Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    1) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    2)  * Copyright(c) 2015 - 2018 Intel Corporation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    3)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    4)  * This file is provided under a dual BSD/GPLv2 license.  When using or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    5)  * redistributing this file, you may do so under either license.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    6)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    7)  * GPL LICENSE SUMMARY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    8)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    9)  * This program is free software; you can redistribute it and/or modify
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   10)  * it under the terms of version 2 of the GNU General Public License as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   11)  * published by the Free Software Foundation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   12)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   13)  * This program is distributed in the hope that it will be useful, but
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   14)  * WITHOUT ANY WARRANTY; without even the implied warranty of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   15)  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   16)  * General Public License for more details.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   17)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   18)  * BSD LICENSE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   19)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   20)  * Redistribution and use in source and binary forms, with or without
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   21)  * modification, are permitted provided that the following conditions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   22)  * are met:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   23)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   24)  *  - Redistributions of source code must retain the above copyright
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   25)  *    notice, this list of conditions and the following disclaimer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   26)  *  - Redistributions in binary form must reproduce the above copyright
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   27)  *    notice, this list of conditions and the following disclaimer in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   28)  *    the documentation and/or other materials provided with the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   29)  *    distribution.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   30)  *  - Neither the name of Intel Corporation nor the names of its
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   31)  *    contributors may be used to endorse or promote products derived
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   32)  *    from this software without specific prior written permission.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   33)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   34)  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   35)  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   36)  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   37)  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   38)  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   39)  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   40)  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   41)  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   42)  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   43)  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   44)  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   45)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   46)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   47) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   48) #include <linux/spinlock.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   49) #include <linux/seqlock.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   50) #include <linux/netdevice.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   51) #include <linux/moduleparam.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   52) #include <linux/bitops.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   53) #include <linux/timer.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   54) #include <linux/vmalloc.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   55) #include <linux/highmem.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   56) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   57) #include "hfi.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   58) #include "common.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   59) #include "qp.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   60) #include "sdma.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   61) #include "iowait.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   62) #include "trace.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   63) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   64) /* must be a power of 2 >= 64 <= 32768 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   65) #define SDMA_DESCQ_CNT 2048
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   66) #define SDMA_DESC_INTR 64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   67) #define INVALID_TAIL 0xffff
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   68) #define SDMA_PAD max_t(size_t, MAX_16B_PADDING, sizeof(u32))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   69) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   70) static uint sdma_descq_cnt = SDMA_DESCQ_CNT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   71) module_param(sdma_descq_cnt, uint, S_IRUGO);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   72) MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   73) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   74) static uint sdma_idle_cnt = 250;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   75) module_param(sdma_idle_cnt, uint, S_IRUGO);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   76) MODULE_PARM_DESC(sdma_idle_cnt, "sdma interrupt idle delay (ns,default 250)");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   77) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   78) uint mod_num_sdma;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   79) module_param_named(num_sdma, mod_num_sdma, uint, S_IRUGO);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   80) MODULE_PARM_DESC(num_sdma, "Set max number SDMA engines to use");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   81) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   82) static uint sdma_desct_intr = SDMA_DESC_INTR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   83) module_param_named(desct_intr, sdma_desct_intr, uint, S_IRUGO | S_IWUSR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   84) MODULE_PARM_DESC(desct_intr, "Number of SDMA descriptor before interrupt");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   85) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   86) #define SDMA_WAIT_BATCH_SIZE 20
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   87) /* max wait time for a SDMA engine to indicate it has halted */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   88) #define SDMA_ERR_HALT_TIMEOUT 10 /* ms */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   89) /* all SDMA engine errors that cause a halt */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   90) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   91) #define SD(name) SEND_DMA_##name
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   92) #define ALL_SDMA_ENG_HALT_ERRS \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   93) 	(SD(ENG_ERR_STATUS_SDMA_WRONG_DW_ERR_SMASK) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   94) 	| SD(ENG_ERR_STATUS_SDMA_GEN_MISMATCH_ERR_SMASK) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   95) 	| SD(ENG_ERR_STATUS_SDMA_TOO_LONG_ERR_SMASK) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   96) 	| SD(ENG_ERR_STATUS_SDMA_TAIL_OUT_OF_BOUNDS_ERR_SMASK) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   97) 	| SD(ENG_ERR_STATUS_SDMA_FIRST_DESC_ERR_SMASK) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   98) 	| SD(ENG_ERR_STATUS_SDMA_MEM_READ_ERR_SMASK) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   99) 	| SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  100) 	| SD(ENG_ERR_STATUS_SDMA_LENGTH_MISMATCH_ERR_SMASK) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  101) 	| SD(ENG_ERR_STATUS_SDMA_PACKET_DESC_OVERFLOW_ERR_SMASK) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  102) 	| SD(ENG_ERR_STATUS_SDMA_HEADER_SELECT_ERR_SMASK) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  103) 	| SD(ENG_ERR_STATUS_SDMA_HEADER_ADDRESS_ERR_SMASK) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  104) 	| SD(ENG_ERR_STATUS_SDMA_HEADER_LENGTH_ERR_SMASK) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  105) 	| SD(ENG_ERR_STATUS_SDMA_TIMEOUT_ERR_SMASK) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  106) 	| SD(ENG_ERR_STATUS_SDMA_DESC_TABLE_UNC_ERR_SMASK) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  107) 	| SD(ENG_ERR_STATUS_SDMA_ASSEMBLY_UNC_ERR_SMASK) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  108) 	| SD(ENG_ERR_STATUS_SDMA_PACKET_TRACKING_UNC_ERR_SMASK) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  109) 	| SD(ENG_ERR_STATUS_SDMA_HEADER_STORAGE_UNC_ERR_SMASK) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  110) 	| SD(ENG_ERR_STATUS_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SMASK))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  111) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  112) /* sdma_sendctrl operations */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  113) #define SDMA_SENDCTRL_OP_ENABLE    BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  114) #define SDMA_SENDCTRL_OP_INTENABLE BIT(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  115) #define SDMA_SENDCTRL_OP_HALT      BIT(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  116) #define SDMA_SENDCTRL_OP_CLEANUP   BIT(3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  117) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  118) /* handle long defines */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  119) #define SDMA_EGRESS_PACKET_OCCUPANCY_SMASK \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  120) SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SMASK
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  121) #define SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  122) SEND_EGRESS_SEND_DMA_STATUS_SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  123) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  124) static const char * const sdma_state_names[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  125) 	[sdma_state_s00_hw_down]                = "s00_HwDown",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  126) 	[sdma_state_s10_hw_start_up_halt_wait]  = "s10_HwStartUpHaltWait",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  127) 	[sdma_state_s15_hw_start_up_clean_wait] = "s15_HwStartUpCleanWait",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  128) 	[sdma_state_s20_idle]                   = "s20_Idle",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  129) 	[sdma_state_s30_sw_clean_up_wait]       = "s30_SwCleanUpWait",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  130) 	[sdma_state_s40_hw_clean_up_wait]       = "s40_HwCleanUpWait",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  131) 	[sdma_state_s50_hw_halt_wait]           = "s50_HwHaltWait",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  132) 	[sdma_state_s60_idle_halt_wait]         = "s60_IdleHaltWait",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  133) 	[sdma_state_s80_hw_freeze]		= "s80_HwFreeze",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  134) 	[sdma_state_s82_freeze_sw_clean]	= "s82_FreezeSwClean",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  135) 	[sdma_state_s99_running]                = "s99_Running",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  136) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  137) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  138) #ifdef CONFIG_SDMA_VERBOSITY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  139) static const char * const sdma_event_names[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  140) 	[sdma_event_e00_go_hw_down]   = "e00_GoHwDown",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  141) 	[sdma_event_e10_go_hw_start]  = "e10_GoHwStart",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  142) 	[sdma_event_e15_hw_halt_done] = "e15_HwHaltDone",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  143) 	[sdma_event_e25_hw_clean_up_done] = "e25_HwCleanUpDone",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  144) 	[sdma_event_e30_go_running]   = "e30_GoRunning",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  145) 	[sdma_event_e40_sw_cleaned]   = "e40_SwCleaned",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  146) 	[sdma_event_e50_hw_cleaned]   = "e50_HwCleaned",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  147) 	[sdma_event_e60_hw_halted]    = "e60_HwHalted",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  148) 	[sdma_event_e70_go_idle]      = "e70_GoIdle",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  149) 	[sdma_event_e80_hw_freeze]    = "e80_HwFreeze",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  150) 	[sdma_event_e81_hw_frozen]    = "e81_HwFrozen",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  151) 	[sdma_event_e82_hw_unfreeze]  = "e82_HwUnfreeze",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  152) 	[sdma_event_e85_link_down]    = "e85_LinkDown",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  153) 	[sdma_event_e90_sw_halted]    = "e90_SwHalted",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  154) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  155) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  156) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  157) static const struct sdma_set_state_action sdma_action_table[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  158) 	[sdma_state_s00_hw_down] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  159) 		.go_s99_running_tofalse = 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  160) 		.op_enable = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  161) 		.op_intenable = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  162) 		.op_halt = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  163) 		.op_cleanup = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  164) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  165) 	[sdma_state_s10_hw_start_up_halt_wait] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  166) 		.op_enable = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  167) 		.op_intenable = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  168) 		.op_halt = 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  169) 		.op_cleanup = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  170) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  171) 	[sdma_state_s15_hw_start_up_clean_wait] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  172) 		.op_enable = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  173) 		.op_intenable = 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  174) 		.op_halt = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  175) 		.op_cleanup = 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  176) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  177) 	[sdma_state_s20_idle] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  178) 		.op_enable = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  179) 		.op_intenable = 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  180) 		.op_halt = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  181) 		.op_cleanup = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  182) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  183) 	[sdma_state_s30_sw_clean_up_wait] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  184) 		.op_enable = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  185) 		.op_intenable = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  186) 		.op_halt = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  187) 		.op_cleanup = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  188) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  189) 	[sdma_state_s40_hw_clean_up_wait] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  190) 		.op_enable = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  191) 		.op_intenable = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  192) 		.op_halt = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  193) 		.op_cleanup = 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  194) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  195) 	[sdma_state_s50_hw_halt_wait] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  196) 		.op_enable = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  197) 		.op_intenable = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  198) 		.op_halt = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  199) 		.op_cleanup = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  200) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  201) 	[sdma_state_s60_idle_halt_wait] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  202) 		.go_s99_running_tofalse = 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  203) 		.op_enable = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  204) 		.op_intenable = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  205) 		.op_halt = 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  206) 		.op_cleanup = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  207) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  208) 	[sdma_state_s80_hw_freeze] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  209) 		.op_enable = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  210) 		.op_intenable = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  211) 		.op_halt = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  212) 		.op_cleanup = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  213) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  214) 	[sdma_state_s82_freeze_sw_clean] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  215) 		.op_enable = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  216) 		.op_intenable = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  217) 		.op_halt = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  218) 		.op_cleanup = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  219) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  220) 	[sdma_state_s99_running] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  221) 		.op_enable = 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  222) 		.op_intenable = 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  223) 		.op_halt = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  224) 		.op_cleanup = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  225) 		.go_s99_running_totrue = 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  226) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  227) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  228) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  229) #define SDMA_TAIL_UPDATE_THRESH 0x1F
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  230) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  231) /* declare all statics here rather than keep sorting */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  232) static void sdma_complete(struct kref *);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  233) static void sdma_finalput(struct sdma_state *);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  234) static void sdma_get(struct sdma_state *);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  235) static void sdma_hw_clean_up_task(struct tasklet_struct *);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  236) static void sdma_put(struct sdma_state *);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  237) static void sdma_set_state(struct sdma_engine *, enum sdma_states);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  238) static void sdma_start_hw_clean_up(struct sdma_engine *);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  239) static void sdma_sw_clean_up_task(struct tasklet_struct *);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  240) static void sdma_sendctrl(struct sdma_engine *, unsigned);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  241) static void init_sdma_regs(struct sdma_engine *, u32, uint);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  242) static void sdma_process_event(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  243) 	struct sdma_engine *sde,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  244) 	enum sdma_events event);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  245) static void __sdma_process_event(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  246) 	struct sdma_engine *sde,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  247) 	enum sdma_events event);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  248) static void dump_sdma_state(struct sdma_engine *sde);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  249) static void sdma_make_progress(struct sdma_engine *sde, u64 status);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  250) static void sdma_desc_avail(struct sdma_engine *sde, uint avail);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  251) static void sdma_flush_descq(struct sdma_engine *sde);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  252) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  253) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  254)  * sdma_state_name() - return state string from enum
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  255)  * @state: state
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  256)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  257) static const char *sdma_state_name(enum sdma_states state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  258) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  259) 	return sdma_state_names[state];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  260) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  261) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  262) static void sdma_get(struct sdma_state *ss)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  263) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  264) 	kref_get(&ss->kref);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  265) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  266) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  267) static void sdma_complete(struct kref *kref)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  268) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  269) 	struct sdma_state *ss =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  270) 		container_of(kref, struct sdma_state, kref);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  271) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  272) 	complete(&ss->comp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  273) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  274) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  275) static void sdma_put(struct sdma_state *ss)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  276) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  277) 	kref_put(&ss->kref, sdma_complete);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  278) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  279) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  280) static void sdma_finalput(struct sdma_state *ss)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  281) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  282) 	sdma_put(ss);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  283) 	wait_for_completion(&ss->comp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  284) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  285) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  286) static inline void write_sde_csr(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  287) 	struct sdma_engine *sde,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  288) 	u32 offset0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  289) 	u64 value)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  290) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  291) 	write_kctxt_csr(sde->dd, sde->this_idx, offset0, value);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  292) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  293) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  294) static inline u64 read_sde_csr(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  295) 	struct sdma_engine *sde,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  296) 	u32 offset0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  297) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  298) 	return read_kctxt_csr(sde->dd, sde->this_idx, offset0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  299) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  300) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  301) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  302)  * sdma_wait_for_packet_egress() - wait for the VL FIFO occupancy for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  303)  * sdma engine 'sde' to drop to 0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  304)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  305) static void sdma_wait_for_packet_egress(struct sdma_engine *sde,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  306) 					int pause)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  307) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  308) 	u64 off = 8 * sde->this_idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  309) 	struct hfi1_devdata *dd = sde->dd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  310) 	int lcnt = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  311) 	u64 reg_prev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  312) 	u64 reg = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  313) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  314) 	while (1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  315) 		reg_prev = reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  316) 		reg = read_csr(dd, off + SEND_EGRESS_SEND_DMA_STATUS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  317) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  318) 		reg &= SDMA_EGRESS_PACKET_OCCUPANCY_SMASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  319) 		reg >>= SDMA_EGRESS_PACKET_OCCUPANCY_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  320) 		if (reg == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  321) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  322) 		/* counter is reest if accupancy count changes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  323) 		if (reg != reg_prev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  324) 			lcnt = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  325) 		if (lcnt++ > 500) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  326) 			/* timed out - bounce the link */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  327) 			dd_dev_err(dd, "%s: engine %u timeout waiting for packets to egress, remaining count %u, bouncing link\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  328) 				   __func__, sde->this_idx, (u32)reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  329) 			queue_work(dd->pport->link_wq,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  330) 				   &dd->pport->link_bounce_work);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  331) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  332) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  333) 		udelay(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  334) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  335) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  336) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  337) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  338)  * sdma_wait() - wait for packet egress to complete for all SDMA engines,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  339)  * and pause for credit return.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  340)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  341) void sdma_wait(struct hfi1_devdata *dd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  342) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  343) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  344) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  345) 	for (i = 0; i < dd->num_sdma; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  346) 		struct sdma_engine *sde = &dd->per_sdma[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  347) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  348) 		sdma_wait_for_packet_egress(sde, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  349) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  350) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  351) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  352) static inline void sdma_set_desc_cnt(struct sdma_engine *sde, unsigned cnt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  353) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  354) 	u64 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  355) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  356) 	if (!(sde->dd->flags & HFI1_HAS_SDMA_TIMEOUT))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  357) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  358) 	reg = cnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  359) 	reg &= SD(DESC_CNT_CNT_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  360) 	reg <<= SD(DESC_CNT_CNT_SHIFT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  361) 	write_sde_csr(sde, SD(DESC_CNT), reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  362) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  363) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  364) static inline void complete_tx(struct sdma_engine *sde,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  365) 			       struct sdma_txreq *tx,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  366) 			       int res)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  367) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  368) 	/* protect against complete modifying */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  369) 	struct iowait *wait = tx->wait;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  370) 	callback_t complete = tx->complete;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  371) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  372) #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  373) 	trace_hfi1_sdma_out_sn(sde, tx->sn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  374) 	if (WARN_ON_ONCE(sde->head_sn != tx->sn))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  375) 		dd_dev_err(sde->dd, "expected %llu got %llu\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  376) 			   sde->head_sn, tx->sn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  377) 	sde->head_sn++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  378) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  379) 	__sdma_txclean(sde->dd, tx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  380) 	if (complete)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  381) 		(*complete)(tx, res);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  382) 	if (iowait_sdma_dec(wait))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  383) 		iowait_drain_wakeup(wait);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  384) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  385) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  386) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  387)  * Complete all the sdma requests with a SDMA_TXREQ_S_ABORTED status
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  388)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  389)  * Depending on timing there can be txreqs in two places:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  390)  * - in the descq ring
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  391)  * - in the flush list
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  392)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  393)  * To avoid ordering issues the descq ring needs to be flushed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  394)  * first followed by the flush list.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  395)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  396)  * This routine is called from two places
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  397)  * - From a work queue item
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  398)  * - Directly from the state machine just before setting the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  399)  *   state to running
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  400)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  401)  * Must be called with head_lock held
