Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
/*
* Copyright(c) 2015, 2016 Intel Corporation.
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <linux/delay.h>
#include <linux/pci.h>
#include <linux/vmalloc.h>
#include "hfi.h"
/* for the given bus number, return the CSR for reading an i2c line */
static inline u32 i2c_in_csr(u32 bus_num)
{
<------>return bus_num ? ASIC_QSFP2_IN : ASIC_QSFP1_IN;
}
/* for the given bus number, return the CSR for writing an i2c line */
static inline u32 i2c_oe_csr(u32 bus_num)
{
<------>return bus_num ? ASIC_QSFP2_OE : ASIC_QSFP1_OE;
}
static void hfi1_setsda(void *data, int state)
{
<------>struct hfi1_i2c_bus *bus = (struct hfi1_i2c_bus *)data;
<------>struct hfi1_devdata *dd = bus->controlling_dd;
<------>u64 reg;
<------>u32 target_oe;
<------>target_oe = i2c_oe_csr(bus->num);
<------>reg = read_csr(dd, target_oe);
<------>/*
<------> * The OE bit value is inverted and connected to the pin. When
<------> * OE is 0 the pin is left to be pulled up, when the OE is 1
<------> * the pin is driven low. This matches the "open drain" or "open
<------> * collector" convention.
<------> */
<------>if (state)
<------><------>reg &= ~QSFP_HFI0_I2CDAT;
<------>else
<------><------>reg |= QSFP_HFI0_I2CDAT;
<------>write_csr(dd, target_oe, reg);
<------>/* do a read to force the write into the chip */
<------>(void)read_csr(dd, target_oe);
}
static void hfi1_setscl(void *data, int state)
{
<------>struct hfi1_i2c_bus *bus = (struct hfi1_i2c_bus *)data;
<------>struct hfi1_devdata *dd = bus->controlling_dd;
<------>u64 reg;
<------>u32 target_oe;
<------>target_oe = i2c_oe_csr(bus->num);
<------>reg = read_csr(dd, target_oe);
<------>/*
<------> * The OE bit value is inverted and connected to the pin. When
<------> * OE is 0 the pin is left to be pulled up, when the OE is 1
<------> * the pin is driven low. This matches the "open drain" or "open
<------> * collector" convention.
<------> */
<------>if (state)
<------><------>reg &= ~QSFP_HFI0_I2CCLK;
<------>else
<------><------>reg |= QSFP_HFI0_I2CCLK;
<------>write_csr(dd, target_oe, reg);
<------>/* do a read to force the write into the chip */
<------>(void)read_csr(dd, target_oe);
}
static int hfi1_getsda(void *data)
{
<------>struct hfi1_i2c_bus *bus = (struct hfi1_i2c_bus *)data;
<------>u64 reg;
<------>u32 target_in;
<------>hfi1_setsda(data, 1); /* clear OE so we do not pull line down */
<------>udelay(2); /* 1us pull up + 250ns hold */
<------>target_in = i2c_in_csr(bus->num);
<------>reg = read_csr(bus->controlling_dd, target_in);
<------>return !!(reg & QSFP_HFI0_I2CDAT);
}
static int hfi1_getscl(void *data)
{
<------>struct hfi1_i2c_bus *bus = (struct hfi1_i2c_bus *)data;
<------>u64 reg;
<------>u32 target_in;
<------>hfi1_setscl(data, 1); /* clear OE so we do not pull line down */
<------>udelay(2); /* 1us pull up + 250ns hold */
<------>target_in = i2c_in_csr(bus->num);
<------>reg = read_csr(bus->controlling_dd, target_in);
<------>return !!(reg & QSFP_HFI0_I2CCLK);
}
/*
* Allocate and initialize the given i2c bus number.
* Returns NULL on failure.
