^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) // SPDX-License-Identifier: GPL-2.0-only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * AFE4403 Heart Rate Monitors and Low-Cost Pulse Oximeters
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) * Copyright (C) 2015-2016 Texas Instruments Incorporated - https://www.ti.com/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) * Andrew F. Davis <afd@ti.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) #include <linux/device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) #include <linux/err.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) #include <linux/interrupt.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) #include <linux/regmap.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) #include <linux/spi/spi.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) #include <linux/sysfs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) #include <linux/regulator/consumer.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) #include <linux/iio/iio.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) #include <linux/iio/sysfs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) #include <linux/iio/buffer.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) #include <linux/iio/trigger.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) #include <linux/iio/triggered_buffer.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) #include <linux/iio/trigger_consumer.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) #include <asm/unaligned.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) #include "afe440x.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) #define AFE4403_DRIVER_NAME "afe4403"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) /* AFE4403 Registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) #define AFE4403_TIAGAIN 0x20
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) #define AFE4403_TIA_AMB_GAIN 0x21
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) enum afe4403_fields {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) /* Gains */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) F_RF_LED1, F_CF_LED1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) F_RF_LED, F_CF_LED,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) /* LED Current */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) F_ILED1, F_ILED2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) /* sentinel */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) F_MAX_FIELDS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) static const struct reg_field afe4403_reg_fields[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) /* Gains */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) [F_RF_LED1] = REG_FIELD(AFE4403_TIAGAIN, 0, 2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) [F_CF_LED1] = REG_FIELD(AFE4403_TIAGAIN, 3, 7),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) [F_RF_LED] = REG_FIELD(AFE4403_TIA_AMB_GAIN, 0, 2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) [F_CF_LED] = REG_FIELD(AFE4403_TIA_AMB_GAIN, 3, 7),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) /* LED Current */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) [F_ILED1] = REG_FIELD(AFE440X_LEDCNTRL, 0, 7),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) [F_ILED2] = REG_FIELD(AFE440X_LEDCNTRL, 8, 15),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) * struct afe4403_data - AFE4403 device instance data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) * @dev: Device structure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) * @spi: SPI device handle
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) * @regmap: Register map of the device
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) * @fields: Register fields of the device
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) * @regulator: Pointer to the regulator for the IC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) * @trig: IIO trigger for this device
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) * @irq: ADC_RDY line interrupt number
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) * @buffer: Used to construct data layout to push into IIO buffer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) struct afe4403_data {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) struct device *dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) struct spi_device *spi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) struct regmap *regmap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) struct regmap_field *fields[F_MAX_FIELDS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) struct regulator *regulator;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) struct iio_trigger *trig;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) int irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) /* Ensure suitable alignment for timestamp */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) s32 buffer[8] __aligned(8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) enum afe4403_chan_id {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) LED2 = 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) ALED2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) LED1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) ALED1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) LED2_ALED2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) LED1_ALED1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) static const unsigned int afe4403_channel_values[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) [LED2] = AFE440X_LED2VAL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) [ALED2] = AFE440X_ALED2VAL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) [LED1] = AFE440X_LED1VAL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) [ALED1] = AFE440X_ALED1VAL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) [LED2_ALED2] = AFE440X_LED2_ALED2VAL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) [LED1_ALED1] = AFE440X_LED1_ALED1VAL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) static const unsigned int afe4403_channel_leds[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) [LED2] = F_ILED2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) [LED1] = F_ILED1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) static const struct iio_chan_spec afe4403_channels[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) /* ADC values */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) AFE440X_INTENSITY_CHAN(LED2, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) AFE440X_INTENSITY_CHAN(ALED2, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) AFE440X_INTENSITY_CHAN(LED1, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) AFE440X_INTENSITY_CHAN(ALED1, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) AFE440X_INTENSITY_CHAN(LED2_ALED2, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) AFE440X_INTENSITY_CHAN(LED1_ALED1, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) /* LED current */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) AFE440X_CURRENT_CHAN(LED2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) AFE440X_CURRENT_CHAN(LED1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) static const struct afe440x_val_table afe4403_res_table[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) { 500000 }, { 250000 }, { 100000 }, { 50000 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) { 25000 }, { 10000 }, { 1000000 }, { 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) AFE440X_TABLE_ATTR(in_intensity_resistance_available, afe4403_res_table);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) static const struct afe440x_val_table afe4403_cap_table[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) { 0, 5000 }, { 0, 10000 }, { 0, 20000 }, { 0, 25000 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) { 0, 30000 }, { 0, 35000 }, { 0, 45000 }, { 0, 50000 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) { 0, 55000 }, { 0, 60000 }, { 0, 70000 }, { 0, 75000 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) { 0, 80000 }, { 0, 85000 }, { 0, 95000 }, { 0, 100000 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) { 0, 155000 }, { 0, 160000 }, { 0, 170000 }, { 0, 175000 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) { 0, 180000 }, { 0, 185000 }, { 0, 195000 }, { 0, 200000 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) { 0, 205000 }, { 0, 210000 }, { 0, 220000 }, { 0, 225000 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) { 0, 230000 }, { 0, 235000 }, { 0, 245000 }, { 0, 250000 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) AFE440X_TABLE_ATTR(in_intensity_capacitance_available, afe4403_cap_table);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) static ssize_t afe440x_show_register(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) struct iio_dev *indio_dev = dev_to_iio_dev(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) struct afe4403_data *afe = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) struct afe440x_attr *afe440x_attr = to_afe440x_attr(attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) unsigned int