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  402)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  403)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  404) static void sdma_flush(struct sdma_engine *sde)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  405) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  406) 	struct sdma_txreq *txp, *txp_next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  407) 	LIST_HEAD(flushlist);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  408) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  409) 	uint seq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  410) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  411) 	/* flush from head to tail */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  412) 	sdma_flush_descq(sde);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  413) 	spin_lock_irqsave(&sde->flushlist_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  414) 	/* copy flush list */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  415) 	list_splice_init(&sde->flushlist, &flushlist);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  416) 	spin_unlock_irqrestore(&sde->flushlist_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  417) 	/* flush from flush list */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  418) 	list_for_each_entry_safe(txp, txp_next, &flushlist, list)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  419) 		complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  420) 	/* wakeup QPs orphaned on the dmawait list */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  421) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  422) 		struct iowait *w, *nw;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  423) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  424) 		seq = read_seqbegin(&sde->waitlock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  425) 		if (!list_empty(&sde->dmawait)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  426) 			write_seqlock(&sde->waitlock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  427) 			list_for_each_entry_safe(w, nw, &sde->dmawait, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  428) 				if (w->wakeup) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  429) 					w->wakeup(w, SDMA_AVAIL_REASON);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  430) 					list_del_init(&w->list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  431) 				}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  432) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  433) 			write_sequnlock(&sde->waitlock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  434) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  435) 	} while (read_seqretry(&sde->waitlock, seq));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  436) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  437) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  438) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  439)  * Fields a work request for flushing the descq ring
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  440)  * and the flush list
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  441)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  442)  * If the engine has been brought to running during
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  443)  * the scheduling delay, the flush is ignored, assuming
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  444)  * that the process of bringing the engine to running
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  445)  * would have done this flush prior to going to running.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  446)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  447)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  448) static void sdma_field_flush(struct work_struct *work)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  449) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  450) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  451) 	struct sdma_engine *sde =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  452) 		container_of(work, struct sdma_engine, flush_worker);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  453) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  454) 	write_seqlock_irqsave(&sde->head_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  455) 	if (!__sdma_running(sde))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  456) 		sdma_flush(sde);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  457) 	write_sequnlock_irqrestore(&sde->head_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  458) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  459) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  460) static void sdma_err_halt_wait(struct work_struct *work)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  461) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  462) 	struct sdma_engine *sde = container_of(work, struct sdma_engine,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  463) 						err_halt_worker);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  464) 	u64 statuscsr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  465) 	unsigned long timeout;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  466) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  467) 	timeout = jiffies + msecs_to_jiffies(SDMA_ERR_HALT_TIMEOUT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  468) 	while (1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  469) 		statuscsr = read_sde_csr(sde, SD(STATUS));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  470) 		statuscsr &= SD(STATUS_ENG_HALTED_SMASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  471) 		if (statuscsr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  472) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  473) 		if (time_after(jiffies, timeout)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  474) 			dd_dev_err(sde->dd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  475) 				   "SDMA engine %d - timeout waiting for engine to halt\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  476) 				   sde->this_idx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  477) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  478) 			 * Continue anyway.  This could happen if there was
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  479) 			 * an uncorrectable error in the wrong spot.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  480) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  481) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  482) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  483) 		usleep_range(80, 120);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  484) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  485) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  486) 	sdma_process_event(sde, sdma_event_e15_hw_halt_done);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  487) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  488) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  489) static void sdma_err_progress_check_schedule(struct sdma_engine *sde)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  490) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  491) 	if (!is_bx(sde->dd) && HFI1_CAP_IS_KSET(SDMA_AHG)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  492) 		unsigned index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  493) 		struct hfi1_devdata *dd = sde->dd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  494) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  495) 		for (index = 0; index < dd->num_sdma; index++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  496) 			struct sdma_engine *curr_sdma = &dd->per_sdma[index];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  497) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  498) 			if (curr_sdma != sde)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  499) 				curr_sdma->progress_check_head =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  500) 							curr_sdma->descq_head;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  501) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  502) 		dd_dev_err(sde->dd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  503) 			   "SDMA engine %d - check scheduled\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  504) 				sde->this_idx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  505) 		mod_timer(&sde->err_progress_check_timer, jiffies + 10);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  506) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  507) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  508) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  509) static void sdma_err_progress_check(struct timer_list *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  510) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  511) 	unsigned index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  512) 	struct sdma_engine *sde = from_timer(sde, t, err_progress_check_timer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  513) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  514) 	dd_dev_err(sde->dd, "SDE progress check event\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  515) 	for (index = 0; index < sde->dd->num_sdma; index++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  516) 		struct sdma_engine *curr_sde = &sde->dd->per_sdma[index];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  517) 		unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  518) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  519) 		/* check progress on each engine except the current one */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  520) 		if (curr_sde == sde)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  521) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  522) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  523) 		 * We must lock interrupts when acquiring sde->lock,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  524) 		 * to avoid a deadlock if interrupt triggers and spins on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  525) 		 * the same lock on same CPU
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  526) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  527) 		spin_lock_irqsave(&curr_sde->tail_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  528) 		write_seqlock(&curr_sde->head_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  529) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  530) 		/* skip non-running queues */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  531) 		if (curr_sde->state.current_state != sdma_state_s99_running) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  532) 			write_sequnlock(&curr_sde->head_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  533) 			spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  534) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  535) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  536) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  537) 		if ((curr_sde->descq_head != curr_sde->descq_tail) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  538) 		    (curr_sde->descq_head ==
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  539) 				curr_sde->progress_check_head))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  540) 			__sdma_process_event(curr_sde,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  541) 					     sdma_event_e90_sw_halted);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  542) 		write_sequnlock(&curr_sde->head_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  543) 		spin_unlock_irqrestore(&curr_sde->tail_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  544) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  545) 	schedule_work(&sde->err_halt_worker);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  546) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  547) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  548) static void sdma_hw_clean_up_task(struct tasklet_struct *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  549) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  550) 	struct sdma_engine *sde = from_tasklet(sde, t,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  551) 					       sdma_hw_clean_up_task);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  552) 	u64 statuscsr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  553) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  554) 	while (1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  555) #ifdef CONFIG_SDMA_VERBOSITY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  556) 		dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  557) 			   sde->this_idx, slashstrip(__FILE__), __LINE__,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  558) 			__func__);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  559) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  560) 		statuscsr = read_sde_csr(sde, SD(STATUS));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  561) 		statuscsr &= SD(STATUS_ENG_CLEANED_UP_SMASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  562) 		if (statuscsr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  563) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  564) 		udelay(10);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  565) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  566) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  567) 	sdma_process_event(sde, sdma_event_e25_hw_clean_up_done);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  568) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  569) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  570) static inline struct sdma_txreq *get_txhead(struct sdma_engine *sde)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  571) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  572) 	return sde->tx_ring[sde->tx_head & sde->sdma_mask];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  573) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  574) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  575) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  576)  * flush ring for recovery
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  577)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  578) static void sdma_flush_descq(struct sdma_engine *sde)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  579) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  580) 	u16 head, tail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  581) 	int progress = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  582) 	struct sdma_txreq *txp = get_txhead(sde);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  583) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  584) 	/* The reason for some of the complexity of this code is that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  585) 	 * not all descriptors have corresponding txps.  So, we have to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  586) 	 * be able to skip over descs until we wander into the range of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  587) 	 * the next txp on the list.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  588) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  589) 	head = sde->descq_head & sde->sdma_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  590) 	tail = sde->descq_tail & sde->sdma_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  591) 	while (head != tail) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  592) 		/* advance head, wrap if needed */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  593) 		head = ++sde->descq_head & sde->sdma_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  594) 		/* if now past this txp's descs, do the callback */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  595) 		if (txp && txp->next_descq_idx == head) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  596) 			/* remove from list */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  597) 			sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  598) 			complete_tx(sde, txp, SDMA_TXREQ_S_ABORTED);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  599) 			trace_hfi1_sdma_progress(sde, head, tail, txp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  600) 			txp = get_txhead(sde);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  601) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  602) 		progress++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  603) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  604) 	if (progress)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  605) 		sdma_desc_avail(sde, sdma_descq_freecnt(sde));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  606) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  607) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  608) static void sdma_sw_clean_up_task(struct tasklet_struct *t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  609) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  610) 	struct sdma_engine *sde = from_tasklet(sde, t, sdma_sw_clean_up_task);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  611) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  612) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  613) 	spin_lock_irqsave(&sde->tail_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  614) 	write_seqlock(&sde->head_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  615) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  616) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  617) 	 * At this point, the following should always be true:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  618) 	 * - We are halted, so no more descriptors are getting retired.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  619) 	 * - We are not running, so no one is submitting new work.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  620) 	 * - Only we can send the e40_sw_cleaned, so we can't start
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  621) 	 *   running again until we say so.  So, the active list and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  622) 	 *   descq are ours to play with.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  623) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  624) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  625) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  626) 	 * In the error clean up sequence, software clean must be called
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  627) 	 * before the hardware clean so we can use the hardware head in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  628) 	 * the progress routine.  A hardware clean or SPC unfreeze will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  629) 	 * reset the hardware head.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  630) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  631) 	 * Process all retired requests. The progress routine will use the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  632) 	 * latest physical hardware head - we are not running so speed does
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  633) 	 * not matter.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  634) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  635) 	sdma_make_progress(sde, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  636) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  637) 	sdma_flush(sde);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  638) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  639) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  640) 	 * Reset our notion of head and tail.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  641) 	 * Note that the HW registers have been reset via an earlier
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  642) 	 * clean up.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  643) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  644) 	sde->descq_tail = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  645) 	sde->descq_head = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  646) 	sde->desc_avail = sdma_descq_freecnt(sde);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  647) 	*sde->head_dma = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  648) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  649) 	__sdma_process_event(sde, sdma_event_e40_sw_cleaned);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  650) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  651) 	write_sequnlock(&sde->head_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  652) 	spin_unlock_irqrestore(&sde->tail_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  653) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  654) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  655) static void sdma_sw_tear_down(struct sdma_engine *sde)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  656) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  657) 	struct sdma_state *ss = &sde->state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  658) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  659) 	/* Releasing this reference means the state machine has stopped. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  660) 	sdma_put(ss);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  661) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  662) 	/* stop waiting for all unfreeze events to complete */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  663) 	atomic_set(&sde->dd->sdma_unfreeze_count, -1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  664) 	wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  665) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  666) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  667) static void sdma_start_hw_clean_up(struct sdma_engine *sde)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  668) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  669) 	tasklet_hi_schedule(&sde->sdma_hw_clean_up_task);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  670) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  671) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  672) static void sdma_set_state(struct sdma_engine *sde,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  673) 			   enum sdma_states next_state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  674) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  675) 	struct sdma_state *ss = &sde->state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  676) 	const struct sdma_set_state_action *action = sdma_action_table;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  677) 	unsigned op = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  678) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  679) 	trace_hfi1_sdma_state(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  680) 		sde,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  681) 		sdma_state_names[ss->current_state],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  682) 		sdma_state_names[next_state]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  683) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  684) 	/* debugging bookkeeping */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  685) 	ss->previous_state = ss->current_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  686) 	ss->previous_op = ss->current_op;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  687) 	ss->current_state = next_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  688) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  689) 	if (ss->previous_state != sdma_state_s99_running &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  690) 	    next_state == sdma_state_s99_running)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  691) 		sdma_flush(sde);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  692) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  693) 	if (action[next_state].op_enable)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  694) 		op |= SDMA_SENDCTRL_OP_ENABLE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  695) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  696) 	if (action[next_state].op_intenable)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  697) 		op |= SDMA_SENDCTRL_OP_INTENABLE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  698) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  699) 	if (action[next_state].op_halt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  700) 		op |= SDMA_SENDCTRL_OP_HALT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  701) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  702) 	if (action[next_state].op_cleanup)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  703) 		op |= SDMA_SENDCTRL_OP_CLEANUP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  704) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  705) 	if (action[next_state].go_s99_running_tofalse)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  706) 		ss->go_s99_running = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  707) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  708) 	if (action[next_state].go_s99_running_totrue)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  709) 		ss->go_s99_running = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  710) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  711) 	ss->current_op = op;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  712) 	sdma_sendctrl(sde, ss->current_op);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  713) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  714) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  715) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  716)  * sdma_get_descq_cnt() - called when device probed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  717)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  718)  * Return a validated descq count.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  719)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  720)  * This is currently only used in the verbs initialization to build the tx
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  721)  * list.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  722)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  723)  * This will probably be deleted in favor of a more scalable approach to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  724)  * alloc tx's.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  725)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  726)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  727) u16 sdma_get_descq_cnt(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  728) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  729) 	u16 count = sdma_descq_cnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  730) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  731) 	if (!count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  732) 		return SDMA_DESCQ_CNT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  733) 	/* count must be a power of 2 greater than 64 and less than
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  734) 	 * 32768.   Otherwise return default.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  735) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  736) 	if (!is_power_of_2(count))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  737) 		return SDMA_DESCQ_CNT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  738) 	if (count < 64 || count > 32768)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  739) 		return SDMA_DESCQ_CNT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  740) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  741) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  742) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  743) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  744)  * sdma_engine_get_vl() - return vl for a given sdma engine
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  745)  * @sde: sdma engine
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  746)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  747)  * This function returns the vl mapped to a given engine, or an error if
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  748)  * the mapping can't be found. The mapping fields are protected by RCU.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  749)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  750) int sdma_engine_get_vl(struct sdma_engine *sde)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  751) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  752) 	struct hfi1_devdata *dd = sde->dd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  753) 	struct sdma_vl_map *m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  754) 	u8 vl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  755) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  756) 	if (sde->this_idx >= TXE_NUM_SDMA_ENGINES)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  757) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  758) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  759) 	rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  760) 	m = rcu_dereference(dd->sdma_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  761) 	if (unlikely(!m)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  762) 		rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  763) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  764) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  765) 	vl = m->engine_to_vl[sde->this_idx];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  766) 	rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  767) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  768) 	return vl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  769) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  770) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  771) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  772)  * sdma_select_engine_vl() - select sdma engine
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  773)  * @dd: devdata
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  774)  * @selector: a spreading factor
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  775)  * @vl: this vl
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  776)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  777)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  778)  * This function returns an engine based on the selector and a vl.  The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  779)  * mapping fields are protected by RCU.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  780)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  781) struct sdma_engine *sdma_select_engine_vl(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  782) 	struct hfi1_devdata *dd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  783) 	u32 selector,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  784) 	u8 vl)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  785) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  786) 	struct sdma_vl_map *m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  787) 	struct sdma_map_elem *e;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  788) 	struct sdma_engine *rval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  789) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  790) 	/* NOTE This should only happen if SC->VL changed after the initial
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  791) 	 *      checks on the QP/AH
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  792) 	 *      Default will return engine 0 below
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  793) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  794) 	if (vl >= num_vls) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  795) 		rval = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  796) 		goto done;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  797) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  798) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  799) 	rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  800) 	m = rcu_dereference(dd->sdma_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  801) 	if (unlikely(!m)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  802) 		rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  803) 		return &dd->per_sdma[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  804) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  805) 	e = m->map[vl & m->mask];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  806) 	rval = e->sde[selector & e->mask];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  807) 	rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  808) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  809) done:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  810) 	rval =  !rval ? &dd->per_sdma[0] : rval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  811) 	trace_hfi1_sdma_engine_select(dd, selector, vl, rval->this_idx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  812) 	return rval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  813) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  814) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  815) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  816)  * sdma_select_engine_sc() - select sdma engine
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  817)  * @dd: devdata
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  818)  * @selector: a spreading factor