*/
static struct hfi1_i2c_bus *init_i2c_bus(struct hfi1_devdata *dd,
<------><------><------><------><------> struct hfi1_asic_data *ad, int num)
{
<------>struct hfi1_i2c_bus *bus;
<------>int ret;
<------>bus = kzalloc(sizeof(*bus), GFP_KERNEL);
<------>if (!bus)
<------><------>return NULL;
<------>bus->controlling_dd = dd;
<------>bus->num = num; /* our bus number */
<------>bus->algo.setsda = hfi1_setsda;
<------>bus->algo.setscl = hfi1_setscl;
<------>bus->algo.getsda = hfi1_getsda;
<------>bus->algo.getscl = hfi1_getscl;
<------>bus->algo.udelay = 5;
<------>bus->algo.timeout = usecs_to_jiffies(100000);
<------>bus->algo.data = bus;
<------>bus->adapter.owner = THIS_MODULE;
<------>bus->adapter.algo_data = &bus->algo;
<------>bus->adapter.dev.parent = &dd->pcidev->dev;
<------>snprintf(bus->adapter.name, sizeof(bus->adapter.name),
<------><------> "hfi1_i2c%d", num);
<------>ret = i2c_bit_add_bus(&bus->adapter);
<------>if (ret) {
<------><------>dd_dev_info(dd, "%s: unable to add i2c bus %d, err %d\n",
<------><------><------> __func__, num, ret);
<------><------>kfree(bus);
<------><------>return NULL;
<------>}
<------>return bus;
}
/*
* Initialize i2c buses.
* Return 0 on success, -errno on error.
*/
int set_up_i2c(struct hfi1_devdata *dd, struct hfi1_asic_data *ad)
{
<------>ad->i2c_bus0 = init_i2c_bus(dd, ad, 0);
<------>ad->i2c_bus1 = init_i2c_bus(dd, ad, 1);
<------>if (!ad->i2c_bus0 || !ad->i2c_bus1)
<------><------>return -ENOMEM;
<------>return 0;
};
static void clean_i2c_bus(struct hfi1_i2c_bus *bus)
{
<------>if (bus) {
<------><------>i2c_del_adapter(&bus->adapter);
<------><------>kfree(bus);
<------>}
}
void clean_up_i2c(struct hfi1_devdata *dd, struct hfi1_asic_data *ad)
{
<------>if (!ad)
<------><------>return;
<------>clean_i2c_bus(ad->i2c_bus0);
<------>ad->i2c_bus0 = NULL;
<------>clean_i2c_bus(ad->i2c_bus1);
<------>ad->i2c_bus1 = NULL;
}
static int i2c_bus_write(struct hfi1_devdata *dd, struct hfi1_i2c_bus *i2c,
<------><------><------> u8 slave_addr, int offset, int offset_size,
<------><------><------> u8 *data, u16 len)
{
<------>int ret;
<------>int num_msgs;
<------>u8 offset_bytes[2];
<------>struct i2c_msg msgs[2];
<------>switch (offset_size) {
<------>case 0:
<------><------>num_msgs = 1;
<------><------>msgs[0].addr = slave_addr;
<------><------>msgs[0].flags = 0;
<------><------>msgs[0].len = len;
<------><------>msgs[0].buf = data;
<------><------>break;
<------>case 2:
<------><------>offset_bytes[1] = (offset >> 8) & 0xff;
<------><------>fallthrough;
<------>case 1:
<------><------>num_msgs = 2;
<------><------>offset_bytes[0] = offset & 0xff;
<------><------>msgs[0].addr = slave_addr;
<------><------>msgs[0].flags = 0;
<------><------>msgs[0].len = offset_size;
<------><------>msgs[0].buf = offset_bytes;
<------><------>msgs[1].addr = slave_addr;
<------><------>msgs[1].flags = I2C_M_NOSTART,
<------><------>msgs[1].len = len;
<------><------>msgs[1].buf = data;
<------><------>break;
<------>default:
<------><------>return -EINVAL;
<------>}
<------>i2c->controlling_dd = dd;
<------>ret = i2c_transfer(&i2c->adapter, msgs, num_msgs);
<------>if (ret != num_msgs) {
<------><------>dd_dev_err(dd, "%s: bus %d, i2c slave 0x%x, offset 0x%x, len 0x%x; write failed, ret %d\n",
<------><------><------> __func__, i2c->num, slave_addr, offset, len, ret);
