwm->brightness = pwm->desired_brightness;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493)  out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) 	mutex_unlock(&pwm->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) static void lm8323_pwm_set_brightness(struct led_classdev *led_cdev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) 				      enum led_brightness brightness)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) 	struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) 	struct lm8323_chip *lm = pwm->chip;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) 	mutex_lock(&pwm->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) 	pwm->desired_brightness = brightness;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) 	mutex_unlock(&pwm->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) 	if (in_interrupt()) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) 		schedule_work(&pwm->work);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) 		 * Schedule PWM work as usual unless we are going into suspend
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) 		mutex_lock(&lm->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) 		if (likely(!lm->pm_suspend))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) 			schedule_work(&pwm->work);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) 			lm8323_pwm_work(&pwm->work);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) 		mutex_unlock(&lm->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) static ssize_t lm8323_pwm_show_time(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) 		struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) 	struct led_classdev *led_cdev = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) 	struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) 	return sprintf(buf, "%d\n", pwm->fade_time);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) static ssize_t lm8323_pwm_store_time(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) 		struct device_attribute *attr, const char *buf, size_t len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) 	struct led_classdev *led_cdev = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) 	struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) 	int ret, time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) 	ret = kstrtoint(buf, 10, &time);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) 	/* Numbers only, please. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) 	pwm->fade_time = time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) 	return strlen(buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) static DEVICE_ATTR(time, 0644, lm8323_pwm_show_time, lm8323_pwm_store_time);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) static struct attribute *lm8323_pwm_attrs[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) 	&dev_attr_time.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) 	NULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) ATTRIBUTE_GROUPS(lm8323_pwm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) static int init_pwm(struct lm8323_chip *lm, int id, struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) 		    const char *name)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) 	struct lm8323_pwm *pwm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) 	BUG_ON(id > 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) 	pwm = &lm->pwm[id - 1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) 	pwm->id = id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) 	pwm->fade_time = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) 	pwm->brightness = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) 	pwm->desired_brightness = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) 	pwm->running = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) 	pwm->enabled = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) 	INIT_WORK(&pwm->work, lm8323_pwm_work);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) 	mutex_init(&pwm->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) 	pwm->chip = lm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) 	if (name) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) 		pwm->cdev.name = name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) 		pwm->cdev.brightness_set = lm8323_pwm_set_brightness;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) 		pwm->cdev.groups = lm8323_pwm_groups;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) 		if (led_classdev_register(dev, &pwm->cdev) < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) 			dev_err(dev, "couldn't register PWM %d\n", id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) 			return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) 		pwm->enabled = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) static struct i2c_driver lm8323_i2c_driver;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) static ssize_t lm8323_show_disable(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) 				   struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) 	struct lm8323_chip *lm = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) 	return sprintf(buf, "%u\n", !lm->kp_enabled);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) static ssize_t lm8323_set_disable(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) 				  struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600) 				  const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) 	struct lm8323_chip *lm = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) 	unsigned int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) 	ret = kstrtouint(buf, 10, &i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) 	mutex_lock(&lm->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611) 	lm->kp_enabled = !i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) 	mutex_unlock(&lm->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616) static DEVICE_ATTR(disable_kp, 0644, lm8323_show_disable, lm8323_set_disable);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618) static int lm8323_probe(struct i2c_client *client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619) 				  const struct i2c_device_id *id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621) 	struct lm8323_platform_data *pdata = dev_get_platdata(&client->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622) 	struct input_dev *idev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623) 	struct lm8323_chip *lm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624) 	int pwm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625) 	int i, err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626) 	unsigned long tmo;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627) 	u8 data[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629) 	if (!pdata || !pdata->size_x || !pdata->size_y) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630) 		dev_err(&client->dev, "missing platform_data\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634) 	if (pdata->size_x > 8) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635) 		dev_err(&client->dev, "invalid x size %d specified\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636) 			pdata->size_x);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640) 	if (pdata->size_y > 12) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641) 		dev_err(&client->dev, "invalid y size %d specified\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642) 			pdata->size_y);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 645) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 646) 	lm = kzalloc(sizeof *lm, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 647) 	idev = input_allocate_device();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 648) 	if (!lm || !idev) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 649) 		err = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 650) 		goto fail1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 651) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 652) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 653) 	lm->client = client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 654) 	lm->idev = idev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 655) 	mutex_init(&lm->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 656) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 657) 	lm->size_x = pdata->size_x;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 658) 	lm->size_y = pdata->size_y;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 659) 	dev_vdbg(&client->dev, "Keypad size: %d x %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 660) 		 lm->size_x, lm->size_y);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 661) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 662) 	lm->debounce_time = pdata->debounce_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 663) 	lm->active_time = pdata->active_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 664) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 665) 	lm8323_reset(lm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 666) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 667) 	/* Nothing's set up to service the IRQ yet, so just spin for max.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 668) 	 * 100ms until we can configure. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 669) 	tmo = jiffies + msecs_to_jiffies(100);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 670) 	while (lm8323_read(lm, LM8323_CMD_READ_INT, data, 1) == 1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 671) 		if (data[0] & INT_NOINIT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 672) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 673) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 674) 		if (time_after(jiffies, tmo)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 675) 			dev_err(&client->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 676) 				"timeout waiting for initialisation\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 677) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 678) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 679) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 680) 		msleep(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 681) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 682) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 683) 	lm8323_configure(lm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 684) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 685) 	/* If a true probe check the device */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 686) 	if (lm8323_read_id(lm, data) != 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 687) 		dev_err(&client->dev, "device not found\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 688) 		err = -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 689) 		goto fail1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 690) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 691) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 692) 	for (pwm = 0; pwm < LM8323_NUM_PWMS; pwm++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 693) 		err = init_pwm(lm, pwm + 1, &client->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 694) 			       pdata->pwm_names[pwm]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 695) 		if (err < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 696) 			goto