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  819)  * @sc5: the 5 bit sc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  820)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  821)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  822)  * This function returns an engine based on the selector and an sc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  823)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  824) struct sdma_engine *sdma_select_engine_sc(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  825) 	struct hfi1_devdata *dd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  826) 	u32 selector,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  827) 	u8 sc5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  828) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  829) 	u8 vl = sc_to_vlt(dd, sc5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  830) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  831) 	return sdma_select_engine_vl(dd, selector, vl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  832) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  833) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  834) struct sdma_rht_map_elem {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  835) 	u32 mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  836) 	u8 ctr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  837) 	struct sdma_engine *sde[];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  838) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  839) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  840) struct sdma_rht_node {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  841) 	unsigned long cpu_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  842) 	struct sdma_rht_map_elem *map[HFI1_MAX_VLS_SUPPORTED];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  843) 	struct rhash_head node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  844) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  845) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  846) #define NR_CPUS_HINT 192
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  847) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  848) static const struct rhashtable_params sdma_rht_params = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  849) 	.nelem_hint = NR_CPUS_HINT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  850) 	.head_offset = offsetof(struct sdma_rht_node, node),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  851) 	.key_offset = offsetof(struct sdma_rht_node, cpu_id),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  852) 	.key_len = sizeof_field(struct sdma_rht_node, cpu_id),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  853) 	.max_size = NR_CPUS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  854) 	.min_size = 8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  855) 	.automatic_shrinking = true,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  856) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  857) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  858) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  859)  * sdma_select_user_engine() - select sdma engine based on user setup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  860)  * @dd: devdata
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  861)  * @selector: a spreading factor
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  862)  * @vl: this vl
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  863)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  864)  * This function returns an sdma engine for a user sdma request.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  865)  * User defined sdma engine affinity setting is honored when applicable,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  866)  * otherwise system default sdma engine mapping is used. To ensure correct
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  867)  * ordering, the mapping from <selector, vl> to sde must remain unchanged.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  868)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  869) struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  870) 					    u32 selector, u8 vl)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  871) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  872) 	struct sdma_rht_node *rht_node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  873) 	struct sdma_engine *sde = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  874) 	unsigned long cpu_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  875) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  876) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  877) 	 * To ensure that always the same sdma engine(s) will be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  878) 	 * selected make sure the process is pinned to this CPU only.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  879) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  880) 	if (current->nr_cpus_allowed != 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  881) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  882) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  883) 	rcu_read_lock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  884) 	cpu_id = smp_processor_id();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  885) 	rht_node = rhashtable_lookup(dd->sdma_rht, &cpu_id,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  886) 				     sdma_rht_params);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  887) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  888) 	if (rht_node && rht_node->map[vl]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  889) 		struct sdma_rht_map_elem *map = rht_node->map[vl];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  890) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  891) 		sde = map->sde[selector & map->mask];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  892) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  893) 	rcu_read_unlock();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  894) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  895) 	if (sde)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  896) 		return sde;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  897) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  898) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  899) 	return sdma_select_engine_vl(dd, selector, vl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  900) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  901) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  902) static void sdma_populate_sde_map(struct sdma_rht_map_elem *map)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  903) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  904) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  905) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  906) 	for (i = 0; i < roundup_pow_of_two(map->ctr ? : 1) - map->ctr; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  907) 		map->sde[map->ctr + i] = map->sde[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  908) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  909) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  910) static void sdma_cleanup_sde_map(struct sdma_rht_map_elem *map,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  911) 				 struct sdma_engine *sde)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  912) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  913) 	unsigned int i, pow;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  914) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  915) 	/* only need to check the first ctr entries for a match */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  916) 	for (i = 0; i < map->ctr; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  917) 		if (map->sde[i] == sde) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  918) 			memmove(&map->sde[i], &map->sde[i + 1],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  919) 				(map->ctr - i - 1) * sizeof(map->sde[0]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  920) 			map->ctr--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  921) 			pow = roundup_pow_of_two(map->ctr ? : 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  922) 			map->mask = pow - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  923) 			sdma_populate_sde_map(map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  924) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  925) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  926) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  927) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  928) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  929) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  930)  * Prevents concurrent reads and writes of the sdma engine cpu_mask
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  931)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  932) static DEFINE_MUTEX(process_to_sde_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  933) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  934) ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  935) 				size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  936) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  937) 	struct hfi1_devdata *dd = sde->dd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  938) 	cpumask_var_t mask, new_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  939) 	unsigned long cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  940) 	int ret, vl, sz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  941) 	struct sdma_rht_node *rht_node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  942) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  943) 	vl = sdma_engine_get_vl(sde);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  944) 	if (unlikely(vl < 0 || vl >= ARRAY_SIZE(rht_node->map)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  945) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  946) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  947) 	ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  948) 	if (!ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  949) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  950) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  951) 	ret = zalloc_cpumask_var(&new_mask, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  952) 	if (!ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  953) 		free_cpumask_var(mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  954) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  955) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  956) 	ret = cpulist_parse(buf, mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  957) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  958) 		goto out_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  959) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  960) 	if (!cpumask_subset(mask, cpu_online_mask)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  961) 		dd_dev_warn(sde->dd, "Invalid CPU mask\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  962) 		ret = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  963) 		goto out_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  964) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  965) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  966) 	sz = sizeof(struct sdma_rht_map_elem) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  967) 			(TXE_NUM_SDMA_ENGINES * sizeof(struct sdma_engine *));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  968) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  969) 	mutex_lock(&process_to_sde_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  970) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  971) 	for_each_cpu(cpu, mask) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  972) 		/* Check if we have this already mapped */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  973) 		if (cpumask_test_cpu(cpu, &sde->cpu_mask)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  974) 			cpumask_set_cpu(cpu, new_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  975) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  976) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  977) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  978) 		rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  979) 						  sdma_rht_params);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  980) 		if (!rht_node) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  981) 			rht_node = kzalloc(sizeof(*rht_node), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  982) 			if (!rht_node) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  983) 				ret = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  984) 				goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  985) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  986) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  987) 			rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  988) 			if (!rht_node->map[vl]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  989) 				kfree(rht_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  990) 				ret = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  991) 				goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  992) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  993) 			rht_node->cpu_id = cpu;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  994) 			rht_node->map[vl]->mask = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  995) 			rht_node->map[vl]->ctr = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  996) 			rht_node->map[vl]->sde[0] = sde;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  997) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  998) 			ret = rhashtable_insert_fast(dd->sdma_rht,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  999) 						     &rht_node->node,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) 						     sdma_rht_params);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) 			if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) 				kfree(rht_node->map[vl]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) 				kfree(rht_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) 				dd_dev_err(sde->dd, "Failed to set process to sde affinity for cpu %lu\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005) 					   cpu);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) 				goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) 			int ctr, pow;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012) 			/* Add new user mappings */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) 			if (!rht_node->map[vl])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014) 				rht_node->map[vl] = kzalloc(sz, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016) 			if (!rht_node->map[vl]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017) 				ret = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018) 				goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021) 			rht_node->map[vl]->ctr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022) 			ctr = rht_node->map[vl]->ctr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) 			rht_node->map[vl]->sde[ctr - 1] = sde;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) 			pow = roundup_pow_of_two(ctr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) 			rht_node->map[vl]->mask = pow - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027) 			/* Populate the sde map table */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) 			sdma_populate_sde_map(rht_node->map[vl]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030) 		cpumask_set_cpu(cpu, new_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033) 	/* Clean up old mappings */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) 	for_each_cpu(cpu, cpu_online_mask) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035) 		struct sdma_rht_node *rht_node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037) 		/* Don't cleanup sdes that are set in the new mask */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038) 		if (cpumask_test_cpu(cpu, mask))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041) 		rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042) 						  sdma_rht_params);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043) 		if (rht_node) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044) 			bool empty = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045) 			int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047) 			/* Remove mappings for old sde */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048) 			for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049) 				if (rht_node->map[i])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050) 					sdma_cleanup_sde_map(rht_node->map[i],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051) 							     sde);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053) 			/* Free empty hash table entries */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054) 			for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055) 				if (!rht_node->map[i])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056) 					continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058) 				if (rht_node->map[i]->ctr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) 					empty = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060) 					break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) 				}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) 			if (empty) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) 				ret = rhashtable_remove_fast(dd->sdma_rht,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) 							     &rht_node->node,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) 							     sdma_rht_params);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) 				WARN_ON(ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) 				for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) 					kfree(rht_node->map[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) 				kfree(rht_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078) 	cpumask_copy(&sde->cpu_mask, new_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) 	mutex_unlock(&process_to_sde_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) out_free:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) 	free_cpumask_var(mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) 	free_cpumask_var(new_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) 	return ret ? : strnlen(buf, PAGE_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) 	mutex_lock(&process_to_sde_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090) 	if (cpumask_empty(&sde->cpu_mask))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) 		snprintf(buf, PAGE_SIZE, "%s\n", "empty");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) 		cpumap_print_to_pagebuf(true, buf, &sde->cpu_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) 	mutex_unlock(&process_to_sde_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) 	return strnlen(buf, PAGE_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098) static void sdma_rht_free(void *ptr, void *arg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100) 	struct sdma_rht_node *rht_node = ptr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103) 	for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104) 		kfree(rht_node->map[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106) 	kfree(rht_node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110)  * sdma_seqfile_dump_cpu_list() - debugfs dump the cpu to sdma mappings
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111)  * @s: seq file
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112)  * @dd: hfi1_devdata
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113)  * @cpuid: cpu id
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115)  * This routine dumps the process to sde mappings per cpu
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) void sdma_seqfile_dump_cpu_list(struct seq_file *s,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118) 				struct hfi1_devdata *dd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119) 				unsigned long cpuid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) 	struct sdma_rht_node *rht_node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122) 	int i, j;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124) 	rht_node = rhashtable_lookup_fast(dd->sdma_rht, &cpuid,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125) 					  sdma_rht_params);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126) 	if (!rht_node)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129) 	seq_printf(s, "cpu%3lu: ", cpuid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130) 	for (i = 0; i < HFI1_MAX_VLS_SUPPORTED; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131) 		if (!rht_node->map[i] || !rht_node->map[i]->ctr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134) 		seq_printf(s, " vl%d: [", i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136) 		for (j = 0; j < rht_node->map[i]->ctr; j++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137) 			if (!rht_node->map[i]->sde[j])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140) 			if (j > 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141) 				seq_puts(s, ",");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143) 			seq_printf(s, " sdma%2d",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144) 				   rht_node->map[i]->sde[j]->this_idx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146) 		seq_puts(s, " ]");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149) 	seq_puts(s, "\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153)  * Free the indicated map struct
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155) static void sdma_map_free(struct sdma_vl_map *m)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159) 	for (i = 0; m && i < m->actual_vls; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160) 		kfree(m->map[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161) 	kfree(m);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1162) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1163) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1164) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1165)  * Handle RCU callback
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1166)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1167) static void sdma_map_rcu_callback(struct rcu_head *list)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1168) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1169) 	struct sdma_vl_map *m = container_of(list, struct sdma_vl_map, list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1170) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1171) 	sdma_map_free(m);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1172) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1173) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1174) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1175)  * sdma_map_init - called when # vls change
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1176)  * @dd: hfi1_devdata
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1177)  * @port: port number
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1178)  * @num_vls: number of vls
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1179)  * @vl_engines: per vl engine mapping (optional)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1180)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1181)  * This routine changes the mapping based on the number of vls.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1182)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1183)  * vl_engines is used to specify a non-uniform vl/engine loading. NULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1184)  * implies auto computing the loading and giving each VLs a uniform
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1185)  * distribution of engines per VL.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1186)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1187)  * The auto algorithm computes the sde_per_vl and the number of extra
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1188)  * engines.  Any extra engines are added from the last VL on down.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1189)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1190)  * rcu locking is used here to control access to the mapping fields.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1191)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1192)  * If either the num_vls or num_sdma are non-power of 2, the array sizes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1193)  * in the struct sdma_vl_map and the struct sdma_map_elem are rounded
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1194)  * up to the next highest power of 2 and the first entry is reused
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1195)  * in a round robin fashion.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1196)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1197)  * If an error occurs the map change is not done and the mapping is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1198)  * not changed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1199)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1200)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1201) int sdma_map_init(struct hfi1_devdata *dd, u8 port, u8 num_vls, u8 *vl_engines)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1202) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1203) 	int i, j;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1204) 	int extra, sde_per_vl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1205) 	int engine = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1206) 	u8 lvl_engines[OPA_MAX_VLS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1207) 	struct sdma_vl_map *oldmap, *newmap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1208) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1209) 	if (!(dd->flags & HFI1_HAS_SEND_DMA))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1210) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1211) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1212) 	if (!vl_engines) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1213) 		/* truncate divide */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1214) 		sde_per_vl = dd->num_sdma / num_vls;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1215) 		/* extras */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1216) 		extra = dd->num_sdma % num_vls;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1217) 		vl_engines = lvl_engines;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1218) 		/* add extras from last vl down */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1219) 		for (i = num_vls - 1; i >= 0; i--, extra--)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1220) 			vl_engines[i] = sde_per_vl + (extra > 0 ? 1 : 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1221) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1222) 	/* build new map */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1223) 	newmap = kzalloc(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1224) 		sizeof(struct sdma_vl_map) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1225) 			roundup_pow_of_two(num_vls) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1226) 			sizeof(struct sdma_map_elem *),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1227) 		GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1228) 	if (!newmap)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1229) 		goto bail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1230) 	newmap->actual_vls = num_vls;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1231) 	newmap->vls = roundup_pow_of_two(num_vls);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1232) 	newmap->mask = (1 << ilog2(newmap->vls)) - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1233) 	/* initialize back-map */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1234) 	for (i = 0; i < TXE_NUM_SDMA_ENGINES; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1235) 		newmap->engine_to_vl[i] = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1236) 	for (i = 0; i < newmap->vls; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1237) 		/* save for wrap around */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1238) 		int first_engine = engine;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1239) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1240) 		if (i < newmap->actual_vls) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1241) 			int sz = roundup_pow_of_two(vl_engines[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1242) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1243) 			/* only allocate once */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1244) 			newmap->map[i] = kzalloc(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1245) 				sizeof(struct sdma_map_elem) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1246) 					sz * sizeof(struct sdma_engine *),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1247) 				GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1248) 			if (!newmap->map[i])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1249) 				goto bail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1250) 			newmap->map[i]->mask = (1 << ilog2(sz)) - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1251) 			/* assign engines */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1252) 			for (j = 0; j < sz; j++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1253) 				newmap->map[i]->sde[j] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1254) 					&dd->per_sdma[engine];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1255) 				if (++engine >= first_engine + vl_engines[i])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1256) 					/* wrap back to first engine */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1257) 					engine = first_engine;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1258) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1259) 			/* assign back-map */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1260) 			for (j = 0; j < vl_engines[i]; j++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1261) 				newmap->engine_to_vl[first_engine + j] = i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1262) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1263) 			/* just re-use entry without allocating */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1264) 			newmap->map[i] = newmap->map[i % num_vls];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1265) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1266) 		engine = first_engine + vl_engines[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1267) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1268) 	/* newmap in hand, save old map */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1269) 	spin_lock_irq(&dd->sde_map_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1270) 	oldmap = rcu_dereference_protected(dd->sdma_map,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1271) 					   lockdep_is_held(&dd->sde_map_lock));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1272) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1273) 	/* publish newmap */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1274) 	rcu_assign_pointer(dd->sdma_map, newmap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1275) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1276) 	spin_unlock_irq(&dd->sde_map_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1277) 	/* success, free any old map after grace period */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1278) 	if (oldmap)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1279) 		call_rcu(&oldmap->list, sdma_map_rcu_callback);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1280) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1281) bail:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1282) 	/* free any partial allocation */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1283) 	sdma_map_free(newmap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1284) 	return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1285) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1286) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1287) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1288)  * sdma_clean()  Clean up allocated memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1289)  * @dd:          struct hfi1_devdata
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1290)  * @num_engines: num sdma engines