<------><------>return ret < 0 ? ret : -EIO;
<------>}
<------>return 0;
}
static int i2c_bus_read(struct hfi1_devdata *dd, struct hfi1_i2c_bus *bus,
<------><------><------>u8 slave_addr, int offset, int offset_size,
<------><------><------>u8 *data, u16 len)
{
<------>int ret;
<------>int num_msgs;
<------>u8 offset_bytes[2];
<------>struct i2c_msg msgs[2];
<------>switch (offset_size) {
<------>case 0:
<------><------>num_msgs = 1;
<------><------>msgs[0].addr = slave_addr;
<------><------>msgs[0].flags = I2C_M_RD;
<------><------>msgs[0].len = len;
<------><------>msgs[0].buf = data;
<------><------>break;
<------>case 2:
<------><------>offset_bytes[1] = (offset >> 8) & 0xff;
<------><------>fallthrough;
<------>case 1:
<------><------>num_msgs = 2;
<------><------>offset_bytes[0] = offset & 0xff;
<------><------>msgs[0].addr = slave_addr;
<------><------>msgs[0].flags = 0;
<------><------>msgs[0].len = offset_size;
<------><------>msgs[0].buf = offset_bytes;
<------><------>msgs[1].addr = slave_addr;
<------><------>msgs[1].flags = I2C_M_RD,
<------><------>msgs[1].len = len;
<------><------>msgs[1].buf = data;
<------><------>break;
<------>default:
<------><------>return -EINVAL;
<------>}
<------>bus->controlling_dd = dd;
<------>ret = i2c_transfer(&bus->adapter, msgs, num_msgs);
<------>if (ret != num_msgs) {
<------><------>dd_dev_err(dd, "%s: bus %d, i2c slave 0x%x, offset 0x%x, len 0x%x; read failed, ret %d\n",
<------><------><------> __func__, bus->num, slave_addr, offset, len, ret);
<------><------>return ret < 0 ? ret : -EIO;
<------>}
<------>return 0;
}
/*
* Raw i2c write. No set-up or lock checking.
*
* Return 0 on success, -errno on error.
*/
static int __i2c_write(struct hfi1_pportdata *ppd, u32 target, int i2c_addr,
<------><------> int offset, void *bp, int len)
{
<------>struct hfi1_devdata *dd = ppd->dd;
<------>struct hfi1_i2c_bus *bus;
<------>u8 slave_addr;
<------>int offset_size;
<------>bus = target ? dd->asic_data->i2c_bus1 : dd->asic_data->i2c_bus0;
<------>slave_addr = (i2c_addr & 0xff) >> 1; /* convert to 7-bit addr */
<------>offset_size = (i2c_addr >> 8) & 0x3;
<------>return i2c_bus_write(dd, bus, slave_addr, offset, offset_size, bp, len);
}
/*
* Caller must hold the i2c chain resource.
*
* Return number of bytes written, or -errno.
*/
int i2c_write(struct hfi1_pportdata *ppd, u32 target, int i2c_addr, int offset,
<------> void *bp, int len)
{
<------>int ret;
<------>if (!check_chip_resource(ppd->dd, i2c_target(target), __func__))
<------><------>return -EACCES;
<------>ret = __i2c_write(ppd, target, i2c_addr, offset, bp, len);
<------>if (ret)
<------><------>return ret;
<------>return len;
}
/*
* Raw i2c read. No set-up or lock checking.
*
* Return 0 on success, -errno on error.
*/
static int __i2c_read(struct hfi1_pportdata *ppd, u32 target, int i2c_addr,
<------><------> int offset, void *bp, int len)
{
<------>struct hfi1_devdata *dd = ppd->dd;
<------>struct hfi1_i2c_bus *bus;
<------>u8 slave_addr;
<------>int offset_size;
<------>bus = target ? dd->asic_data->i2c_bus1 : dd->asic_data->i2c_bus0;
<------>slave_addr = (i2c_addr & 0xff) >> 1; /* convert to 7-bit addr */
<------>offset_size = (i2c_addr >> 8) & 0x3;
<------>return i2c_bus_read(dd, bus, slave_addr, offset, offset_size, bp, len);
}
/*
* Caller must hold the i2c chain resource.
*
* Return number of bytes read, or -errno.