fail2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 697) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 698) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 699) 	lm->kp_enabled = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 700) 	err = device_create_file(&client->dev, &dev_attr_disable_kp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 701) 	if (err < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 702) 		goto fail2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 703) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 704) 	idev->name = pdata->name ? : "LM8323 keypad";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 705) 	snprintf(lm->phys, sizeof(lm->phys),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 706) 		 "%s/input-kp", dev_name(&client->dev));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 707) 	idev->phys = lm->phys;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 708) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 709) 	idev->evbit[0] = BIT(EV_KEY) | BIT(EV_MSC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 710) 	__set_bit(MSC_SCAN, idev->mscbit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 711) 	for (i = 0; i < LM8323_KEYMAP_SIZE; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 712) 		__set_bit(pdata->keymap[i], idev->keybit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 713) 		lm->keymap[i] = pdata->keymap[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 714) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 715) 	__clear_bit(KEY_RESERVED, idev->keybit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 716) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 717) 	if (pdata->repeat)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 718) 		__set_bit(EV_REP, idev->evbit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 719) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 720) 	err = input_register_device(idev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 721) 	if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 722) 		dev_dbg(&client->dev, "error registering input device\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 723) 		goto fail3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 724) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 725) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 726) 	err = request_threaded_irq(client->irq, NULL, lm8323_irq,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 727) 			  IRQF_TRIGGER_LOW|IRQF_ONESHOT, "lm8323", lm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 728) 	if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 729) 		dev_err(&client->dev, "could not get IRQ %d\n", client->irq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 730) 		goto fail4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 731) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 732) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 733) 	i2c_set_clientdata(client, lm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 734) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 735) 	device_init_wakeup(&client->dev, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 736) 	enable_irq_wake(client->irq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 737) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 738) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 739) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 740) fail4:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 741) 	input_unregister_device(idev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 742) 	idev = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 743) fail3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 744) 	device_remove_file(&client->dev, &dev_attr_disable_kp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 745) fail2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 746) 	while (--pwm >= 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 747) 		if (lm->pwm[pwm].enabled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 748) 			led_classdev_unregister(&lm->pwm[pwm].cdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 749) fail1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 750) 	input_free_device(idev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 751) 	kfree(lm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 752) 	return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 753) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 754) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 755) static int lm8323_remove(struct i2c_client *client)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 756) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 757) 	struct lm8323_chip *lm = i2c_get_clientdata(client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 758) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 759) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 760) 	disable_irq_wake(client->irq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 761) 	free_irq(client->irq, lm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 762) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 763) 	input_unregister_device(lm->idev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 764) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 765) 	device_remove_file(&lm->client->dev, &dev_attr_disable_kp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 766) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 767) 	for (i = 0; i < 3; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 768) 		if (lm->pwm[i].enabled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 769) 			led_classdev_unregister(&lm->pwm[i].cdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 770) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 771) 	kfree(lm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 772) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 773) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 774) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 775) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 776) #ifdef CONFIG_PM_SLEEP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 777) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 778)  * We don't need to explicitly suspend the chip, as it already switches off
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 779)  * when there's no activity.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 780)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 781) static int lm8323_suspend(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 782) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 783) 	struct i2c_client *client = to_i2c_client(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 784) 	struct lm8323_chip *lm = i2c_get_clientdata(client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 785) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 786) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 787) 	irq_set_irq_wake(client->irq, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 788) 	disable_irq(client->irq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 789) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 790) 	mutex_lock(&lm->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 791) 	lm->pm_suspend = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 792) 	mutex_unlock(&lm->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 793) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 794) 	for (i = 0; i < 3; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 795) 		if (lm->pwm[i].enabled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 796) 			led_classdev_suspend(&lm->pwm[i].cdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 797) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 798) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 799) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 800) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 801) static int lm8323_resume(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 802) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 803) 	struct i2c_client *client = to_i2c_client(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 804) 	struct lm8323_chip *lm = i2c_get_clientdata(client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 805) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 806) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 807) 	mutex_lock(&lm->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 808) 	lm->pm_suspend = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 809) 	mutex_unlock(&lm->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 810) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 811) 	for (i = 0; i < 3; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 812) 		if (lm->pwm[i].enabled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 813) 			led_classdev_resume(&lm->pwm[i].cdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 814) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 815) 	enable_irq(client->irq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 816) 	irq_set_irq_wake(client->irq, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 817) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 818) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 819) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 820) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 821) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 822) static SIMPLE_DEV_PM_OPS(lm8323_pm_ops, lm8323_suspend, lm8323_resume);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 823) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 824) static const struct i2c_device_id lm8323_id[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 825) 	{ "lm8323", 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 826) 	{ }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 827) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 828) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 829) static struct i2c_driver lm8323_i2c_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 830) 	.driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 831) 		.name	= "lm8323",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 832) 		.pm	= &lm8323_pm_ops,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 833) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 834) 	.probe		= lm8323_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 835) 	.remove		= lm8323_remove,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 836) 	.id_table	= lm8323_id,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 837) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 838) MODULE_DEVICE_TABLE(i2c, lm8323_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 839) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 840) module_i2c_driver(lm8323_i2c_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 841) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 842) MODULE_AUTHOR("Timo O. Karjalainen <timo.o.karjalainen@nokia.com>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 843) MODULE_AUTHOR("Daniel Stone");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 844) MODULE_AUTHOR("Felipe Balbi <felipe.balbi@nokia.com>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 845) MODULE_DESCRIPTION("LM8323 keypad driver");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 846) MODULE_LICENSE("GPL");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 847)