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1291)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1292)  * This routine can be called regardless of the success of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1293)  * sdma_init()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1294)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1295) void sdma_clean(struct hfi1_devdata *dd, size_t num_engines)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1296) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1297) 	size_t i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1298) 	struct sdma_engine *sde;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1299) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1300) 	if (dd->sdma_pad_dma) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1301) 		dma_free_coherent(&dd->pcidev->dev, SDMA_PAD,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1302) 				  (void *)dd->sdma_pad_dma,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1303) 				  dd->sdma_pad_phys);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1304) 		dd->sdma_pad_dma = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1305) 		dd->sdma_pad_phys = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1306) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1307) 	if (dd->sdma_heads_dma) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1308) 		dma_free_coherent(&dd->pcidev->dev, dd->sdma_heads_size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1309) 				  (void *)dd->sdma_heads_dma,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1310) 				  dd->sdma_heads_phys);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1311) 		dd->sdma_heads_dma = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1312) 		dd->sdma_heads_phys = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1313) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1314) 	for (i = 0; dd->per_sdma && i < num_engines; ++i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1315) 		sde = &dd->per_sdma[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1316) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1317) 		sde->head_dma = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1318) 		sde->head_phys = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1319) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1320) 		if (sde->descq) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1321) 			dma_free_coherent(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1322) 				&dd->pcidev->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1323) 				sde->descq_cnt * sizeof(u64[2]),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1324) 				sde->descq,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1325) 				sde->descq_phys
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1326) 			);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1327) 			sde->descq = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1328) 			sde->descq_phys = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1329) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1330) 		kvfree(sde->tx_ring);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1331) 		sde->tx_ring = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1332) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1333) 	spin_lock_irq(&dd->sde_map_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1334) 	sdma_map_free(rcu_access_pointer(dd->sdma_map));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1335) 	RCU_INIT_POINTER(dd->sdma_map, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1336) 	spin_unlock_irq(&dd->sde_map_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1337) 	synchronize_rcu();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1338) 	kfree(dd->per_sdma);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1339) 	dd->per_sdma = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1340) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1341) 	if (dd->sdma_rht) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1342) 		rhashtable_free_and_destroy(dd->sdma_rht, sdma_rht_free, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1343) 		kfree(dd->sdma_rht);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1344) 		dd->sdma_rht = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1345) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1346) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1347) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1348) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1349)  * sdma_init() - called when device probed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1350)  * @dd: hfi1_devdata
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1351)  * @port: port number (currently only zero)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1352)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1353)  * Initializes each sde and its csrs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1354)  * Interrupts are not required to be enabled.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1355)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1356)  * Returns:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1357)  * 0 - success, -errno on failure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1358)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1359) int sdma_init(struct hfi1_devdata *dd, u8 port)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1360) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1361) 	unsigned this_idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1362) 	struct sdma_engine *sde;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1363) 	struct rhashtable *tmp_sdma_rht;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1364) 	u16 descq_cnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1365) 	void *curr_head;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1366) 	struct hfi1_pportdata *ppd = dd->pport + port;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1367) 	u32 per_sdma_credits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1368) 	uint idle_cnt = sdma_idle_cnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1369) 	size_t num_engines = chip_sdma_engines(dd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1370) 	int ret = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1371) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1372) 	if (!HFI1_CAP_IS_KSET(SDMA)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1373) 		HFI1_CAP_CLEAR(SDMA_AHG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1374) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1375) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1376) 	if (mod_num_sdma &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1377) 	    /* can't exceed chip support */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1378) 	    mod_num_sdma <= chip_sdma_engines(dd) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1379) 	    /* count must be >= vls */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1380) 	    mod_num_sdma >= num_vls)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1381) 		num_engines = mod_num_sdma;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1382) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1383) 	dd_dev_info(dd, "SDMA mod_num_sdma: %u\n", mod_num_sdma);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1384) 	dd_dev_info(dd, "SDMA chip_sdma_engines: %u\n", chip_sdma_engines(dd));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1385) 	dd_dev_info(dd, "SDMA chip_sdma_mem_size: %u\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1386) 		    chip_sdma_mem_size(dd));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1387) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1388) 	per_sdma_credits =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1389) 		chip_sdma_mem_size(dd) / (num_engines * SDMA_BLOCK_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1390) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1391) 	/* set up freeze waitqueue */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1392) 	init_waitqueue_head(&dd->sdma_unfreeze_wq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1393) 	atomic_set(&dd->sdma_unfreeze_count, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1394) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1395) 	descq_cnt = sdma_get_descq_cnt();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1396) 	dd_dev_info(dd, "SDMA engines %zu descq_cnt %u\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1397) 		    num_engines, descq_cnt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1398) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1399) 	/* alloc memory for array of send engines */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1400) 	dd->per_sdma = kcalloc_node(num_engines, sizeof(*dd->per_sdma),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1401) 				    GFP_KERNEL, dd->node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1402) 	if (!dd->per_sdma)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1403) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1404) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1405) 	idle_cnt = ns_to_cclock(dd, idle_cnt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1406) 	if (idle_cnt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1407) 		dd->default_desc1 =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1408) 			SDMA_DESC1_HEAD_TO_HOST_FLAG;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1409) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1410) 		dd->default_desc1 =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1411) 			SDMA_DESC1_INT_REQ_FLAG;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1412) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1413) 	if (!sdma_desct_intr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1414) 		sdma_desct_intr = SDMA_DESC_INTR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1415) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1416) 	/* Allocate memory for SendDMA descriptor FIFOs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1417) 	for (this_idx = 0; this_idx < num_engines; ++this_idx) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1418) 		sde = &dd->per_sdma[this_idx];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1419) 		sde->dd = dd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1420) 		sde->ppd = ppd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1421) 		sde->this_idx = this_idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1422) 		sde->descq_cnt = descq_cnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1423) 		sde->desc_avail = sdma_descq_freecnt(sde);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1424) 		sde->sdma_shift = ilog2(descq_cnt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1425) 		sde->sdma_mask = (1 << sde->sdma_shift) - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1426) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1427) 		/* Create a mask specifically for each interrupt source */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1428) 		sde->int_mask = (u64)1 << (0 * TXE_NUM_SDMA_ENGINES +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1429) 					   this_idx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1430) 		sde->progress_mask = (u64)1 << (1 * TXE_NUM_SDMA_ENGINES +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1431) 						this_idx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1432) 		sde->idle_mask = (u64)1 << (2 * TXE_NUM_SDMA_ENGINES +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1433) 					    this_idx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1434) 		/* Create a combined mask to cover all 3 interrupt sources */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1435) 		sde->imask = sde->int_mask | sde->progress_mask |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1436) 			     sde->idle_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1437) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1438) 		spin_lock_init(&sde->tail_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1439) 		seqlock_init(&sde->head_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1440) 		spin_lock_init(&sde->senddmactrl_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1441) 		spin_lock_init(&sde->flushlist_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1442) 		seqlock_init(&sde->waitlock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1443) 		/* insure there is always a zero bit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1444) 		sde->ahg_bits = 0xfffffffe00000000ULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1445) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1446) 		sdma_set_state(sde, sdma_state_s00_hw_down);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1447) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1448) 		/* set up reference counting */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1449) 		kref_init(&sde->state.kref);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1450) 		init_completion(&sde->state.comp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1451) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1452) 		INIT_LIST_HEAD(&sde->flushlist);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1453) 		INIT_LIST_HEAD(&sde->dmawait);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1454) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1455) 		sde->tail_csr =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1456) 			get_kctxt_csr_addr(dd, this_idx, SD(TAIL));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1457) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1458) 		tasklet_setup(&sde->sdma_hw_clean_up_task,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1459) 			      sdma_hw_clean_up_task);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1460) 		tasklet_setup(&sde->sdma_sw_clean_up_task,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1461) 			      sdma_sw_clean_up_task);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1462) 		INIT_WORK(&sde->err_halt_worker, sdma_err_halt_wait);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1463) 		INIT_WORK(&sde->flush_worker, sdma_field_flush);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1464) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1465) 		sde->progress_check_head = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1466) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1467) 		timer_setup(&sde->err_progress_check_timer,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1468) 			    sdma_err_progress_check, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1469) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1470) 		sde->descq = dma_alloc_coherent(&dd->pcidev->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1471) 						descq_cnt * sizeof(u64[2]),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1472) 						&sde->descq_phys, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1473) 		if (!sde->descq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1474) 			goto bail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1475) 		sde->tx_ring =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1476) 			kvzalloc_node(array_size(descq_cnt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1477) 						 sizeof(struct sdma_txreq *)),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1478) 				      GFP_KERNEL, dd->node);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1479) 		if (!sde->tx_ring)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1480) 			goto bail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1481) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1482) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1483) 	dd->sdma_heads_size = L1_CACHE_BYTES * num_engines;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1484) 	/* Allocate memory for DMA of head registers to memory */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1485) 	dd->sdma_heads_dma = dma_alloc_coherent(&dd->pcidev->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1486) 						dd->sdma_heads_size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1487) 						&dd->sdma_heads_phys,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1488) 						GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1489) 	if (!dd->sdma_heads_dma) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1490) 		dd_dev_err(dd, "failed to allocate SendDMA head memory\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1491) 		goto bail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1492) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1493) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1494) 	/* Allocate memory for pad */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1495) 	dd->sdma_pad_dma = dma_alloc_coherent(&dd->pcidev->dev, SDMA_PAD,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1496) 					      &dd->sdma_pad_phys, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1497) 	if (!dd->sdma_pad_dma) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1498) 		dd_dev_err(dd, "failed to allocate SendDMA pad memory\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1499) 		goto bail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1500) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1501) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1502) 	/* assign each engine to different cacheline and init registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1503) 	curr_head = (void *)dd->sdma_heads_dma;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1504) 	for (this_idx = 0; this_idx < num_engines; ++this_idx) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1505) 		unsigned long phys_offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1506) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1507) 		sde = &dd->per_sdma[this_idx];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1508) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1509) 		sde->head_dma = curr_head;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1510) 		curr_head += L1_CACHE_BYTES;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1511) 		phys_offset = (unsigned long)sde->head_dma -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1512) 			      (unsigned long)dd->sdma_heads_dma;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1513) 		sde->head_phys = dd->sdma_heads_phys + phys_offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1514) 		init_sdma_regs(sde, per_sdma_credits, idle_cnt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1515) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1516) 	dd->flags |= HFI1_HAS_SEND_DMA;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1517) 	dd->flags |= idle_cnt ? HFI1_HAS_SDMA_TIMEOUT : 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1518) 	dd->num_sdma = num_engines;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1519) 	ret = sdma_map_init(dd, port, ppd->vls_operational, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1520) 	if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1521) 		goto bail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1522) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1523) 	tmp_sdma_rht = kzalloc(sizeof(*tmp_sdma_rht), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1524) 	if (!tmp_sdma_rht) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1525) 		ret = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1526) 		goto bail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1527) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1528) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1529) 	ret = rhashtable_init(tmp_sdma_rht, &sdma_rht_params);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1530) 	if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1531) 		kfree(tmp_sdma_rht);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1532) 		goto bail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1533) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1534) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1535) 	dd->sdma_rht = tmp_sdma_rht;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1536) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1537) 	dd_dev_info(dd, "SDMA num_sdma: %u\n", dd->num_sdma);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1538) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1539) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1540) bail:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1541) 	sdma_clean(dd, num_engines);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1542) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1543) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1544) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1545) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1546)  * sdma_all_running() - called when the link goes up
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1547)  * @dd: hfi1_devdata
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1548)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1549)  * This routine moves all engines to the running state.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1550)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1551) void sdma_all_running(struct hfi1_devdata *dd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1552) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1553) 	struct sdma_engine *sde;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1554) 	unsigned int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1555) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1556) 	/* move all engines to running */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1557) 	for (i = 0; i < dd->num_sdma; ++i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1558) 		sde = &dd->per_sdma[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1559) 		sdma_process_event(sde, sdma_event_e30_go_running);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1560) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1561) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1562) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1563) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1564)  * sdma_all_idle() - called when the link goes down
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1565)  * @dd: hfi1_devdata
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1566)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1567)  * This routine moves all engines to the idle state.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1568)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1569) void sdma_all_idle(struct hfi1_devdata *dd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1570) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1571) 	struct sdma_engine *sde;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1572) 	unsigned int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1573) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1574) 	/* idle all engines */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1575) 	for (i = 0; i < dd->num_sdma; ++i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1576) 		sde = &dd->per_sdma[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1577) 		sdma_process_event(sde, sdma_event_e70_go_idle);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1578) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1579) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1580) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1581) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1582)  * sdma_start() - called to kick off state processing for all engines
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1583)  * @dd: hfi1_devdata
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1584)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1585)  * This routine is for kicking off the state processing for all required
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1586)  * sdma engines.  Interrupts need to be working at this point.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1587)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1588)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1589) void sdma_start(struct hfi1_devdata *dd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1590) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1591) 	unsigned i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1592) 	struct sdma_engine *sde;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1593) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1594) 	/* kick off the engines state processing */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1595) 	for (i = 0; i < dd->num_sdma; ++i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1596) 		sde = &dd->per_sdma[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1597) 		sdma_process_event(sde, sdma_event_e10_go_hw_start);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1598) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1599) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1600) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1601) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1602)  * sdma_exit() - used when module is removed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1603)  * @dd: hfi1_devdata
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1604)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1605) void sdma_exit(struct hfi1_devdata *dd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1606) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1607) 	unsigned this_idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1608) 	struct sdma_engine *sde;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1609) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1610) 	for (this_idx = 0; dd->per_sdma && this_idx < dd->num_sdma;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1611) 			++this_idx) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1612) 		sde = &dd->per_sdma[this_idx];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1613) 		if (!list_empty(&sde->dmawait))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1614) 			dd_dev_err(dd, "sde %u: dmawait list not empty!\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1615) 				   sde->this_idx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1616) 		sdma_process_event(sde, sdma_event_e00_go_hw_down);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1617) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1618) 		del_timer_sync(&sde->err_progress_check_timer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1619) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1620) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1621) 		 * This waits for the state machine to exit so it is not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1622) 		 * necessary to kill the sdma_sw_clean_up_task to make sure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1623) 		 * it is not running.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1624) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1625) 		sdma_finalput(&sde->state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1626) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1627) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1628) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1629) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1630)  * unmap the indicated descriptor
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1631)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1632) static inline void sdma_unmap_desc(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1633) 	struct hfi1_devdata *dd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1634) 	struct sdma_desc *descp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1635) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1636) 	switch (sdma_mapping_type(descp)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1637) 	case SDMA_MAP_SINGLE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1638) 		dma_unmap_single(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1639) 			&dd->pcidev->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1640) 			sdma_mapping_addr(descp),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1641) 			sdma_mapping_len(descp),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1642) 			DMA_TO_DEVICE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1643) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1644) 	case SDMA_MAP_PAGE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1645) 		dma_unmap_page(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1646) 			&dd->pcidev->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1647) 			sdma_mapping_addr(descp),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1648) 			sdma_mapping_len(descp),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1649) 			DMA_TO_DEVICE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1650) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1651) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1652) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1653) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1654) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1655)  * return the mode as indicated by the first
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1656)  * descriptor in the tx.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1657)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1658) static inline u8 ahg_mode(struct sdma_txreq *tx)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1659) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1660) 	return (tx->descp[0].qw[1] & SDMA_DESC1_HEADER_MODE_SMASK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1661) 		>> SDMA_DESC1_HEADER_MODE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1662) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1663) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1664) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1665)  * __sdma_txclean() - clean tx of mappings, descp *kmalloc's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1666)  * @dd: hfi1_devdata for unmapping
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1667)  * @tx: tx request to clean