*/
int i2c_read(struct hfi1_pportdata *ppd, u32 target, int i2c_addr, int offset,
<------> void *bp, int len)
{
<------>int ret;
<------>if (!check_chip_resource(ppd->dd, i2c_target(target), __func__))
<------><------>return -EACCES;
<------>ret = __i2c_read(ppd, target, i2c_addr, offset, bp, len);
<------>if (ret)
<------><------>return ret;
<------>return len;
}
/*
* Write page n, offset m of QSFP memory as defined by SFF 8636
* by writing @addr = ((256 * n) + m)
*
* Caller must hold the i2c chain resource.
*
* Return number of bytes written or -errno.
*/
int qsfp_write(struct hfi1_pportdata *ppd, u32 target, int addr, void *bp,
<------> int len)
{
<------>int count = 0;
<------>int offset;
<------>int nwrite;
<------>int ret = 0;
<------>u8 page;
<------>if (!check_chip_resource(ppd->dd, i2c_target(target), __func__))
<------><------>return -EACCES;
<------>while (count < len) {
<------><------>/*
<------><------> * Set the qsfp page based on a zero-based address
<------><------> * and a page size of QSFP_PAGESIZE bytes.
<------><------> */
<------><------>page = (u8)(addr / QSFP_PAGESIZE);
<------><------>ret = __i2c_write(ppd, target, QSFP_DEV | QSFP_OFFSET_SIZE,
<------><------><------><------> QSFP_PAGE_SELECT_BYTE_OFFS, &page, 1);
<------><------>/* QSFPs require a 5-10msec delay after write operations */
<------><------>mdelay(5);
<------><------>if (ret) {
<------><------><------>hfi1_dev_porterr(ppd->dd, ppd->port,
<------><------><------><------><------> "QSFP chain %d can't write QSFP_PAGE_SELECT_BYTE: %d\n",
<------><------><------><------><------> target, ret);
<------><------><------>break;
<------><------>}
<------><------>offset = addr % QSFP_PAGESIZE;
<------><------>nwrite = len - count;
<------><------>/* truncate write to boundary if crossing boundary */
<------><------>if (((addr % QSFP_RW_BOUNDARY) + nwrite) > QSFP_RW_BOUNDARY)
<------><------><------>nwrite = QSFP_RW_BOUNDARY - (addr % QSFP_RW_BOUNDARY);
<------><------>ret = __i2c_write(ppd, target, QSFP_DEV | QSFP_OFFSET_SIZE,
<------><------><------><------> offset, bp + count, nwrite);
<------><------>/* QSFPs require a 5-10msec delay after write operations */
<------><------>mdelay(5);
<------><------>if (ret) /* stop on error */
<------><------><------>break;
<------><------>count += nwrite;
<------><------>addr += nwrite;
<------>}
<------>if (ret < 0)
<------><------>return ret;
<------>return count;
}
/*
* Perform a stand-alone single QSFP write. Acquire the resource, do the
* write, then release the resource.
*/
int one_qsfp_write(struct hfi1_pportdata *ppd, u32 target, int addr, void *bp,
<------><------> int len)
{
<------>struct hfi1_devdata *dd = ppd->dd;
<------>u32 resource = qsfp_resource(dd);
<------>int ret;
<------>ret = acquire_chip_resource(dd, resource, QSFP_WAIT);
<------>if (ret)
<------><------>return ret;
<------>ret = qsfp_write(ppd, target, addr, bp, len);
<------>release_chip_resource(dd, resource);
<------>return ret;
}
/*
* Access page n, offset m of QSFP memory as defined by SFF 8636
* by reading @addr = ((256 * n) + m)
*
* Caller must hold the i2c chain resource.
*
* Return the number of bytes read or -errno.
*/
int qsfp_read(struct hfi1_pportdata *ppd, u32 target, int addr, void *bp,
<------> int len)
{
<------>int count = 0;
<------>int offset;
<------>int nread;
<------>int ret = 0;
<------>u8 page;
<------>if (!check_chip_resource(ppd->dd, i2c_target(target), __func__))
<------><------>return -EACCES;
<------>while (count < len) {
<------><------>/*
<------><------> * Set the qsfp page based on a zero-based address
<------><------> * and a page size of QSFP_PAGESIZE bytes.
