^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) // SPDX-License-Identifier: GPL-2.0-only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * MMC35240 - MEMSIC 3-axis Magnetic Sensor
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) * Copyright (c) 2015, Intel Corporation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) * IIO driver for MMC35240 (7-bit I2C slave address 0x30).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) * TODO: offset, ACPI, continuous measurement mode, PM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) #include <linux/i2c.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) #include <linux/delay.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) #include <linux/regmap.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) #include <linux/acpi.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) #include <linux/pm.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) #include <linux/iio/iio.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) #include <linux/iio/sysfs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) #define MMC35240_DRV_NAME "mmc35240"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) #define MMC35240_REGMAP_NAME "mmc35240_regmap"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) #define MMC35240_REG_XOUT_L 0x00
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) #define MMC35240_REG_XOUT_H 0x01
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) #define MMC35240_REG_YOUT_L 0x02
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) #define MMC35240_REG_YOUT_H 0x03
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) #define MMC35240_REG_ZOUT_L 0x04
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) #define MMC35240_REG_ZOUT_H 0x05
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) #define MMC35240_REG_STATUS 0x06
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) #define MMC35240_REG_CTRL0 0x07
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) #define MMC35240_REG_CTRL1 0x08
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) #define MMC35240_REG_ID 0x20
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) #define MMC35240_STATUS_MEAS_DONE_BIT BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) #define MMC35240_CTRL0_REFILL_BIT BIT(7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) #define MMC35240_CTRL0_RESET_BIT BIT(6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) #define MMC35240_CTRL0_SET_BIT BIT(5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) #define MMC35240_CTRL0_CMM_BIT BIT(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) #define MMC35240_CTRL0_TM_BIT BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) /* output resolution bits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) #define MMC35240_CTRL1_BW0_BIT BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) #define MMC35240_CTRL1_BW1_BIT BIT(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) #define MMC35240_CTRL1_BW_MASK (MMC35240_CTRL1_BW0_BIT | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) MMC35240_CTRL1_BW1_BIT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) #define MMC35240_CTRL1_BW_SHIFT 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) #define MMC35240_WAIT_CHARGE_PUMP 50000 /* us */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) #define MMC35240_WAIT_SET_RESET 1000 /* us */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) * Memsic OTP process code piece is put here for reference:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) * #define OTP_CONVERT(REG) ((float)((REG) >=32 ? (32 - (REG)) : (REG)) * 0.006
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) * 1) For X axis, the COEFFICIENT is always 1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) * 2) For Y axis, the COEFFICIENT is as below:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) * f_OTP_matrix[4] = OTP_CONVERT(((reg_data[1] & 0x03) << 4) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) * (reg_data[2] >> 4)) + 1.0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) * 3) For Z axis, the COEFFICIENT is as below:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) * f_OTP_matrix[8] = (OTP_CONVERT(reg_data[3] & 0x3f) + 1) * 1.35;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) * We implemented the OTP logic into driver.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) /* scale = 1000 here for Y otp */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) #define MMC35240_OTP_CONVERT_Y(REG) (((REG) >= 32 ? (32 - (REG)) : (REG)) * 6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) /* 0.6 * 1.35 = 0.81, scale 10000 for Z otp */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) #define MMC35240_OTP_CONVERT_Z(REG) (((REG) >= 32 ? (32 - (REG)) : (REG)) * 81)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) #define MMC35240_X_COEFF(x) (x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) #define MMC35240_Y_COEFF(y) (y + 1000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) #define MMC35240_Z_COEFF(z) (z + 13500)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) #define MMC35240_OTP_START_ADDR 0x1B
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) enum mmc35240_resolution {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) MMC35240_16_BITS_SLOW = 0, /* 7.92 ms */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) MMC35240_16_BITS_FAST, /* 4.08 ms */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) MMC35240_14_BITS, /* 2.16 ms */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) MMC35240_12_BITS, /* 1.20 ms */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) enum mmc35240_axis {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) AXIS_X = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) AXIS_Y,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) AXIS_Z,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) static const struct {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) int sens[3]; /* sensitivity per X, Y, Z axis */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) int nfo; /* null field output */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) } mmc35240_props_table[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) /* 16 bits, 125Hz ODR */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) {1024, 1024, 1024},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 32768,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) /* 16 bits, 250Hz ODR */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) {1024, 1024, 770},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 32768,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) /* 14 bits, 450Hz ODR */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) {256, 256, 193},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 8192,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) /* 12 bits, 800Hz ODR */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) {64, 64, 48},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 2048,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) struct mmc35240_data {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) struct i2c_client *client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) struct mutex mutex;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) struct regmap *regmap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) enum mmc35240_resolution res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) /* OTP compensation */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) int axis_coef[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) int axis_scale[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) static const struct {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) int val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) int val2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) } mmc35240_samp_freq[] = { {1, 500000},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) {13, 0},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) {25, 0},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) {50, 0} };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("1.5 13 25 50");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) #define MMC35240_CHANNEL(_axis) { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) .type = IIO_MAGN, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) .modified = 1, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) .channel2 = IIO_MOD_ ## _axis, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) .address = AXIS_ ## _axis, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) BIT(IIO_CHAN_INFO_SCALE), \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) static const struct iio_chan_spec mmc35240_channels[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) MMC35240_CHANNEL(X),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) MMC35240_CHANNEL(Y),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) MMC35240_CHANNEL(Z),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) static struct attribute *mmc35240_attributes[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) &iio_const_attr_sampling_frequency_available.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) NULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) static const struct attribute_group mmc35240_attribute_group = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) .attrs = mmc35240_attributes,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) static int mmc35240_get_samp_freq_index(struct mmc35240_data *data,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) int val, int val2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) for (i = 0; i < ARRAY_SIZE(mmc35240_samp_freq); i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) if (mmc35240_samp_freq[i].val == val &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) mmc35240_samp_freq[i].val2 == val2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) return i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) static int mmc35240_hw_set(struct mmc35240_data *data, bool set)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) u8 coil_bit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) * Recharge the capacitor at VCAP pin, requested to be issued
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) * before a SET/RESET command.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) ret = regmap_update_bits(data->regmap, MMC35240_REG_CTRL0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) MMC35240_CTRL0_REFILL_BIT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) MMC35240_CTRL0_REFILL_BIT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) usleep_range(MMC35240_WAIT_CHARGE_PUMP, MMC35240_WAIT_CHARGE_PUMP + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) if (set)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) coil_bit = MMC35240_CTRL0_SET_BIT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) coil_bit = MMC35240_CTRL0_RESET_BIT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) return regmap_update_bits(data->regmap, MMC35240_REG_CTRL0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) coil_bit, coil_bit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) static int mmc35240_init(struct mmc35240_data *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) int ret, y_convert, z_convert;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) unsigned int reg_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) u8 otp_data[6];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) ret = regmap_read(data->regmap, MMC35240_REG_ID, ®_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) dev_err(&data->client->dev, "Error reading product id\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) dev_dbg(&data->client->dev, "MMC35240 chip id %x\n", reg_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) * make sure we restore sensor characteristics, by doing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) * a SET/RESET sequence, the axis polarity being naturally
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) * aligned after RESET
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) ret = mmc35240_hw_set(data, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) usleep_range(MMC35240_WAIT_SET_RESET, MMC35240_WAIT_SET_RESET + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) ret = mmc35240_hw_set(data, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) /* set default sampling frequency */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) ret = regmap_update_bits(data->regmap, MMC35240_REG_CTRL1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) MMC35240_CTRL1_BW_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) data->res << MMC35240_CTRL1_BW_SHIFT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) ret = regmap_bulk_read(data->regmap, MMC35240_OTP_START_ADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) otp_data, sizeof(otp_data));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) y_convert = MMC35240_OTP_CONVERT_Y(((otp_data[1] & 0x03) << 4) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) (otp_data[2] >> 4));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) z_convert = MMC35240_OTP_CONVERT_Z(otp_data[3] & 0x3f);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) data->axis_coef[0] = MMC35240_X_COEFF(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) data->axis_coef[1] = MMC35240_Y_COEFF(y_convert);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) data->axis_coef[2] = MMC35240_Z_COEFF(z_convert);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) data->axis_scale[0] = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) data->axis_scale[1] = 1000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) data->axis_scale[2] = 10000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) static int mmc35240_take_measurement(struct mmc35240_data *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) int ret, tries = 100;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) unsigned int reg_status;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) ret = regmap_write(data->regmap, MMC35240_REG_CTRL0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) MMC35240_CTRL0_TM_BIT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) while (tries-- > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) ret = regmap_read(data->regmap, MMC35240_REG_STATUS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) ®_status);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) if (reg_status & MMC35240_STATUS_MEAS_DONE_BIT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) /* minimum wait time to complete measurement is 10 ms */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) usleep_range(10000, 11000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) if (tries < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) dev_err(&data->client->dev, "data not ready\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) static int mmc35240_read_measurement(struct mmc35240_data *data, __le16 buf[3])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) ret = mmc35240_take_measurement(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) return regmap_bulk_read(data->regmap, MMC35240_REG_XOUT_L, buf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 3 * sizeof(__le16));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) * mmc35240_raw_to_mgauss - convert raw readings to milli gauss. Also apply