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1668)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1669)  * This is used in the progress routine to clean the tx or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1670)  * by the ULP to toss an in-process tx build.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1671)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1672)  * The code can be called multiple times without issue.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1673)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1674)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1675) void __sdma_txclean(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1676) 	struct hfi1_devdata *dd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1677) 	struct sdma_txreq *tx)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1678) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1679) 	u16 i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1680) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1681) 	if (tx->num_desc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1682) 		u8 skip = 0, mode = ahg_mode(tx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1683) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1684) 		/* unmap first */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1685) 		sdma_unmap_desc(dd, &tx->descp[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1686) 		/* determine number of AHG descriptors to skip */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1687) 		if (mode > SDMA_AHG_APPLY_UPDATE1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1688) 			skip = mode >> 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1689) 		for (i = 1 + skip; i < tx->num_desc; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1690) 			sdma_unmap_desc(dd, &tx->descp[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1691) 		tx->num_desc = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1692) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1693) 	kfree(tx->coalesce_buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1694) 	tx->coalesce_buf = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1695) 	/* kmalloc'ed descp */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1696) 	if (unlikely(tx->desc_limit > ARRAY_SIZE(tx->descs))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1697) 		tx->desc_limit = ARRAY_SIZE(tx->descs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1698) 		kfree(tx->descp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1699) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1700) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1701) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1702) static inline u16 sdma_gethead(struct sdma_engine *sde)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1703) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1704) 	struct hfi1_devdata *dd = sde->dd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1705) 	int use_dmahead;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1706) 	u16 hwhead;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1707) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1708) #ifdef CONFIG_SDMA_VERBOSITY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1709) 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1710) 		   sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1711) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1712) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1713) retry:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1714) 	use_dmahead = HFI1_CAP_IS_KSET(USE_SDMA_HEAD) && __sdma_running(sde) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1715) 					(dd->flags & HFI1_HAS_SDMA_TIMEOUT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1716) 	hwhead = use_dmahead ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1717) 		(u16)le64_to_cpu(*sde->head_dma) :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1718) 		(u16)read_sde_csr(sde, SD(HEAD));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1719) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1720) 	if (unlikely(HFI1_CAP_IS_KSET(SDMA_HEAD_CHECK))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1721) 		u16 cnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1722) 		u16 swtail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1723) 		u16 swhead;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1724) 		int sane;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1725) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1726) 		swhead = sde->descq_head & sde->sdma_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1727) 		/* this code is really bad for cache line trading */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1728) 		swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1729) 		cnt = sde->descq_cnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1730) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1731) 		if (swhead < swtail)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1732) 			/* not wrapped */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1733) 			sane = (hwhead >= swhead) & (hwhead <= swtail);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1734) 		else if (swhead > swtail)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1735) 			/* wrapped around */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1736) 			sane = ((hwhead >= swhead) && (hwhead < cnt)) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1737) 				(hwhead <= swtail);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1738) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1739) 			/* empty */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1740) 			sane = (hwhead == swhead);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1741) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1742) 		if (unlikely(!sane)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1743) 			dd_dev_err(dd, "SDMA(%u) bad head (%s) hwhd=%hu swhd=%hu swtl=%hu cnt=%hu\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1744) 				   sde->this_idx,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1745) 				   use_dmahead ? "dma" : "kreg",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1746) 				   hwhead, swhead, swtail, cnt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1747) 			if (use_dmahead) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1748) 				/* try one more time, using csr */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1749) 				use_dmahead = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1750) 				goto retry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1751) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1752) 			/* proceed as if no progress */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1753) 			hwhead = swhead;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1754) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1755) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1756) 	return hwhead;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1757) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1758) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1759) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1760)  * This is called when there are send DMA descriptors that might be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1761)  * available.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1762)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1763)  * This is called with head_lock held.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1764)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1765) static void sdma_desc_avail(struct sdma_engine *sde, uint avail)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1766) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1767) 	struct iowait *wait, *nw, *twait;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1768) 	struct iowait *waits[SDMA_WAIT_BATCH_SIZE];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1769) 	uint i, n = 0, seq, tidx = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1770) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1771) #ifdef CONFIG_SDMA_VERBOSITY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1772) 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1773) 		   slashstrip(__FILE__), __LINE__, __func__);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1774) 	dd_dev_err(sde->dd, "avail: %u\n", avail);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1775) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1776) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1777) 	do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1778) 		seq = read_seqbegin(&sde->waitlock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1779) 		if (!list_empty(&sde->dmawait)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1780) 			/* at least one item */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1781) 			write_seqlock(&sde->waitlock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1782) 			/* Harvest waiters wanting DMA descriptors */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1783) 			list_for_each_entry_safe(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1784) 					wait,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1785) 					nw,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1786) 					&sde->dmawait,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1787) 					list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1788) 				u32 num_desc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1789) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1790) 				if (!wait->wakeup)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1791) 					continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1792) 				if (n == ARRAY_SIZE(waits))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1793) 					break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1794) 				iowait_init_priority(wait);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1795) 				num_desc = iowait_get_all_desc(wait);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1796) 				if (num_desc > avail)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1797) 					break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1798) 				avail -= num_desc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1799) 				/* Find the top-priority wait memeber */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1800) 				if (n) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1801) 					twait = waits[tidx];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1802) 					tidx =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1803) 					    iowait_priority_update_top(wait,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1804) 								       twait,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1805) 								       n,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1806) 								       tidx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1807) 				}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1808) 				list_del_init(&wait->list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1809) 				waits[n++] = wait;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1810) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1811) 			write_sequnlock(&sde->waitlock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1812) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1813) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1814) 	} while (read_seqretry(&sde->waitlock, seq));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1815) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1816) 	/* Schedule the top-priority entry first */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1817) 	if (n)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1818) 		waits[tidx]->wakeup(waits[tidx], SDMA_AVAIL_REASON);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1819) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1820) 	for (i = 0; i < n; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1821) 		if (i != tidx)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1822) 			waits[i]->wakeup(waits[i], SDMA_AVAIL_REASON);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1823) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1824) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1825) /* head_lock must be held */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1826) static void sdma_make_progress(struct sdma_engine *sde, u64 status)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1827) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1828) 	struct sdma_txreq *txp = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1829) 	int progress = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1830) 	u16 hwhead, swhead;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1831) 	int idle_check_done = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1832) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1833) 	hwhead = sdma_gethead(sde);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1834) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1835) 	/* The reason for some of the complexity of this code is that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1836) 	 * not all descriptors have corresponding txps.  So, we have to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1837) 	 * be able to skip over descs until we wander into the range of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1838) 	 * the next txp on the list.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1839) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1840) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1841) retry:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1842) 	txp = get_txhead(sde);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1843) 	swhead = sde->descq_head & sde->sdma_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1844) 	trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1845) 	while (swhead != hwhead) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1846) 		/* advance head, wrap if needed */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1847) 		swhead = ++sde->descq_head & sde->sdma_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1848) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1849) 		/* if now past this txp's descs, do the callback */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1850) 		if (txp && txp->next_descq_idx == swhead) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1851) 			/* remove from list */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1852) 			sde->tx_ring[sde->tx_head++ & sde->sdma_mask] = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1853) 			complete_tx(sde, txp, SDMA_TXREQ_S_OK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1854) 			/* see if there is another txp */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1855) 			txp = get_txhead(sde);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1856) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1857) 		trace_hfi1_sdma_progress(sde, hwhead, swhead, txp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1858) 		progress++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1859) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1860) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1861) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1862) 	 * The SDMA idle interrupt is not guaranteed to be ordered with respect
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1863) 	 * to updates to the the dma_head location in host memory. The head
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1864) 	 * value read might not be fully up to date. If there are pending
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1865) 	 * descriptors and the SDMA idle interrupt fired then read from the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1866) 	 * CSR SDMA head instead to get the latest value from the hardware.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1867) 	 * The hardware SDMA head should be read at most once in this invocation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1868) 	 * of sdma_make_progress(..) which is ensured by idle_check_done flag
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1869) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1870) 	if ((status & sde->idle_mask) && !idle_check_done) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1871) 		u16 swtail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1872) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1873) 		swtail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1874) 		if (swtail != hwhead) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1875) 			hwhead = (u16)read_sde_csr(sde, SD(HEAD));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1876) 			idle_check_done = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1877) 			goto retry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1878) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1879) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1880) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1881) 	sde->last_status = status;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1882) 	if (progress)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1883) 		sdma_desc_avail(sde, sdma_descq_freecnt(sde));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1884) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1885) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1886) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1887)  * sdma_engine_interrupt() - interrupt handler for engine
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1888)  * @sde: sdma engine
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1889)  * @status: sdma interrupt reason
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1890)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1891)  * Status is a mask of the 3 possible interrupts for this engine.  It will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1892)  * contain bits _only_ for this SDMA engine.  It will contain at least one
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1893)  * bit, it may contain more.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1894)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1895) void sdma_engine_interrupt(struct sdma_engine *sde, u64 status)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1896) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1897) 	trace_hfi1_sdma_engine_interrupt(sde, status);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1898) 	write_seqlock(&sde->head_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1899) 	sdma_set_desc_cnt(sde, sdma_desct_intr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1900) 	if (status & sde->idle_mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1901) 		sde->idle_int_cnt++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1902) 	else if (status & sde->progress_mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1903) 		sde->progress_int_cnt++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1904) 	else if (status & sde->int_mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1905) 		sde->sdma_int_cnt++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1906) 	sdma_make_progress(sde, status);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1907) 	write_sequnlock(&sde->head_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1908) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1909) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1910) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1911)  * sdma_engine_error() - error handler for engine
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1912)  * @sde: sdma engine
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1913)  * @status: sdma interrupt reason
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1914)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1915) void sdma_engine_error(struct sdma_engine *sde, u64 status)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1916) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1917) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1918) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1919) #ifdef CONFIG_SDMA_VERBOSITY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1920) 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) error status 0x%llx state %s\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1921) 		   sde->this_idx,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1922) 		   (unsigned long long)status,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1923) 		   sdma_state_names[sde->state.current_state]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1924) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1925) 	spin_lock_irqsave(&sde->tail_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1926) 	write_seqlock(&sde->head_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1927) 	if (status & ALL_SDMA_ENG_HALT_ERRS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1928) 		__sdma_process_event(sde, sdma_event_e60_hw_halted);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1929) 	if (status & ~SD(ENG_ERR_STATUS_SDMA_HALT_ERR_SMASK)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1930) 		dd_dev_err(sde->dd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1931) 			   "SDMA (%u) engine error: 0x%llx state %s\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1932) 			   sde->this_idx,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1933) 			   (unsigned long long)status,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1934) 			   sdma_state_names[sde->state.current_state]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1935) 		dump_sdma_state(sde);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1936) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1937) 	write_sequnlock(&sde->head_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1938) 	spin_unlock_irqrestore(&sde->tail_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1939) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1940) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1941) static void sdma_sendctrl(struct sdma_engine *sde, unsigned op)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1942) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1943) 	u64 set_senddmactrl = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1944) 	u64 clr_senddmactrl = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1945) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1946) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1947) #ifdef CONFIG_SDMA_VERBOSITY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1948) 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) senddmactrl E=%d I=%d H=%d C=%d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1949) 		   sde->this_idx,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1950) 		   (op & SDMA_SENDCTRL_OP_ENABLE) ? 1 : 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1951) 		   (op & SDMA_SENDCTRL_OP_INTENABLE) ? 1 : 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1952) 		   (op & SDMA_SENDCTRL_OP_HALT) ? 1 : 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1953) 		   (op & SDMA_SENDCTRL_OP_CLEANUP) ? 1 : 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1954) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1955) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1956) 	if (op & SDMA_SENDCTRL_OP_ENABLE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1957) 		set_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1958) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1959) 		clr_senddmactrl |= SD(CTRL_SDMA_ENABLE_SMASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1960) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1961) 	if (op & SDMA_SENDCTRL_OP_INTENABLE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1962) 		set_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1963) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1964) 		clr_senddmactrl |= SD(CTRL_SDMA_INT_ENABLE_SMASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1965) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1966) 	if (op & SDMA_SENDCTRL_OP_HALT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1967) 		set_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1968) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1969) 		clr_senddmactrl |= SD(CTRL_SDMA_HALT_SMASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1970) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1971) 	spin_lock_irqsave(&sde->senddmactrl_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1972) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1973) 	sde->p_senddmactrl |= set_senddmactrl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1974) 	sde->p_senddmactrl &= ~clr_senddmactrl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1975) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1976) 	if (op & SDMA_SENDCTRL_OP_CLEANUP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1977) 		write_sde_csr(sde, SD(CTRL),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1978) 			      sde->p_senddmactrl |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1979) 			      SD(CTRL_SDMA_CLEANUP_SMASK));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1980) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1981) 		write_sde_csr(sde, SD(CTRL), sde->p_senddmactrl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1982) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1983) 	spin_unlock_irqrestore(&sde->senddmactrl_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1984) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1985) #ifdef CONFIG_SDMA_VERBOSITY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1986) 	sdma_dumpstate(sde);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1987) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1988) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1989) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1990) static void sdma_setlengen(struct sdma_engine *sde)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1991) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1992) #ifdef CONFIG_SDMA_VERBOSITY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1993) 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1994) 		   sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1995) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1996) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1997) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1998) 	 * Set SendDmaLenGen and clear-then-set the MSB of the generation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1999) 	 * count to enable generation checking and load the internal
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2000) 	 * generation counter.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2001) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2002) 	write_sde_csr(sde, SD(LEN_GEN),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2003) 		      (sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2004) 	write_sde_csr(sde, SD(LEN_GEN),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2005) 		      ((sde->descq_cnt / 64) << SD(LEN_GEN_LENGTH_SHIFT)) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2006) 		      (4ULL << SD(LEN_GEN_GENERATION_SHIFT)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2007) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2008) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2009) static inline void sdma_update_tail(struct sdma_engine *sde, u16 tail)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2010) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2011) 	/* Commit writes to memory and advance the tail on the chip */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2012) 	smp_wmb(); /* see get_txhead() */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2013) 	writeq(tail, sde->tail_csr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2014) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2015) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2016) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2017)  * This is called when changing to state s10_hw_start_up_halt_wait as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2018)  * a result of send buffer errors or send DMA descriptor errors.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2019)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2020) static void sdma_hw_start_up(struct sdma_engine *sde)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2021) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2022) 	u64 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2023) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2024) #ifdef CONFIG_SDMA_VERBOSITY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2025) 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2026) 		   sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2027) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2028) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2029) 	sdma_setlengen(sde);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2030) 	sdma_update_tail(sde, 0); /* Set SendDmaTail */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2031) 	*sde->head_dma = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2032) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2033) 	reg = SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_MASK) <<
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2034) 	      SD(ENG_ERR_CLEAR_SDMA_HEADER_REQUEST_FIFO_UNC_ERR_SHIFT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2035) 	write_sde_csr(sde, SD(ENG_ERR_CLEAR), reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2036) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2037) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2038) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2039)  * set_sdma_integrity
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2040)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2041)  * Set the SEND_DMA_CHECK_ENABLE register for send DMA engine 'sde'.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2042)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2043) static void set_sdma_integrity(struct sdma_engine *sde)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2044) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2045) 	struct hfi1_devdata *dd = sde->dd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2046) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2047) 	write_sde_csr(sde, SD(CHECK_ENABLE),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2048) 		      hfi1_pkt_base_sdma_integrity(dd));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2049) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2050) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2051) static void init_sdma_regs(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2052) 	struct sdma_engine *sde,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2053) 	u32 credits,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2054) 	uint idle_cnt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2055) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2056) 	u8 opval, opmask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2057) #ifdef CONFIG_SDMA_VERBOSITY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2058) 	struct hfi1_devdata *dd = sde->dd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2059) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2060) 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2061) 		   sde->this_idx, slashstrip(__FILE__), __LINE__, __func__);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2062) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2063) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2064) 	write_sde_csr(sde, SD(BASE_ADDR), sde->descq_phys);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2065) 	sdma_setlengen(sde);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2066) 	sdma_update_tail(sde, 0); /* Set SendDmaTail */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2067) 	write_sde_csr(sde, SD(RELOAD_CNT), idle_cnt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2068) 	write_sde_csr(sde, SD(DESC_CNT), 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2069) 	write_sde_csr(sde, SD(HEAD_ADDR), sde->head_phys);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2070) 	write_sde_csr(sde, SD(MEMORY),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2071) 		      ((u64)credits << SD(MEMORY_SDMA_MEMORY_CNT_SHIFT)) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2072) 		      ((u64)(credits * sde->this_idx) <<
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2073) 		       SD(MEMORY_SDMA_MEMORY_INDEX_SHIFT)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2074) 	write_sde_csr(sde, SD(ENG_ERR_MASK), ~0ull);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2075) 	set_sdma_integrity(sde);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2076) 	opmask = OPCODE_CHECK_MASK_DISABLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2077) 	opval = OPCODE_CHECK_VAL_DISABLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2078) 	write_sde_csr(sde, SD(CHECK_OPCODE),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2079) 		      (opmask << SEND_CTXT_CHECK_OPCODE_MASK_SHIFT) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2080) 		      (opval << SEND_CTXT_CHECK_OPCODE_VALUE_SHIFT));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2081) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2082) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2083) #ifdef CONFIG_SDMA_VERBOSITY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2084) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2085) #define sdma_dumpstate_helper0(reg) do { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2086) 		csr = read_csr(sde->dd, reg); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2087) 		dd_dev_err(sde->dd, "%36s     0x%016llx\n", #reg, csr); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2088) 	} while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2089) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2090) #define sdma_dumpstate_helper(reg) do { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2091) 		csr = read_sde_csr(sde, reg); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2092) 		dd_dev_err(sde->dd, "%36s[%02u] 0x%016llx\n", \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2093) 			#reg, sde->this_idx, csr); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2094) 	} while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2095) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2096) #define sdma_dumpstate_helper2(reg) do { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2097) 		csr = read_csr(sde->dd, reg + (8 * i)); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2098) 		dd_dev_err(sde->dd, "%33s_%02u     0x%016llx\n", \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2099) 				#reg, i, csr); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2100) 	} while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2101) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2102) void sdma_dumpstate(struct sdma_engine *sde)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2103) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2104) 	u64 csr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2105) 	unsigned i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2106) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2107) 	sdma_dumpstate_helper(SD(CTRL));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2108) 	sdma_dumpstate_helper(SD(STATUS));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2109) 	sdma_dumpstate_helper0(SD(ERR_STATUS));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2110) 	sdma_dumpstate_helper0(SD(ERR_MASK));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2111) 	sdma_dumpstate_helper(SD(ENG_ERR_STATUS));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2112) 	sdma_dumpstate_helper(SD(ENG_ERR_MASK));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2113) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2114) 	for (i = 0; i < CCE_NUM_INT_CSRS; ++i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2115) 		sdma_dumpstate_helper2(CCE_INT_STATUS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2116) 		sdma_dumpstate_helper2(CCE_INT_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2117) 		sdma_dumpstate_helper2(CCE_INT_BLOCKED);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2118) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2119) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2120) 	sdma_dumpstate_helper(SD(TAIL));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2121) 	sdma_dumpstate_helper(SD(HEAD));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2122) 	sdma_dumpstate_helper(SD(PRIORITY_THLD));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2123) 	sdma_dumpstate_helper(SD(IDLE_CNT));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2124) 	sdma_dumpstate_helper(SD(RELOAD_CNT));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2125) 	sdma_dumpstate_helper(SD(DESC_CNT));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2126) 	sdma_dumpstate_helper(SD(DESC_FETCHED_CNT));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2127) 	sdma_dumpstate_helper(SD(MEMORY));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2128) 	sdma_dumpstate_helper0(SD(ENGINES));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2129) 	sdma_dumpstate_helper0(SD(MEM_SIZE));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2130) 	/* sdma_dumpstate_helper(SEND_EGRESS_SEND_DMA_STATUS);  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2131) 	sdma_dumpstate_helper(SD(BASE_ADDR));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2132) 	sdma_dumpstate_helper(SD(LEN_GEN));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2133) 	sdma_dumpstate_helper(SD(HEAD_ADDR));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2134) 	sdma_dumpstate_helper(SD(CHECK_ENABLE));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2135) 	sdma_dumpstate_helper(SD(CHECK_VL));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2136) 	sdma_dumpstate_helper(SD(CHECK_JOB_KEY));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2137) 	sdma_dumpstate_helper(SD(CHECK_PARTITION_KEY));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2138) 	sdma_dumpstate_helper(SD(CHECK_SLID));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2139) 	sdma_dumpstate_helper(SD(CHECK_OPCODE));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2140) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2141) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2142) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2143) static void dump_sdma_state(struct sdma_engine *sde)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2144) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2145) 	struct hw_sdma_desc *descqp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2146) 	u64 desc[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2147) 	u64 addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2148) 	u8 gen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2149) 	u16 len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2150) 	u16 head, tail, cnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2151) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2152) 	head = sde->descq_head & sde->sdma_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2153) 	tail = sde->descq_tail & sde->sdma_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2154) 	cnt = sdma_descq_freecnt(sde);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2155) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2156) 	dd_dev_err(sde->dd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2157) 		   "SDMA (%u) descq_head: %u descq_tail: %u freecnt: %u FLE %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2158) 		   sde->this_idx, head, tail, cnt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2159) 		   !list_empty(&sde->flushlist));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2160) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2161) 	/* print info for each entry in the descriptor queue */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2162) 	while (head != tail) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2163) 		char flags[6] = { 'x', 'x', 'x', 'x', 0 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2164) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2165) 		descqp = &sde->descq[head];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2166) 		desc[0] = le64_to_cpu(descqp->qw[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2167) 		desc[1] = le64_to_cpu(descqp->qw[1]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2168) 		flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2169) 		flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2170) 				'H' : '-';