<------><------> */
<------><------>page = (u8)(addr / QSFP_PAGESIZE);
<------><------>ret = __i2c_write(ppd, target, QSFP_DEV | QSFP_OFFSET_SIZE,
<------><------><------><------> QSFP_PAGE_SELECT_BYTE_OFFS, &page, 1);
<------><------>/* QSFPs require a 5-10msec delay after write operations */
<------><------>mdelay(5);
<------><------>if (ret) {
<------><------><------>hfi1_dev_porterr(ppd->dd, ppd->port,
<------><------><------><------><------> "QSFP chain %d can't write QSFP_PAGE_SELECT_BYTE: %d\n",
<------><------><------><------><------> target, ret);
<------><------><------>break;
<------><------>}
<------><------>offset = addr % QSFP_PAGESIZE;
<------><------>nread = len - count;
<------><------>/* truncate read to boundary if crossing boundary */
<------><------>if (((addr % QSFP_RW_BOUNDARY) + nread) > QSFP_RW_BOUNDARY)
<------><------><------>nread = QSFP_RW_BOUNDARY - (addr % QSFP_RW_BOUNDARY);
<------><------>ret = __i2c_read(ppd, target, QSFP_DEV | QSFP_OFFSET_SIZE,
<------><------><------><------> offset, bp + count, nread);
<------><------>if (ret) /* stop on error */
<------><------><------>break;
<------><------>count += nread;
<------><------>addr += nread;
<------>}
<------>if (ret < 0)
<------><------>return ret;
<------>return count;
}
/*
* Perform a stand-alone single QSFP read. Acquire the resource, do the
* read, then release the resource.
*/
int one_qsfp_read(struct hfi1_pportdata *ppd, u32 target, int addr, void *bp,
<------><------> int len)
{
<------>struct hfi1_devdata *dd = ppd->dd;
<------>u32 resource = qsfp_resource(dd);
<------>int ret;
<------>ret = acquire_chip_resource(dd, resource, QSFP_WAIT);
<------>if (ret)
<------><------>return ret;
<------>ret = qsfp_read(ppd, target, addr, bp, len);
<------>release_chip_resource(dd, resource);
<------>return ret;
}
/*
* This function caches the QSFP memory range in 128 byte chunks.
* As an example, the next byte after address 255 is byte 128 from
* upper page 01H (if existing) rather than byte 0 from lower page 00H.
* Access page n, offset m of QSFP memory as defined by SFF 8636
* in the cache by reading byte ((128 * n) + m)
* The calls to qsfp_{read,write} in this function correctly handle the
* address map difference between this mapping and the mapping implemented
* by those functions
*
* The caller must be holding the QSFP i2c chain resource.
*/
int refresh_qsfp_cache(struct hfi1_pportdata *ppd, struct qsfp_data *cp)
{
<------>u32 target = ppd->dd->hfi1_id;
<------>int ret;
<------>unsigned long flags;
<------>u8 *cache = &cp->cache[0];
<------>/* ensure sane contents on invalid reads, for cable swaps */
<------>memset(cache, 0, (QSFP_MAX_NUM_PAGES * 128));
<------>spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
<------>ppd->qsfp_info.cache_valid = 0;
<------>spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
<------>if (!qsfp_mod_present(ppd)) {
<------><------>ret = -ENODEV;
<------><------>goto bail;
<------>}
<------>ret = qsfp_read(ppd, target, 0, cache, QSFP_PAGESIZE);
<------>if (ret != QSFP_PAGESIZE) {
<------><------>dd_dev_info(ppd->dd,
<------><------><------> "%s: Page 0 read failed, expected %d, got %d\n",
<------><------><------> __func__, QSFP_PAGESIZE, ret);
<------><------>goto bail;
<------>}
<------>/* Is paging enabled? */
<------>if (!(cache[2] & 4)) {
<------><------>/* Paging enabled, page 03 required */
<------><------>if ((cache[195] & 0xC0) == 0xC0) {
<------><------><------>/* all */
<------><------><------>ret = qsfp_read(ppd, target, 384, cache + 256, 128);
<------><------><------>if (ret <= 0 || ret != 128) {
<------><------><------><------>dd_dev_info(ppd->dd, "%s failed\n", __func__);
<------><------><------><------>goto bail;
<------><------><------>}
<------><------><------>ret = qsfp_read(ppd, target, 640, cache + 384, 128);
<------><------><------>if (ret <= 0 || ret != 128) {
<------><------><------><------>dd_dev_info(ppd->dd, "%s failed\n", __func__);
<------><------><------><------>goto bail;
<------><------><------>}
<------><------><------>ret = qsfp_read(ppd, target, 896, cache + 512, 128);