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) * compensation for output value.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) * @data: device private data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) * @index: axis index for which we want the conversion
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) * @buf: raw data to be converted, 2 bytes in little endian format
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) * @val: compensated output reading (unit is milli gauss)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) * Returns: 0 in case of success, -EINVAL when @index is not valid
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) static int mmc35240_raw_to_mgauss(struct mmc35240_data *data, int index,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) __le16 buf[], int *val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) int raw[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) int sens[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) int nfo;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) raw[AXIS_X] = le16_to_cpu(buf[AXIS_X]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) raw[AXIS_Y] = le16_to_cpu(buf[AXIS_Y]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) raw[AXIS_Z] = le16_to_cpu(buf[AXIS_Z]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) sens[AXIS_X] = mmc35240_props_table[data->res].sens[AXIS_X];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) sens[AXIS_Y] = mmc35240_props_table[data->res].sens[AXIS_Y];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) sens[AXIS_Z] = mmc35240_props_table[data->res].sens[AXIS_Z];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) nfo = mmc35240_props_table[data->res].nfo;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) switch (index) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) case AXIS_X:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) *val = (raw[AXIS_X] - nfo) * 1000 / sens[AXIS_X];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) case AXIS_Y:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) *val = (raw[AXIS_Y] - nfo) * 1000 / sens[AXIS_Y] -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) (raw[AXIS_Z] - nfo) * 1000 / sens[AXIS_Z];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) case AXIS_Z:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) *val = (raw[AXIS_Y] - nfo) * 1000 / sens[AXIS_Y] +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) (raw[AXIS_Z] - nfo) * 1000 / sens[AXIS_Z];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) /* apply OTP compensation */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) *val = (*val) * data->axis_coef[index] / data->axis_scale[index];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) static int mmc35240_read_raw(struct iio_dev *indio_dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) struct iio_chan_spec const *chan, int *val,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) int *val2, long mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) struct mmc35240_data *data = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) int ret, i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) unsigned int reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) __le16 buf[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) switch (mask) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) case IIO_CHAN_INFO_RAW:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) mutex_lock(&data->mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) ret = mmc35240_read_measurement(data, buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) mutex_unlock(&data->mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) ret = mmc35240_raw_to_mgauss(data, chan->address, buf, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) return IIO_VAL_INT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) case IIO_CHAN_INFO_SCALE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) *val = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) *val2 = 1000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) return IIO_VAL_INT_PLUS_MICRO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) case IIO_CHAN_INFO_SAMP_FREQ:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) mutex_lock(&data->mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) ret = regmap_read(data->regmap, MMC35240_REG_CTRL1, ®);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) mutex_unlock(&data->mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) i = (reg & MMC35240_CTRL1_BW_MASK) >> MMC35240_CTRL1_BW_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) if (i < 0 || i >= ARRAY_SIZE(mmc35240_samp_freq))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) *val = mmc35240_samp_freq[i].val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) *val2 = mmc35240_samp_freq[i].val2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) return IIO_VAL_INT_PLUS_MICRO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) static int mmc35240_write_raw(struct iio_dev *indio_dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) struct iio_chan_spec const *chan, int val,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) int val2, long mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) struct mmc35240_data *data = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) int i, ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) switch (mask) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) case IIO_CHAN_INFO_SAMP_FREQ:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) i = mmc35240_get_samp_freq_index(data, val, val2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) if (i < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) mutex_lock(&data->mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) ret = regmap_update_bits(data->regmap, MMC35240_REG_CTRL1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) MMC35240_CTRL1_BW_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) i << MMC35240_CTRL1_BW_SHIFT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) mutex_unlock(&data->mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) static const struct iio_info mmc35240_info = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) .read_raw = mmc35240_read_raw,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) .write_raw = mmc35240_write_raw,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) .attrs = &mmc35240_attribute_group,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) static bool mmc35240_is_writeable_reg(struct device *dev, unsigned int reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) switch (reg) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) case MMC35240_REG_CTRL0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) case MMC35240_REG_CTRL1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) static bool mmc35240_is_readable_reg(struct device *dev, unsigned int reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) switch (reg) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) case MMC35240_REG_XOUT_L:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) case MMC35240_REG_XOUT_H:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) case MMC35240_REG_YOUT_L:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) case MMC35240_REG_YOUT_H:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) case MMC35240_REG_ZOUT_L:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) case MMC35240_REG_ZOUT_H:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) case MMC35240_REG_STATUS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) case MMC35240_REG_ID:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) static bool mmc35240_is_volatile_reg(struct device *dev, unsigned int reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) switch (reg) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) case MMC35240_REG_CTRL0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) case MMC35240_REG_CTRL1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) static const struct reg_default mmc35240_reg_defaults[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) { MMC35240_REG_CTRL0, 0x00 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) { MMC35240_REG_CTRL1, 0x00 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) static const struct regmap_config mmc35240_regmap_config = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) .name = MMC35240_REGMAP_NAME,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) .reg_bits = 8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) .val_bits = 8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) .max_register = MMC35240_REG_ID,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) .cache_type = REGCACHE_FLAT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) .writeable_reg = mmc35240_is_writeable_reg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) .readable_reg = mmc35240_is_readable_reg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) .volatile_reg = mmc35240_is_volatile_reg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) .reg_defaults = mmc35240_reg_defaults,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) .num_reg_defaults = ARRAY_SIZE(mmc35240_reg_defaults),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) static int mmc35240_probe(struct i2c_client *client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) const struct i2c_device_id *id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) struct mmc35240_data *data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) struct iio_dev *indio_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) struct regmap *regmap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) if (!indio_dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) regmap = devm_regmap_init_i2c(client, &mmc35240_regmap_config);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) if (IS_ERR(regmap)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) dev_err(&client->dev, "regmap initialization failed\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) return PTR_ERR(regmap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) data = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) i2c_set_clientdata(client, indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) data->client = client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) data->regmap = regmap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) data->res = MMC35240_16_BITS_SLOW;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) mutex_init(&data->mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) indio_dev->info = &mmc35240_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) indio_dev->name = MMC35240_DRV_NAME;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) indio_dev->channels = mmc35240_channels;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) indio_dev->num_channels = ARRAY_SIZE(mmc35240_channels);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) indio_dev->modes = INDIO_DIRECT_MODE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) ret = mmc35240_init(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) dev_err(&client->dev, "mmc35240 chip init failed\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) return devm_iio_device_register(&client->dev, indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) #ifdef CONFIG_PM_SLEEP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) static int mmc35240_suspend(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) struct mmc35240_data *data = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) regcache_cache_only(data->regmap, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) static int mmc35240_resume(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) struct mmc35240_data *data = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) regcache_mark_dirty(data->regmap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) ret = regcache_sync_region(data->regmap, MMC35240_REG_CTRL0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) MMC35240_REG_CTRL1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) dev_err(dev, "Failed to restore control registers\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) regcache_cache_only(data->regmap, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) static const struct dev_pm_ops mmc35240_pm_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) SET_SYSTEM_SLEEP_PM_OPS(mmc35240_suspend, mmc35240_resume)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) static const struct of_device_id mmc35240_of_match[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) { .compatible = "memsic,mmc35240", },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) { }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) MODULE_DEVICE_TABLE(of, mmc35240_of_match);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) static const struct acpi_device_id mmc35240_acpi_match[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) {"MMC35240", 0},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) { },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) MODULE_DEVICE_TABLE(acpi, mmc35240_acpi_match);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) static const struct i2c_device_id mmc35240_id[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) {"mmc35240", 0},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) {}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) MODULE_DEVICE_TABLE(i2c, mmc35240_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) static struct i2c_driver mmc35240_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) .driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) .name = MMC35240_DRV_NAME,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) .of_match_table = mmc35240_of_match,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) .pm = &mmc35240_pm_ops,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) .acpi_match_table = ACPI_PTR(mmc35240_acpi_match),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) .probe = mmc35240_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) .id_table = mmc35240_id,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) module_i2c_driver(mmc35240_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) MODULE_AUTHOR("Daniel Baluta <daniel.baluta@intel.com>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) MODULE_DESCRIPTION("MEMSIC MMC35240 magnetic sensor driver");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) MODULE_LICENSE("GPL v2");