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2171) 		flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2172) 		flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2173) 		addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2174) 			& SDMA_DESC0_PHY_ADDR_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2175) 		gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2176) 			& SDMA_DESC1_GENERATION_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2177) 		len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2178) 			& SDMA_DESC0_BYTE_COUNT_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2179) 		dd_dev_err(sde->dd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2180) 			   "SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2181) 			   head, flags, addr, gen, len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2182) 		dd_dev_err(sde->dd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2183) 			   "\tdesc0:0x%016llx desc1 0x%016llx\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2184) 			   desc[0], desc[1]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2185) 		if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2186) 			dd_dev_err(sde->dd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2187) 				   "\taidx: %u amode: %u alen: %u\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2188) 				   (u8)((desc[1] &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2189) 					 SDMA_DESC1_HEADER_INDEX_SMASK) >>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2190) 					SDMA_DESC1_HEADER_INDEX_SHIFT),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2191) 				   (u8)((desc[1] &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2192) 					 SDMA_DESC1_HEADER_MODE_SMASK) >>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2193) 					SDMA_DESC1_HEADER_MODE_SHIFT),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2194) 				   (u8)((desc[1] &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2195) 					 SDMA_DESC1_HEADER_DWS_SMASK) >>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2196) 					SDMA_DESC1_HEADER_DWS_SHIFT));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2197) 		head++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2198) 		head &= sde->sdma_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2199) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2200) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2201) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2202) #define SDE_FMT \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2203) 	"SDE %u CPU %d STE %s C 0x%llx S 0x%016llx E 0x%llx T(HW) 0x%llx T(SW) 0x%x H(HW) 0x%llx H(SW) 0x%x H(D) 0x%llx DM 0x%llx GL 0x%llx R 0x%llx LIS 0x%llx AHGI 0x%llx TXT %u TXH %u DT %u DH %u FLNE %d DQF %u SLC 0x%llx\n"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2204) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2205)  * sdma_seqfile_dump_sde() - debugfs dump of sde
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2206)  * @s: seq file
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2207)  * @sde: send dma engine to dump
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2208)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2209)  * This routine dumps the sde to the indicated seq file.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2210)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2211) void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *sde)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2212) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2213) 	u16 head, tail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2214) 	struct hw_sdma_desc *descqp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2215) 	u64 desc[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2216) 	u64 addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2217) 	u8 gen;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2218) 	u16 len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2219) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2220) 	head = sde->descq_head & sde->sdma_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2221) 	tail = READ_ONCE(sde->descq_tail) & sde->sdma_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2222) 	seq_printf(s, SDE_FMT, sde->this_idx,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2223) 		   sde->cpu,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2224) 		   sdma_state_name(sde->state.current_state),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2225) 		   (unsigned long long)read_sde_csr(sde, SD(CTRL)),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2226) 		   (unsigned long long)read_sde_csr(sde, SD(STATUS)),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2227) 		   (unsigned long long)read_sde_csr(sde, SD(ENG_ERR_STATUS)),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2228) 		   (unsigned long long)read_sde_csr(sde, SD(TAIL)), tail,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2229) 		   (unsigned long long)read_sde_csr(sde, SD(HEAD)), head,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2230) 		   (unsigned long long)le64_to_cpu(*sde->head_dma),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2231) 		   (unsigned long long)read_sde_csr(sde, SD(MEMORY)),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2232) 		   (unsigned long long)read_sde_csr(sde, SD(LEN_GEN)),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2233) 		   (unsigned long long)read_sde_csr(sde, SD(RELOAD_CNT)),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2234) 		   (unsigned long long)sde->last_status,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2235) 		   (unsigned long long)sde->ahg_bits,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2236) 		   sde->tx_tail,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2237) 		   sde->tx_head,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2238) 		   sde->descq_tail,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2239) 		   sde->descq_head,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2240) 		   !list_empty(&sde->flushlist),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2241) 		   sde->descq_full_count,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2242) 		   (unsigned long long)read_sde_csr(sde, SEND_DMA_CHECK_SLID));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2243) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2244) 	/* print info for each entry in the descriptor queue */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2245) 	while (head != tail) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2246) 		char flags[6] = { 'x', 'x', 'x', 'x', 0 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2247) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2248) 		descqp = &sde->descq[head];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2249) 		desc[0] = le64_to_cpu(descqp->qw[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2250) 		desc[1] = le64_to_cpu(descqp->qw[1]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2251) 		flags[0] = (desc[1] & SDMA_DESC1_INT_REQ_FLAG) ? 'I' : '-';
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2252) 		flags[1] = (desc[1] & SDMA_DESC1_HEAD_TO_HOST_FLAG) ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2253) 				'H' : '-';
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2254) 		flags[2] = (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG) ? 'F' : '-';
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2255) 		flags[3] = (desc[0] & SDMA_DESC0_LAST_DESC_FLAG) ? 'L' : '-';
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2256) 		addr = (desc[0] >> SDMA_DESC0_PHY_ADDR_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2257) 			& SDMA_DESC0_PHY_ADDR_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2258) 		gen = (desc[1] >> SDMA_DESC1_GENERATION_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2259) 			& SDMA_DESC1_GENERATION_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2260) 		len = (desc[0] >> SDMA_DESC0_BYTE_COUNT_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2261) 			& SDMA_DESC0_BYTE_COUNT_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2262) 		seq_printf(s,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2263) 			   "\tdesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2264) 			   head, flags, addr, gen, len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2265) 		if (desc[0] & SDMA_DESC0_FIRST_DESC_FLAG)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2266) 			seq_printf(s, "\t\tahgidx: %u ahgmode: %u\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2267) 				   (u8)((desc[1] &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2268) 					 SDMA_DESC1_HEADER_INDEX_SMASK) >>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2269) 					SDMA_DESC1_HEADER_INDEX_SHIFT),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2270) 				   (u8)((desc[1] &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2271) 					 SDMA_DESC1_HEADER_MODE_SMASK) >>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2272) 					SDMA_DESC1_HEADER_MODE_SHIFT));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2273) 		head = (head + 1) & sde->sdma_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2274) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2275) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2276) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2277) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2278)  * add the generation number into
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2279)  * the qw1 and return
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2280)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2281) static inline u64 add_gen(struct sdma_engine *sde, u64 qw1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2282) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2283) 	u8 generation = (sde->descq_tail >> sde->sdma_shift) & 3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2284) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2285) 	qw1 &= ~SDMA_DESC1_GENERATION_SMASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2286) 	qw1 |= ((u64)generation & SDMA_DESC1_GENERATION_MASK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2287) 			<< SDMA_DESC1_GENERATION_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2288) 	return qw1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2289) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2290) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2291) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2292)  * This routine submits the indicated tx
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2293)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2294)  * Space has already been guaranteed and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2295)  * tail side of ring is locked.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2296)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2297)  * The hardware tail update is done
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2298)  * in the caller and that is facilitated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2299)  * by returning the new tail.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2300)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2301)  * There is special case logic for ahg
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2302)  * to not add the generation number for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2303)  * up to 2 descriptors that follow the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2304)  * first descriptor.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2305)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2306)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2307) static inline u16 submit_tx(struct sdma_engine *sde, struct sdma_txreq *tx)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2308) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2309) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2310) 	u16 tail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2311) 	struct sdma_desc *descp = tx->descp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2312) 	u8 skip = 0, mode = ahg_mode(tx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2313) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2314) 	tail = sde->descq_tail & sde->sdma_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2315) 	sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2316) 	sde->descq[tail].qw[1] = cpu_to_le64(add_gen(sde, descp->qw[1]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2317) 	trace_hfi1_sdma_descriptor(sde, descp->qw[0], descp->qw[1],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2318) 				   tail, &sde->descq[tail]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2319) 	tail = ++sde->descq_tail & sde->sdma_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2320) 	descp++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2321) 	if (mode > SDMA_AHG_APPLY_UPDATE1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2322) 		skip = mode >> 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2323) 	for (i = 1; i < tx->num_desc; i++, descp++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2324) 		u64 qw1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2325) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2326) 		sde->descq[tail].qw[0] = cpu_to_le64(descp->qw[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2327) 		if (skip) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2328) 			/* edits don't have generation */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2329) 			qw1 = descp->qw[1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2330) 			skip--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2331) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2332) 			/* replace generation with real one for non-edits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2333) 			qw1 = add_gen(sde, descp->qw[1]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2334) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2335) 		sde->descq[tail].qw[1] = cpu_to_le64(qw1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2336) 		trace_hfi1_sdma_descriptor(sde, descp->qw[0], qw1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2337) 					   tail, &sde->descq[tail]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2338) 		tail = ++sde->descq_tail & sde->sdma_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2339) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2340) 	tx->next_descq_idx = tail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2341) #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2342) 	tx->sn = sde->tail_sn++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2343) 	trace_hfi1_sdma_in_sn(sde, tx->sn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2344) 	WARN_ON_ONCE(sde->tx_ring[sde->tx_tail & sde->sdma_mask]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2345) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2346) 	sde->tx_ring[sde->tx_tail++ & sde->sdma_mask] = tx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2347) 	sde->desc_avail -= tx->num_desc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2348) 	return tail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2349) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2350) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2351) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2352)  * Check for progress
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2353)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2354) static int sdma_check_progress(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2355) 	struct sdma_engine *sde,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2356) 	struct iowait_work *wait,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2357) 	struct sdma_txreq *tx,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2358) 	bool pkts_sent)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2359) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2360) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2361) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2362) 	sde->desc_avail = sdma_descq_freecnt(sde);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2363) 	if (tx->num_desc <= sde->desc_avail)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2364) 		return -EAGAIN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2365) 	/* pulse the head_lock */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2366) 	if (wait && iowait_ioww_to_iow(wait)->sleep) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2367) 		unsigned seq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2368) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2369) 		seq = raw_seqcount_begin(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2370) 			(const seqcount_t *)&sde->head_lock.seqcount);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2371) 		ret = wait->iow->sleep(sde, wait, tx, seq, pkts_sent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2372) 		if (ret == -EAGAIN)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2373) 			sde->desc_avail = sdma_descq_freecnt(sde);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2374) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2375) 		ret = -EBUSY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2376) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2377) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2378) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2379) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2380) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2381)  * sdma_send_txreq() - submit a tx req to ring
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2382)  * @sde: sdma engine to use
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2383)  * @wait: SE wait structure to use when full (may be NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2384)  * @tx: sdma_txreq to submit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2385)  * @pkts_sent: has any packet been sent yet?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2386)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2387)  * The call submits the tx into the ring.  If a iowait structure is non-NULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2388)  * the packet will be queued to the list in wait.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2389)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2390)  * Return:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2391)  * 0 - Success, -EINVAL - sdma_txreq incomplete, -EBUSY - no space in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2392)  * ring (wait == NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2393)  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2394)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2395) int sdma_send_txreq(struct sdma_engine *sde,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2396) 		    struct iowait_work *wait,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2397) 		    struct sdma_txreq *tx,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2398) 		    bool pkts_sent)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2399) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2400) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2401) 	u16 tail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2402) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2403) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2404) 	/* user should have supplied entire packet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2405) 	if (unlikely(tx->tlen))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2406) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2407) 	tx->wait = iowait_ioww_to_iow(wait);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2408) 	spin_lock_irqsave(&sde->tail_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2409) retry:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2410) 	if (unlikely(!__sdma_running(sde)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2411) 		goto unlock_noconn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2412) 	if (unlikely(tx->num_desc > sde->desc_avail))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2413) 		goto nodesc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2414) 	tail = submit_tx(sde, tx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2415) 	if (wait)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2416) 		iowait_sdma_inc(iowait_ioww_to_iow(wait));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2417) 	sdma_update_tail(sde, tail);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2418) unlock:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2419) 	spin_unlock_irqrestore(&sde->tail_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2420) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2421) unlock_noconn:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2422) 	if (wait)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2423) 		iowait_sdma_inc(iowait_ioww_to_iow(wait));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2424) 	tx->next_descq_idx = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2425) #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2426) 	tx->sn = sde->tail_sn++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2427) 	trace_hfi1_sdma_in_sn(sde, tx->sn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2428) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2429) 	spin_lock(&sde->flushlist_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2430) 	list_add_tail(&tx->list, &sde->flushlist);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2431) 	spin_unlock(&sde->flushlist_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2432) 	iowait_inc_wait_count(wait, tx->num_desc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2433) 	queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2434) 	ret = -ECOMM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2435) 	goto unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2436) nodesc:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2437) 	ret = sdma_check_progress(sde, wait, tx, pkts_sent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2438) 	if (ret == -EAGAIN) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2439) 		ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2440) 		goto retry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2441) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2442) 	sde->descq_full_count++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2443) 	goto unlock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2444) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2445) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2446) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2447)  * sdma_send_txlist() - submit a list of tx req to ring
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2448)  * @sde: sdma engine to use
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2449)  * @wait: SE wait structure to use when full (may be NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2450)  * @tx_list: list of sdma_txreqs to submit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2451)  * @count: pointer to a u16 which, after return will contain the total number of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2452)  *         sdma_txreqs removed from the tx_list. This will include sdma_txreqs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2453)  *         whose SDMA descriptors are submitted to the ring and the sdma_txreqs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2454)  *         which are added to SDMA engine flush list if the SDMA engine state is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2455)  *         not running.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2456)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2457)  * The call submits the list into the ring.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2458)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2459)  * If the iowait structure is non-NULL and not equal to the iowait list
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2460)  * the unprocessed part of the list  will be appended to the list in wait.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2461)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2462)  * In all cases, the tx_list will be updated so the head of the tx_list is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2463)  * the list of descriptors that have yet to be transmitted.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2464)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2465)  * The intent of this call is to provide a more efficient
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2466)  * way of submitting multiple packets to SDMA while holding the tail
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2467)  * side locking.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2468)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2469)  * Return:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2470)  * 0 - Success,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2471)  * -EINVAL - sdma_txreq incomplete, -EBUSY - no space in ring (wait == NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2472)  * -EIOCBQUEUED - tx queued to iowait, -ECOMM bad sdma state
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2473)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2474) int sdma_send_txlist(struct sdma_engine *sde, struct iowait_work *wait,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2475) 		     struct list_head *tx_list, u16 *count_out)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2476) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2477) 	struct sdma_txreq *tx, *tx_next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2478) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2479) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2480) 	u16 tail = INVALID_TAIL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2481) 	u32 submit_count = 0, flush_count = 0, total_count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2482) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2483) 	spin_lock_irqsave(&sde->tail_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2484) retry:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2485) 	list_for_each_entry_safe(tx, tx_next, tx_list, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2486) 		tx->wait = iowait_ioww_to_iow(wait);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2487) 		if (unlikely(!__sdma_running(sde)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2488) 			goto unlock_noconn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2489) 		if (unlikely(tx->num_desc > sde->desc_avail))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2490) 			goto nodesc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2491) 		if (unlikely(tx->tlen)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2492) 			ret = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2493) 			goto update_tail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2494) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2495) 		list_del_init(&tx->list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2496) 		tail = submit_tx(sde, tx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2497) 		submit_count++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2498) 		if (tail != INVALID_TAIL &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2499) 		    (submit_count & SDMA_TAIL_UPDATE_THRESH) == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2500) 			sdma_update_tail(sde, tail);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2501) 			tail = INVALID_TAIL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2502) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2503) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2504) update_tail:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2505) 	total_count = submit_count + flush_count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2506) 	if (wait) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2507) 		iowait_sdma_add(iowait_ioww_to_iow(wait), total_count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2508) 		iowait_starve_clear(submit_count > 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2509) 				    iowait_ioww_to_iow(wait));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2510) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2511) 	if (tail != INVALID_TAIL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2512) 		sdma_update_tail(sde, tail);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2513) 	spin_unlock_irqrestore(&sde->tail_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2514) 	*count_out = total_count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2515) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2516) unlock_noconn:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2517) 	spin_lock(&sde->flushlist_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2518) 	list_for_each_entry_safe(tx, tx_next, tx_list, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2519) 		tx->wait = iowait_ioww_to_iow(wait);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2520) 		list_del_init(&tx->list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2521) 		tx->next_descq_idx = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2522) #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2523) 		tx->sn = sde->tail_sn++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2524) 		trace_hfi1_sdma_in_sn(sde, tx->sn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2525) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2526) 		list_add_tail(&tx->list, &sde->flushlist);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2527) 		flush_count++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2528) 		iowait_inc_wait_count(wait, tx->num_desc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2529) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2530) 	spin_unlock(&sde->flushlist_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2531) 	queue_work_on(sde->cpu, system_highpri_wq, &sde->flush_worker);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2532) 	ret = -ECOMM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2533) 	goto update_tail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2534) nodesc:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2535) 	ret = sdma_check_progress(sde, wait, tx, submit_count > 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2536) 	if (ret == -EAGAIN) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2537) 		ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2538) 		goto retry;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2539) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2540) 	sde->descq_full_count++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2541) 	goto update_tail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2542) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2543) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2544) static void sdma_process_event(struct sdma_engine *sde, enum sdma_events event)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2545) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2546) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2547) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2548) 	spin_lock_irqsave(&sde->tail_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2549) 	write_seqlock(&sde->head_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2550) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2551) 	__sdma_process_event(sde, event);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2552) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2553) 	if (sde->state.current_state == sdma_state_s99_running)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2554) 		sdma_desc_avail(sde, sdma_descq_freecnt(sde));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2555) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2556) 	write_sequnlock(&sde->head_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2557) 	spin_unlock_irqrestore(&sde->tail_lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2558) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2559) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2560) static void __sdma_process_event(struct sdma_engine *sde,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2561) 				 enum sdma_events event)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2562) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2563) 	struct sdma_state *ss = &sde->state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2564) 	int need_progress = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2565) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2566) 	/* CONFIG SDMA temporary */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2567) #ifdef CONFIG_SDMA_VERBOSITY