<------><------><------>if (ret <= 0 || ret != 128) {
<------><------><------><------>dd_dev_info(ppd->dd, "%s failed\n", __func__);
<------><------><------><------>goto bail;
<------><------><------>}
<------><------>} else if ((cache[195] & 0x80) == 0x80) {
<------><------><------>/* only page 2 and 3 */
<------><------><------>ret = qsfp_read(ppd, target, 640, cache + 384, 128);
<------><------><------>if (ret <= 0 || ret != 128) {
<------><------><------><------>dd_dev_info(ppd->dd, "%s failed\n", __func__);
<------><------><------><------>goto bail;
<------><------><------>}
<------><------><------>ret = qsfp_read(ppd, target, 896, cache + 512, 128);
<------><------><------>if (ret <= 0 || ret != 128) {
<------><------><------><------>dd_dev_info(ppd->dd, "%s failed\n", __func__);
<------><------><------><------>goto bail;
<------><------><------>}
<------><------>} else if ((cache[195] & 0x40) == 0x40) {
<------><------><------>/* only page 1 and 3 */
<------><------><------>ret = qsfp_read(ppd, target, 384, cache + 256, 128);
<------><------><------>if (ret <= 0 || ret != 128) {
<------><------><------><------>dd_dev_info(ppd->dd, "%s failed\n", __func__);
<------><------><------><------>goto bail;
<------><------><------>}
<------><------><------>ret = qsfp_read(ppd, target, 896, cache + 512, 128);
<------><------><------>if (ret <= 0 || ret != 128) {
<------><------><------><------>dd_dev_info(ppd->dd, "%s failed\n", __func__);
<------><------><------><------>goto bail;
<------><------><------>}
<------><------>} else {
<------><------><------>/* only page 3 */
<------><------><------>ret = qsfp_read(ppd, target, 896, cache + 512, 128);
<------><------><------>if (ret <= 0 || ret != 128) {
<------><------><------><------>dd_dev_info(ppd->dd, "%s failed\n", __func__);
<------><------><------><------>goto bail;
<------><------><------>}
<------><------>}
<------>}
<------>spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
<------>ppd->qsfp_info.cache_valid = 1;
<------>ppd->qsfp_info.cache_refresh_required = 0;
<------>spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
<------>return 0;
bail:
<------>memset(cache, 0, (QSFP_MAX_NUM_PAGES * 128));
<------>return ret;
}
const char * const hfi1_qsfp_devtech[16] = {
<------>"850nm VCSEL", "1310nm VCSEL", "1550nm VCSEL", "1310nm FP",
<------>"1310nm DFB", "1550nm DFB", "1310nm EML", "1550nm EML",
<------>"Cu Misc", "1490nm DFB", "Cu NoEq", "Cu Eq",
<------>"Undef", "Cu Active BothEq", "Cu FarEq", "Cu NearEq"
};
#define QSFP_DUMP_CHUNK 16 /* Holds longest string */
#define QSFP_DEFAULT_HDR_CNT 224
#define QSFP_PWR(pbyte) (((pbyte) >> 6) & 3)
#define QSFP_HIGH_PWR(pbyte) ((pbyte) & 3)
/* For use with QSFP_HIGH_PWR macro */
#define QSFP_HIGH_PWR_UNUSED 0 /* Bits [1:0] = 00 implies low power module */
/*
* Takes power class byte [Page 00 Byte 129] in SFF 8636
* Returns power class as integer (1 through 7, per SFF 8636 rev 2.4)
*/
int get_qsfp_power_class(u8 power_byte)
{
<------>if (QSFP_HIGH_PWR(power_byte) == QSFP_HIGH_PWR_UNUSED)
<------><------>/* power classes count from 1, their bit encodings from 0 */
<------><------>return (QSFP_PWR(power_byte) + 1);
<------>/*
<------> * 00 in the high power classes stands for unused, bringing
<------> * balance to the off-by-1 offset above, we add 4 here to
<------> * account for the difference between the low and high power
<------> * groups
<------> */
<------>return (QSFP_HIGH_PWR(power_byte) + 4);
}
int qsfp_mod_present(struct hfi1_pportdata *ppd)
{
<------>struct hfi1_devdata *dd = ppd->dd;
<------>u64 reg;
<------>reg = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_IN : ASIC_QSFP1_IN);
<------>return !(reg & QSFP_HFI0_MODPRST_N);
}
/*
* This function maps QSFP memory addresses in 128 byte chunks in the following
* fashion per the CableInfo SMA query definition in the IBA 1.3 spec/OPA Gen 1
* spec
* For addr 000-127, lower page 00h
* For addr 128-255, upper page 00h
* For addr 256-383, upper page 01h
* For addr 384-511, upper page 02h
* For addr 512-639, upper page 03h
*
* For addresses beyond this range, it returns the invalid range of data buffer
* set to 0.