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2568) 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) [%s] %s\n", sde->this_idx,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2569) 		   sdma_state_names[ss->current_state],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2570) 		   sdma_event_names[event]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2571) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2572) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2573) 	switch (ss->current_state) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2574) 	case sdma_state_s00_hw_down:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2575) 		switch (event) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2576) 		case sdma_event_e00_go_hw_down:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2577) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2578) 		case sdma_event_e30_go_running:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2579) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2580) 			 * If down, but running requested (usually result
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2581) 			 * of link up, then we need to start up.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2582) 			 * This can happen when hw down is requested while
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2583) 			 * bringing the link up with traffic active on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2584) 			 * 7220, e.g.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2585) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2586) 			ss->go_s99_running = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2587) 			fallthrough;	/* and start dma engine */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2588) 		case sdma_event_e10_go_hw_start:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2589) 			/* This reference means the state machine is started */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2590) 			sdma_get(&sde->state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2591) 			sdma_set_state(sde,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2592) 				       sdma_state_s10_hw_start_up_halt_wait);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2593) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2594) 		case sdma_event_e15_hw_halt_done:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2595) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2596) 		case sdma_event_e25_hw_clean_up_done:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2597) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2598) 		case sdma_event_e40_sw_cleaned:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2599) 			sdma_sw_tear_down(sde);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2600) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2601) 		case sdma_event_e50_hw_cleaned:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2602) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2603) 		case sdma_event_e60_hw_halted:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2604) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2605) 		case sdma_event_e70_go_idle:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2606) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2607) 		case sdma_event_e80_hw_freeze:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2608) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2609) 		case sdma_event_e81_hw_frozen:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2610) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2611) 		case sdma_event_e82_hw_unfreeze:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2612) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2613) 		case sdma_event_e85_link_down:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2614) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2615) 		case sdma_event_e90_sw_halted:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2616) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2617) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2618) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2619) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2620) 	case sdma_state_s10_hw_start_up_halt_wait:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2621) 		switch (event) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2622) 		case sdma_event_e00_go_hw_down:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2623) 			sdma_set_state(sde, sdma_state_s00_hw_down);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2624) 			sdma_sw_tear_down(sde);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2625) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2626) 		case sdma_event_e10_go_hw_start:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2627) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2628) 		case sdma_event_e15_hw_halt_done:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2629) 			sdma_set_state(sde,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2630) 				       sdma_state_s15_hw_start_up_clean_wait);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2631) 			sdma_start_hw_clean_up(sde);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2632) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2633) 		case sdma_event_e25_hw_clean_up_done:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2634) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2635) 		case sdma_event_e30_go_running:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2636) 			ss->go_s99_running = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2637) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2638) 		case sdma_event_e40_sw_cleaned:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2639) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2640) 		case sdma_event_e50_hw_cleaned:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2641) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2642) 		case sdma_event_e60_hw_halted:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2643) 			schedule_work(&sde->err_halt_worker);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2644) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2645) 		case sdma_event_e70_go_idle:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2646) 			ss->go_s99_running = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2647) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2648) 		case sdma_event_e80_hw_freeze:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2649) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2650) 		case sdma_event_e81_hw_frozen:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2651) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2652) 		case sdma_event_e82_hw_unfreeze:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2653) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2654) 		case sdma_event_e85_link_down:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2655) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2656) 		case sdma_event_e90_sw_halted:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2657) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2658) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2659) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2660) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2661) 	case sdma_state_s15_hw_start_up_clean_wait:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2662) 		switch (event) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2663) 		case sdma_event_e00_go_hw_down:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2664) 			sdma_set_state(sde, sdma_state_s00_hw_down);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2665) 			sdma_sw_tear_down(sde);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2666) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2667) 		case sdma_event_e10_go_hw_start:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2668) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2669) 		case sdma_event_e15_hw_halt_done:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2670) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2671) 		case sdma_event_e25_hw_clean_up_done:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2672) 			sdma_hw_start_up(sde);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2673) 			sdma_set_state(sde, ss->go_s99_running ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2674) 				       sdma_state_s99_running :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2675) 				       sdma_state_s20_idle);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2676) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2677) 		case sdma_event_e30_go_running:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2678) 			ss->go_s99_running = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2679) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2680) 		case sdma_event_e40_sw_cleaned:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2681) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2682) 		case sdma_event_e50_hw_cleaned:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2683) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2684) 		case sdma_event_e60_hw_halted:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2685) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2686) 		case sdma_event_e70_go_idle:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2687) 			ss->go_s99_running = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2688) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2689) 		case sdma_event_e80_hw_freeze:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2690) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2691) 		case sdma_event_e81_hw_frozen:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2692) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2693) 		case sdma_event_e82_hw_unfreeze:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2694) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2695) 		case sdma_event_e85_link_down:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2696) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2697) 		case sdma_event_e90_sw_halted:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2698) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2699) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2700) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2701) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2702) 	case sdma_state_s20_idle:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2703) 		switch (event) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2704) 		case sdma_event_e00_go_hw_down:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2705) 			sdma_set_state(sde, sdma_state_s00_hw_down);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2706) 			sdma_sw_tear_down(sde);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2707) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2708) 		case sdma_event_e10_go_hw_start:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2709) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2710) 		case sdma_event_e15_hw_halt_done:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2711) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2712) 		case sdma_event_e25_hw_clean_up_done:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2713) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2714) 		case sdma_event_e30_go_running:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2715) 			sdma_set_state(sde, sdma_state_s99_running);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2716) 			ss->go_s99_running = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2717) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2718) 		case sdma_event_e40_sw_cleaned:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2719) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2720) 		case sdma_event_e50_hw_cleaned:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2721) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2722) 		case sdma_event_e60_hw_halted:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2723) 			sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2724) 			schedule_work(&sde->err_halt_worker);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2725) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2726) 		case sdma_event_e70_go_idle:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2727) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2728) 		case sdma_event_e85_link_down:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2729) 		case sdma_event_e80_hw_freeze:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2730) 			sdma_set_state(sde, sdma_state_s80_hw_freeze);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2731) 			atomic_dec(&sde->dd->sdma_unfreeze_count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2732) 			wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2733) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2734) 		case sdma_event_e81_hw_frozen:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2735) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2736) 		case sdma_event_e82_hw_unfreeze:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2737) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2738) 		case sdma_event_e90_sw_halted:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2739) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2740) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2741) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2742) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2743) 	case sdma_state_s30_sw_clean_up_wait:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2744) 		switch (event) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2745) 		case sdma_event_e00_go_hw_down:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2746) 			sdma_set_state(sde, sdma_state_s00_hw_down);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2747) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2748) 		case sdma_event_e10_go_hw_start:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2749) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2750) 		case sdma_event_e15_hw_halt_done:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2751) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2752) 		case sdma_event_e25_hw_clean_up_done:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2753) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2754) 		case sdma_event_e30_go_running:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2755) 			ss->go_s99_running = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2756) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2757) 		case sdma_event_e40_sw_cleaned:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2758) 			sdma_set_state(sde, sdma_state_s40_hw_clean_up_wait);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2759) 			sdma_start_hw_clean_up(sde);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2760) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2761) 		case sdma_event_e50_hw_cleaned:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2762) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2763) 		case sdma_event_e60_hw_halted:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2764) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2765) 		case sdma_event_e70_go_idle:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2766) 			ss->go_s99_running = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2767) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2768) 		case sdma_event_e80_hw_freeze:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2769) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2770) 		case sdma_event_e81_hw_frozen:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2771) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2772) 		case sdma_event_e82_hw_unfreeze:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2773) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2774) 		case sdma_event_e85_link_down:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2775) 			ss->go_s99_running = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2776) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2777) 		case sdma_event_e90_sw_halted:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2778) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2779) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2780) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2781) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2782) 	case sdma_state_s40_hw_clean_up_wait:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2783) 		switch (event) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2784) 		case sdma_event_e00_go_hw_down:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2785) 			sdma_set_state(sde, sdma_state_s00_hw_down);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2786) 			tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2787) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2788) 		case sdma_event_e10_go_hw_start:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2789) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2790) 		case sdma_event_e15_hw_halt_done:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2791) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2792) 		case sdma_event_e25_hw_clean_up_done:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2793) 			sdma_hw_start_up(sde);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2794) 			sdma_set_state(sde, ss->go_s99_running ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2795) 				       sdma_state_s99_running :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2796) 				       sdma_state_s20_idle);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2797) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2798) 		case sdma_event_e30_go_running:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2799) 			ss->go_s99_running = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2800) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2801) 		case sdma_event_e40_sw_cleaned:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2802) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2803) 		case sdma_event_e50_hw_cleaned:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2804) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2805) 		case sdma_event_e60_hw_halted:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2806) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2807) 		case sdma_event_e70_go_idle:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2808) 			ss->go_s99_running = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2809) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2810) 		case sdma_event_e80_hw_freeze:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2811) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2812) 		case sdma_event_e81_hw_frozen:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2813) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2814) 		case sdma_event_e82_hw_unfreeze:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2815) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2816) 		case sdma_event_e85_link_down:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2817) 			ss->go_s99_running = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2818) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2819) 		case sdma_event_e90_sw_halted:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2820) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2821) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2822) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2823) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2824) 	case sdma_state_s50_hw_halt_wait:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2825) 		switch (event) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2826) 		case sdma_event_e00_go_hw_down:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2827) 			sdma_set_state(sde, sdma_state_s00_hw_down);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2828) 			tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2829) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2830) 		case sdma_event_e10_go_hw_start:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2831) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2832) 		case sdma_event_e15_hw_halt_done:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2833) 			sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2834) 			tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2835) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2836) 		case sdma_event_e25_hw_clean_up_done:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2837) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2838) 		case sdma_event_e30_go_running:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2839) 			ss->go_s99_running = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2840) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2841) 		case sdma_event_e40_sw_cleaned:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2842) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2843) 		case sdma_event_e50_hw_cleaned:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2844) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2845) 		case sdma_event_e60_hw_halted:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2846) 			schedule_work(&sde->err_halt_worker);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2847) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2848) 		case sdma_event_e70_go_idle:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2849) 			ss->go_s99_running = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2850) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2851) 		case sdma_event_e80_hw_freeze:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2852) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2853) 		case sdma_event_e81_hw_frozen:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2854) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2855) 		case sdma_event_e82_hw_unfreeze:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2856) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2857) 		case sdma_event_e85_link_down:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2858) 			ss->go_s99_running = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2859) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2860) 		case sdma_event_e90_sw_halted:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2861) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2862) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2863) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2864) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2865) 	case sdma_state_s60_idle_halt_wait:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2866) 		switch (event) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2867) 		case sdma_event_e00_go_hw_down:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2868) 			sdma_set_state(sde, sdma_state_s00_hw_down);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2869) 			tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2870) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2871) 		case sdma_event_e10_go_hw_start:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2872) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2873) 		case sdma_event_e15_hw_halt_done:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2874) 			sdma_set_state(sde, sdma_state_s30_sw_clean_up_wait);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2875) 			tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2876) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2877) 		case sdma_event_e25_hw_clean_up_done:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2878) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2879) 		case sdma_event_e30_go_running:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2880) 			ss->go_s99_running = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2881) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2882) 		case sdma_event_e40_sw_cleaned:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2883) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2884) 		case sdma_event_e50_hw_cleaned:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2885) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2886) 		case sdma_event_e60_hw_halted:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2887) 			schedule_work(&sde->err_halt_worker);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2888) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2889) 		case sdma_event_e70_go_idle:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2890) 			ss->go_s99_running = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2891) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2892) 		case sdma_event_e80_hw_freeze:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2893) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2894) 		case sdma_event_e81_hw_frozen:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2895) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2896) 		case sdma_event_e82_hw_unfreeze:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2897) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2898) 		case sdma_event_e85_link_down:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2899) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2900) 		case sdma_event_e90_sw_halted:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2901) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2902) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2903) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2904) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2905) 	case sdma_state_s80_hw_freeze:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2906) 		switch (event) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2907) 		case sdma_event_e00_go_hw_down:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2908) 			sdma_set_state(sde, sdma_state_s00_hw_down);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2909) 			tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2910) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2911) 		case sdma_event_e10_go_hw_start:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2912) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2913) 		case sdma_event_e15_hw_halt_done:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2914) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2915) 		case sdma_event_e25_hw_clean_up_done:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2916) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2917) 		case sdma_event_e30_go_running:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2918) 			ss->go_s99_running = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2919) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2920) 		case sdma_event_e40_sw_cleaned:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2921) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2922) 		case sdma_event_e50_hw_cleaned:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2923) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2924) 		case sdma_event_e60_hw_halted:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2925) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2926) 		case sdma_event_e70_go_idle:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2927) 			ss->go_s99_running = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2928) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2929) 		case sdma_event_e80_hw_freeze:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2930) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2931) 		case sdma_event_e81_hw_frozen:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2932) 			sdma_set_state(sde, sdma_state_s82_freeze_sw_clean);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2933) 			tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2934) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2935) 		case sdma_event_e82_hw_unfreeze:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2936) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2937) 		case sdma_event_e85_link_down:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2938) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2939) 		case sdma_event_e90_sw_halted:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2940) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2941) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2942) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2943) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2944) 	case sdma_state_s82_freeze_sw_clean:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2945) 		switch (event) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2946) 		case sdma_event_e00_go_hw_down:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2947) 			sdma_set_state(sde, sdma_state_s00_hw_down);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2948) 			tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2949) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2950) 		case sdma_event_e10_go_hw_start:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2951) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2952) 		case sdma_event_e15_hw_halt_done:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2953) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2954) 		case sdma_event_e25_hw_clean_up_done:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2955) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2956) 		case sdma_event_e30_go_running:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2957) 			ss->go_s99_running = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2958) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2959) 		case sdma_event_e40_sw_cleaned:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2960) 			/* notify caller this engine is done cleaning */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2961) 			atomic_dec(&sde->dd->sdma_unfreeze_count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2962) 			wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2963) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2964) 		case sdma_event_e50_hw_cleaned:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2965) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2966) 		case sdma_event_e60_hw_halted:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2967) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2968) 		case sdma_event_e70_go_idle:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2969) 			ss->go_s99_running = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2970) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2971) 		case sdma_event_e80_hw_freeze:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2972) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2973) 		case sdma_event_e81_hw_frozen:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2974) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2975) 		case sdma_event_e82_hw_unfreeze:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2976) 			sdma_hw_start_up(sde);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2977) 			sdma_set_state(sde, ss->go_s99_running ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2978) 				       sdma_state_s99_running :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2979) 				       sdma_state_s20_idle);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2980) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2981) 		case sdma_event_e85_link_down:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2982) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2983) 		case sdma_event_e90_sw_halted:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2984) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2985) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2986) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2987) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2988) 	case sdma_state_s99_running:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2989) 		switch (event) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2990) 		case sdma_event_e00_go_hw_down:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2991) 			sdma_set_state(sde, sdma_state_s00_hw_down);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2992) 			tasklet_hi_schedule(&sde->sdma_sw_clean_up_task);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2993) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2994) 		case sdma_event_e10_go_hw_start:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2995) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2996) 		case sdma_event_e15_hw_halt_done:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2997) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2998) 		case sdma_event_e25_hw_clean_up_done:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2999) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3000) 		case sdma_event_e30_go_running:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3001) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3002) 		case sdma_event_e40_sw_cleaned:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3003) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3004) 		case sdma_event_e50_hw_cleaned:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3005) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3006) 		case sdma_event_e60_hw_halted:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3007) 			need_progress = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3008) 			sdma_err_progress_check_schedule(sde);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3009) 			fallthrough;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3010) 		case sdma_event_e90_sw_halted:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3011) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3012) 			* SW initiated halt does not perform engines