* For upper pages that are optional, if they are not valid, returns the
* particular range of bytes in the data buffer set to 0.
*/
int get_cable_info(struct hfi1_devdata *dd, u32 port_num, u32 addr, u32 len,
<------><------> u8 *data)
{
<------>struct hfi1_pportdata *ppd;
<------>u32 excess_len = len;
<------>int ret = 0, offset = 0;
<------>if (port_num > dd->num_pports || port_num < 1) {
<------><------>dd_dev_info(dd, "%s: Invalid port number %d\n",
<------><------><------> __func__, port_num);
<------><------>ret = -EINVAL;
<------><------>goto set_zeroes;
<------>}
<------>ppd = dd->pport + (port_num - 1);
<------>if (!qsfp_mod_present(ppd)) {
<------><------>ret = -ENODEV;
<------><------>goto set_zeroes;
<------>}
<------>if (!ppd->qsfp_info.cache_valid) {
<------><------>ret = -EINVAL;
<------><------>goto set_zeroes;
<------>}
<------>if (addr >= (QSFP_MAX_NUM_PAGES * 128)) {
<------><------>ret = -ERANGE;
<------><------>goto set_zeroes;
<------>}
<------>if ((addr + len) > (QSFP_MAX_NUM_PAGES * 128)) {
<------><------>excess_len = (addr + len) - (QSFP_MAX_NUM_PAGES * 128);
<------><------>memcpy(data, &ppd->qsfp_info.cache[addr], (len - excess_len));
<------><------>data += (len - excess_len);
<------><------>goto set_zeroes;
<------>}
<------>memcpy(data, &ppd->qsfp_info.cache[addr], len);
<------>if (addr <= QSFP_MONITOR_VAL_END &&
<------> (addr + len) >= QSFP_MONITOR_VAL_START) {
<------><------>/* Overlap with the dynamic channel monitor range */
<------><------>if (addr < QSFP_MONITOR_VAL_START) {
<------><------><------>if (addr + len <= QSFP_MONITOR_VAL_END)
<------><------><------><------>len = addr + len - QSFP_MONITOR_VAL_START;
<------><------><------>else
<------><------><------><------>len = QSFP_MONITOR_RANGE;
<------><------><------>offset = QSFP_MONITOR_VAL_START - addr;
<------><------><------>addr = QSFP_MONITOR_VAL_START;
<------><------>} else if (addr == QSFP_MONITOR_VAL_START) {
<------><------><------>offset = 0;
<------><------><------>if (addr + len > QSFP_MONITOR_VAL_END)
<------><------><------><------>len = QSFP_MONITOR_RANGE;
<------><------>} else {
<------><------><------>offset = 0;
<------><------><------>if (addr + len > QSFP_MONITOR_VAL_END)
<------><------><------><------>len = QSFP_MONITOR_VAL_END - addr + 1;
<------><------>}
<------><------>/* Refresh the values of the dynamic monitors from the cable */
<------><------>ret = one_qsfp_read(ppd, dd->hfi1_id, addr, data + offset, len);
<------><------>if (ret != len) {
<------><------><------>ret = -EAGAIN;
<------><------><------>goto set_zeroes;
<------><------>}
<------>}
<------>return 0;
set_zeroes:
<------>memset(data, 0, excess_len);
<------>return ret;
}
static const char *pwr_codes[8] = {"N/AW",
<------><------><------><------> "1.5W",
<------><------><------><------> "2.0W",
<------><------><------><------> "2.5W",
<------><------><------><------> "3.5W",
<------><------><------><------> "4.0W",
<------><------><------><------> "4.5W",