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3013) 			* progress check
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3014) 			*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3015) 			sdma_set_state(sde, sdma_state_s50_hw_halt_wait);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3016) 			schedule_work(&sde->err_halt_worker);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3017) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3018) 		case sdma_event_e70_go_idle:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3019) 			sdma_set_state(sde, sdma_state_s60_idle_halt_wait);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3020) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3021) 		case sdma_event_e85_link_down:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3022) 			ss->go_s99_running = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3023) 			fallthrough;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3024) 		case sdma_event_e80_hw_freeze:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3025) 			sdma_set_state(sde, sdma_state_s80_hw_freeze);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3026) 			atomic_dec(&sde->dd->sdma_unfreeze_count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3027) 			wake_up_interruptible(&sde->dd->sdma_unfreeze_wq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3028) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3029) 		case sdma_event_e81_hw_frozen:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3030) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3031) 		case sdma_event_e82_hw_unfreeze:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3032) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3033) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3034) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3035) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3036) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3037) 	ss->last_event = event;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3038) 	if (need_progress)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3039) 		sdma_make_progress(sde, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3040) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3041) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3042) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3043)  * _extend_sdma_tx_descs() - helper to extend txreq
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3044)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3045)  * This is called once the initial nominal allocation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3046)  * of descriptors in the sdma_txreq is exhausted.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3047)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3048)  * The code will bump the allocation up to the max
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3049)  * of MAX_DESC (64) descriptors. There doesn't seem
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3050)  * much point in an interim step. The last descriptor
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3051)  * is reserved for coalesce buffer in order to support
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3052)  * cases where input packet has >MAX_DESC iovecs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3053)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3054)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3055) static int _extend_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3056) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3057) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3058) 	struct sdma_desc *descp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3059) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3060) 	/* Handle last descriptor */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3061) 	if (unlikely((tx->num_desc == (MAX_DESC - 1)))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3062) 		/* if tlen is 0, it is for padding, release last descriptor */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3063) 		if (!tx->tlen) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3064) 			tx->desc_limit = MAX_DESC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3065) 		} else if (!tx->coalesce_buf) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3066) 			/* allocate coalesce buffer with space for padding */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3067) 			tx->coalesce_buf = kmalloc(tx->tlen + sizeof(u32),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3068) 						   GFP_ATOMIC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3069) 			if (!tx->coalesce_buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3070) 				goto enomem;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3071) 			tx->coalesce_idx = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3072) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3073) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3074) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3075) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3076) 	if (unlikely(tx->num_desc == MAX_DESC))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3077) 		goto enomem;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3078) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3079) 	descp = kmalloc_array(MAX_DESC, sizeof(struct sdma_desc), GFP_ATOMIC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3080) 	if (!descp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3081) 		goto enomem;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3082) 	tx->descp = descp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3083) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3084) 	/* reserve last descriptor for coalescing */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3085) 	tx->desc_limit = MAX_DESC - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3086) 	/* copy ones already built */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3087) 	for (i = 0; i < tx->num_desc; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3088) 		tx->descp[i] = tx->descs[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3089) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3090) enomem:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3091) 	__sdma_txclean(dd, tx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3092) 	return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3093) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3094) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3095) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3096)  * ext_coal_sdma_tx_descs() - extend or coalesce sdma tx descriptors
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3097)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3098)  * This is called once the initial nominal allocation of descriptors
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3099)  * in the sdma_txreq is exhausted.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3100)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3101)  * This function calls _extend_sdma_tx_descs to extend or allocate
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3102)  * coalesce buffer. If there is a allocated coalesce buffer, it will
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3103)  * copy the input packet data into the coalesce buffer. It also adds
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3104)  * coalesce buffer descriptor once when whole packet is received.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3105)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3106)  * Return:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3107)  * <0 - error
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3108)  * 0 - coalescing, don't populate descriptor
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3109)  * 1 - continue with populating descriptor
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3110)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3111) int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3112) 			   int type, void *kvaddr, struct page *page,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3113) 			   unsigned long offset, u16 len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3114) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3115) 	int pad_len, rval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3116) 	dma_addr_t addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3117) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3118) 	rval = _extend_sdma_tx_descs(dd, tx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3119) 	if (rval) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3120) 		__sdma_txclean(dd, tx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3121) 		return rval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3122) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3123) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3124) 	/* If coalesce buffer is allocated, copy data into it */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3125) 	if (tx->coalesce_buf) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3126) 		if (type == SDMA_MAP_NONE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3127) 			__sdma_txclean(dd, tx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3128) 			return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3129) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3130) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3131) 		if (type == SDMA_MAP_PAGE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3132) 			kvaddr = kmap(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3133) 			kvaddr += offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3134) 		} else if (WARN_ON(!kvaddr)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3135) 			__sdma_txclean(dd, tx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3136) 			return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3137) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3138) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3139) 		memcpy(tx->coalesce_buf + tx->coalesce_idx, kvaddr, len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3140) 		tx->coalesce_idx += len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3141) 		if (type == SDMA_MAP_PAGE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3142) 			kunmap(page);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3143) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3144) 		/* If there is more data, return */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3145) 		if (tx->tlen - tx->coalesce_idx)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3146) 			return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3147) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3148) 		/* Whole packet is received; add any padding */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3149) 		pad_len = tx->packet_len & (sizeof(u32) - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3150) 		if (pad_len) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3151) 			pad_len = sizeof(u32) - pad_len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3152) 			memset(tx->coalesce_buf + tx->coalesce_idx, 0, pad_len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3153) 			/* padding is taken care of for coalescing case */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3154) 			tx->packet_len += pad_len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3155) 			tx->tlen += pad_len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3156) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3157) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3158) 		/* dma map the coalesce buffer */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3159) 		addr = dma_map_single(&dd->pcidev->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3160) 				      tx->coalesce_buf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3161) 				      tx->tlen,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3162) 				      DMA_TO_DEVICE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3163) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3164) 		if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3165) 			__sdma_txclean(dd, tx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3166) 			return -ENOSPC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3167) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3168) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3169) 		/* Add descriptor for coalesce buffer */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3170) 		tx->desc_limit = MAX_DESC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3171) 		return _sdma_txadd_daddr(dd, SDMA_MAP_SINGLE, tx,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3172) 					 addr, tx->tlen);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3173) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3174) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3175) 	return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3176) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3177) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3178) /* Update sdes when the lmc changes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3179) void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3180) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3181) 	struct sdma_engine *sde;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3182) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3183) 	u64 sreg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3184) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3185) 	sreg = ((mask & SD(CHECK_SLID_MASK_MASK)) <<
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3186) 		SD(CHECK_SLID_MASK_SHIFT)) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3187) 		(((lid & mask) & SD(CHECK_SLID_VALUE_MASK)) <<
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3188) 		SD(CHECK_SLID_VALUE_SHIFT));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3189) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3190) 	for (i = 0; i < dd->num_sdma; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3191) 		hfi1_cdbg(LINKVERB, "SendDmaEngine[%d].SLID_CHECK = 0x%x",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3192) 			  i, (u32)sreg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3193) 		sde = &dd->per_sdma[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3194) 		write_sde_csr(sde, SD(CHECK_SLID), sreg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3195) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3196) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3197) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3198) /* tx not dword sized - pad */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3199) int _pad_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3200) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3201) 	int rval = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3202) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3203) 	tx->num_desc++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3204) 	if ((unlikely(tx->num_desc == tx->desc_limit))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3205) 		rval = _extend_sdma_tx_descs(dd, tx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3206) 		if (rval) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3207) 			__sdma_txclean(dd, tx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3208) 			return rval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3209) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3210) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3211) 	/* finish the one just added */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3212) 	make_tx_sdma_desc(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3213) 		tx,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3214) 		SDMA_MAP_NONE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3215) 		dd->sdma_pad_phys,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3216) 		sizeof(u32) - (tx->packet_len & (sizeof(u32) - 1)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3217) 	_sdma_close_tx(dd, tx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3218) 	return rval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3219) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3220) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3221) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3222)  * Add ahg to the sdma_txreq
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3223)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3224)  * The logic will consume up to 3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3225)  * descriptors at the beginning of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3226)  * sdma_txreq.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3227)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3228) void _sdma_txreq_ahgadd(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3229) 	struct sdma_txreq *tx,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3230) 	u8 num_ahg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3231) 	u8 ahg_entry,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3232) 	u32 *ahg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3233) 	u8 ahg_hlen)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3234) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3235) 	u32 i, shift = 0, desc = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3236) 	u8 mode;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3237) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3238) 	WARN_ON_ONCE(num_ahg > 9 || (ahg_hlen & 3) || ahg_hlen == 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3239) 	/* compute mode */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3240) 	if (num_ahg == 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3241) 		mode = SDMA_AHG_APPLY_UPDATE1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3242) 	else if (num_ahg <= 5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3243) 		mode = SDMA_AHG_APPLY_UPDATE2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3244) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3245) 		mode = SDMA_AHG_APPLY_UPDATE3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3246) 	tx->num_desc++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3247) 	/* initialize to consumed descriptors to zero */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3248) 	switch (mode) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3249) 	case SDMA_AHG_APPLY_UPDATE3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3250) 		tx->num_desc++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3251) 		tx->descs[2].qw[0] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3252) 		tx->descs[2].qw[1] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3253) 		fallthrough;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3254) 	case SDMA_AHG_APPLY_UPDATE2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3255) 		tx->num_desc++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3256) 		tx->descs[1].qw[0] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3257) 		tx->descs[1].qw[1] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3258) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3259) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3260) 	ahg_hlen >>= 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3261) 	tx->descs[0].qw[1] |=
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3262) 		(((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3263) 			<< SDMA_DESC1_HEADER_INDEX_SHIFT) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3264) 		(((u64)ahg_hlen & SDMA_DESC1_HEADER_DWS_MASK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3265) 			<< SDMA_DESC1_HEADER_DWS_SHIFT) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3266) 		(((u64)mode & SDMA_DESC1_HEADER_MODE_MASK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3267) 			<< SDMA_DESC1_HEADER_MODE_SHIFT) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3268) 		(((u64)ahg[0] & SDMA_DESC1_HEADER_UPDATE1_MASK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3269) 			<< SDMA_DESC1_HEADER_UPDATE1_SHIFT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3270) 	for (i = 0; i < (num_ahg - 1); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3271) 		if (!shift && !(i & 2))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3272) 			desc++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3273) 		tx->descs[desc].qw[!!(i & 2)] |=
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3274) 			(((u64)ahg[i + 1])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3275) 				<< shift);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3276) 		shift = (shift + 32) & 63;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3277) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3278) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3279) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3280) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3281)  * sdma_ahg_alloc - allocate an AHG entry
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3282)  * @sde: engine to allocate from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3283)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3284)  * Return:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3285)  * 0-31 when successful, -EOPNOTSUPP if AHG is not enabled,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3286)  * -ENOSPC if an entry is not available
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3287)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3288) int sdma_ahg_alloc(struct sdma_engine *sde)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3289) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3290) 	int nr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3291) 	int oldbit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3292) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3293) 	if (!sde) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3294) 		trace_hfi1_ahg_allocate(sde, -EINVAL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3295) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3296) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3297) 	while (1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3298) 		nr = ffz(READ_ONCE(sde->ahg_bits));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3299) 		if (nr > 31) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3300) 			trace_hfi1_ahg_allocate(sde, -ENOSPC);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3301) 			return -ENOSPC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3302) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3303) 		oldbit = test_and_set_bit(nr, &sde->ahg_bits);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3304) 		if (!oldbit)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3305) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3306) 		cpu_relax();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3307) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3308) 	trace_hfi1_ahg_allocate(sde, nr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3309) 	return nr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3310) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3311) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3312) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3313)  * sdma_ahg_free - free an AHG entry
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3314)  * @sde: engine to return AHG entry
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3315)  * @ahg_index: index to free
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3316)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3317)  * This routine frees the indicate AHG entry.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3318)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3319) void sdma_ahg_free(struct sdma_engine *sde, int ahg_index)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3320) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3321) 	if (!sde)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3322) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3323) 	trace_hfi1_ahg_deallocate(sde, ahg_index);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3324) 	if (ahg_index < 0 || ahg_index > 31)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3325) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3326) 	clear_bit(ahg_index, &sde->ahg_bits);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3327) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3328) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3329) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3330)  * SPC freeze handling for SDMA engines.  Called when the driver knows
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3331)  * the SPC is going into a freeze but before the freeze is fully
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3332)  * settled.  Generally an error interrupt.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3333)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3334)  * This event will pull the engine out of running so no more entries can be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3335)  * added to the engine's queue.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3336)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3337) void sdma_freeze_notify(struct hfi1_devdata *dd, int link_down)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3338) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3339) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3340) 	enum sdma_events event = link_down ? sdma_event_e85_link_down :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3341) 					     sdma_event_e80_hw_freeze;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3342) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3343) 	/* set up the wait but do not wait here */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3344) 	atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3345) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3346) 	/* tell all engines to stop running and wait */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3347) 	for (i = 0; i < dd->num_sdma; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3348) 		sdma_process_event(&dd->per_sdma[i], event);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3349) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3350) 	/* sdma_freeze() will wait for all engines to have stopped */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3351) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3352) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3353) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3354)  * SPC freeze handling for SDMA engines.  Called when the driver knows
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3355)  * the SPC is fully frozen.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3356)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3357) void sdma_freeze(struct hfi1_devdata *dd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3358) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3359) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3360) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3361) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3362) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3363) 	 * Make sure all engines have moved out of the running state before
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3364) 	 * continuing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3365) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3366) 	ret = wait_event_interruptible(dd->sdma_unfreeze_wq,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3367) 				       atomic_read(&dd->sdma_unfreeze_count) <=
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3368) 				       0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3369) 	/* interrupted or count is negative, then unloading - just exit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3370) 	if (ret || atomic_read(&dd->sdma_unfreeze_count) < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3371) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3372) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3373) 	/* set up the count for the next wait */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3374) 	atomic_set(&dd->sdma_unfreeze_count, dd->num_sdma);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3375) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3376) 	/* tell all engines that the SPC is frozen, they can start cleaning */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3377) 	for (i = 0; i < dd->num_sdma; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3378) 		sdma_process_event(&dd->per_sdma[i], sdma_event_e81_hw_frozen);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3379) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3380) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3381) 	 * Wait for everyone to finish software clean before exiting.  The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3382) 	 * software clean will read engine CSRs, so must be completed before
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3383) 	 * the next step, which will clear the engine CSRs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3384) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3385) 	(void)wait_event_interruptible(dd->sdma_unfreeze_wq,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3386) 				atomic_read(&dd->sdma_unfreeze_count) <= 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3387) 	/* no need to check results - done no matter what */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3388) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3389) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3390) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3391)  * SPC freeze handling for the SDMA engines.  Called after the SPC is unfrozen.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3392)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3393)  * The SPC freeze acts like a SDMA halt and a hardware clean combined.  All
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3394)  * that is left is a software clean.  We could do it after the SPC is fully
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3395)  * frozen, but then we'd have to add another state to wait for the unfreeze.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3396)  * Instead, just defer the software clean until the unfreeze step.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3397)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3398) void sdma_unfreeze(struct hfi1_devdata *dd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3399) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3400) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3401) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3402) 	/* tell all engines start freeze clean up */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3403) 	for (i = 0; i < dd->num_sdma; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3404) 		sdma_process_event(&dd->per_sdma[i],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3405) 				   sdma_event_e82_hw_unfreeze);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3406) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3407) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3408) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3409)  * _sdma_engine_progress_schedule() - schedule progress on engine
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3410)  * @sde: sdma_engine to schedule progress
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3411)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3412)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3413) void _sdma_engine_progress_schedule(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3414) 	struct sdma_engine *sde)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3415) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3416) 	trace_hfi1_sdma_engine_progress(sde, sde->progress_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3417) 	/* assume we have selected a good cpu */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3418) 	write_csr(sde->dd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3419) 		  CCE_INT_FORCE + (8 * (IS_SDMA_START / 64)),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3420) 		  sde->progress_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3421) }