<------><------><------><------> "5.0W"
<------><------><------><------> };
int qsfp_dump(struct hfi1_pportdata *ppd, char *buf, int len)
{
<------>u8 *cache = &ppd->qsfp_info.cache[0];
<------>u8 bin_buff[QSFP_DUMP_CHUNK];
<------>char lenstr[6];
<------>int sofar;
<------>int bidx = 0;
<------>u8 *atten = &cache[QSFP_ATTEN_OFFS];
<------>u8 *vendor_oui = &cache[QSFP_VOUI_OFFS];
<------>u8 power_byte = 0;
<------>sofar = 0;
<------>lenstr[0] = ' ';
<------>lenstr[1] = '\0';
<------>if (ppd->qsfp_info.cache_valid) {
<------><------>if (QSFP_IS_CU(cache[QSFP_MOD_TECH_OFFS]))
<------><------><------>snprintf(lenstr, sizeof(lenstr), "%dM ",
<------><------><------><------> cache[QSFP_MOD_LEN_OFFS]);
<------><------>power_byte = cache[QSFP_MOD_PWR_OFFS];
<------><------>sofar += scnprintf(buf + sofar, len - sofar, "PWR:%.3sW\n",
<------><------><------><------>pwr_codes[get_qsfp_power_class(power_byte)]);
<------><------>sofar += scnprintf(buf + sofar, len - sofar, "TECH:%s%s\n",
<------><------><------><------>lenstr,
<------><------><------>hfi1_qsfp_devtech[(cache[QSFP_MOD_TECH_OFFS]) >> 4]);
<------><------>sofar += scnprintf(buf + sofar, len - sofar, "Vendor:%.*s\n",
<------><------><------><------> QSFP_VEND_LEN, &cache[QSFP_VEND_OFFS]);
<------><------>sofar += scnprintf(buf + sofar, len - sofar, "OUI:%06X\n",
<------><------><------><------> QSFP_OUI(vendor_oui));
<------><------>sofar += scnprintf(buf + sofar, len - sofar, "Part#:%.*s\n",
<------><------><------><------> QSFP_PN_LEN, &cache[QSFP_PN_OFFS]);
<------><------>sofar += scnprintf(buf + sofar, len - sofar, "Rev:%.*s\n",
<------><------><------><------> QSFP_REV_LEN, &cache[QSFP_REV_OFFS]);
<------><------>if (QSFP_IS_CU(cache[QSFP_MOD_TECH_OFFS]))
<------><------><------>sofar += scnprintf(buf + sofar, len - sofar,
<------><------><------><------>"Atten:%d, %d\n",
<------><------><------><------>QSFP_ATTEN_SDR(atten),
<------><------><------><------>QSFP_ATTEN_DDR(atten));
<------><------>sofar += scnprintf(buf + sofar, len - sofar, "Serial:%.*s\n",
<------><------><------><------> QSFP_SN_LEN, &cache[QSFP_SN_OFFS]);
<------><------>sofar += scnprintf(buf + sofar, len - sofar, "Date:%.*s\n",
<------><------><------><------> QSFP_DATE_LEN, &cache[QSFP_DATE_OFFS]);
<------><------>sofar += scnprintf(buf + sofar, len - sofar, "Lot:%.*s\n",
<------><------><------><------> QSFP_LOT_LEN, &cache[QSFP_LOT_OFFS]);
<------><------>while (bidx < QSFP_DEFAULT_HDR_CNT) {
<------><------><------>int iidx;
<------><------><------>memcpy(bin_buff, &cache[bidx], QSFP_DUMP_CHUNK);
<------><------><------>for (iidx = 0; iidx < QSFP_DUMP_CHUNK; ++iidx) {
<------><------><------><------>sofar += scnprintf(buf + sofar, len - sofar,
<------><------><------><------><------>" %02X", bin_buff[iidx]);
<------><------><------>}
<------><------><------>sofar += scnprintf(buf + sofar, len - sofar, "\n");
<------><------><------>bidx += QSFP_DUMP_CHUNK;
<------><------>}
<------>}
<------>return sofar;
}