reg_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) int vals[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) ret = regmap_field_read(afe->fields[afe440x_attr->field], ®_val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) if (reg_val >= afe440x_attr->table_size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) vals[0] = afe440x_attr->val_table[reg_val].integer;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) vals[1] = afe440x_attr->val_table[reg_val].fract;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) return iio_format_value(buf, IIO_VAL_INT_PLUS_MICRO, 2, vals);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) static ssize_t afe440x_store_register(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) struct iio_dev *indio_dev = dev_to_iio_dev(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) struct afe4403_data *afe = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) struct afe440x_attr *afe440x_attr = to_afe440x_attr(attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) int val, integer, fract, ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) ret = iio_str_to_fixpoint(buf, 100000, &integer, &fract);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) for (val = 0; val < afe440x_attr->table_size; val++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) if (afe440x_attr->val_table[val].integer == integer &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) afe440x_attr->val_table[val].fract == fract)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) if (val == afe440x_attr->table_size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) ret = regmap_field_write(afe->fields[afe440x_attr->field], val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) static AFE440X_ATTR(in_intensity1_resistance, F_RF_LED, afe4403_res_table);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) static AFE440X_ATTR(in_intensity1_capacitance, F_CF_LED, afe4403_cap_table);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) static AFE440X_ATTR(in_intensity2_resistance, F_RF_LED, afe4403_res_table);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) static AFE440X_ATTR(in_intensity2_capacitance, F_CF_LED, afe4403_cap_table);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) static AFE440X_ATTR(in_intensity3_resistance, F_RF_LED1, afe4403_res_table);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) static AFE440X_ATTR(in_intensity3_capacitance, F_CF_LED1, afe4403_cap_table);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) static AFE440X_ATTR(in_intensity4_resistance, F_RF_LED1, afe4403_res_table);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) static AFE440X_ATTR(in_intensity4_capacitance, F_CF_LED1, afe4403_cap_table);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) static struct attribute *afe440x_attributes[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) &dev_attr_in_intensity_resistance_available.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) &dev_attr_in_intensity_capacitance_available.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) &afe440x_attr_in_intensity1_resistance.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) &afe440x_attr_in_intensity1_capacitance.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) &afe440x_attr_in_intensity2_resistance.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) &afe440x_attr_in_intensity2_capacitance.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) &afe440x_attr_in_intensity3_resistance.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) &afe440x_attr_in_intensity3_capacitance.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) &afe440x_attr_in_intensity4_resistance.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) &afe440x_attr_in_intensity4_capacitance.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) NULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) static const struct attribute_group afe440x_attribute_group = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) .attrs = afe440x_attributes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) static int afe4403_read(struct afe4403_data *afe, unsigned int reg, u32 *val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) u8 tx[4] = {AFE440X_CONTROL0, 0x0, 0x0, AFE440X_CONTROL0_READ};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) u8 rx[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) /* Enable reading from the device */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) ret = spi_write_then_read(afe->spi, tx, 4, NULL, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) ret = spi_write_then_read(afe->spi, ®, 1, rx, sizeof(rx));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) *val = get_unaligned_be24(&rx[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) /* Disable reading from the device */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) tx[3] = AFE440X_CONTROL0_WRITE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) ret = spi_write_then_read(afe->spi, tx, 4, NULL, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) static int afe4403_read_raw(struct iio_dev *indio_dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) struct iio_chan_spec const *chan,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) int *val, int *val2, long mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) struct afe4403_data *afe = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) unsigned int reg = afe4403_channel_values[chan->address];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) unsigned int field = afe4403_channel_leds[chan->address];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) switch (chan->type) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) case IIO_INTENSITY:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) switch (mask) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) case IIO_CHAN_INFO_RAW:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) ret = afe4403_read(afe, reg, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) return IIO_VAL_INT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) case IIO_CURRENT:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) switch (mask) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) case IIO_CHAN_INFO_RAW:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) ret = regmap_field_read(afe->fields[field], val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) return IIO_VAL_INT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) case IIO_CHAN_INFO_SCALE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) *val = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) *val2 = 800000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) return IIO_VAL_INT_PLUS_MICRO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) static int afe4403_write_raw(struct iio_dev *indio_dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) struct iio_chan_spec const *chan,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) int val, int val2, long mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) struct afe4403_data *afe = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) unsigned int field = afe4403_channel_leds[chan->address];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) switch (chan->type) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) case IIO_CURRENT:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) switch (mask) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) case IIO_CHAN_INFO_RAW:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) return regmap_field_write(afe->fields[field], val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) static const struct iio_info afe4403_iio_info = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) .attrs = &afe440x_attribute_group,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) .read_raw = afe4403_read_raw,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) .write_raw = afe4403_write_raw,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) static irqreturn_t afe4403_trigger_handler(int irq, void *private)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) struct iio_poll_func *pf = private;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) struct iio_dev *indio_dev = pf->indio_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) struct afe4403_data *afe = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) int ret, bit, i = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) u8 tx[4] = {AFE440X_CONTROL0, 0x0, 0x0, AFE440X_CONTROL0_READ};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) u8 rx[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) /* Enable reading from the device */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) ret = spi_write_then_read(afe->spi, tx, 4, NULL, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) for_each_set_bit(bit, indio_dev->active_scan_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) indio_dev->masklength) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) ret = spi_write_then_read(afe->spi,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) &afe4403_channel_values[bit], 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) rx, sizeof(rx));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) afe->buffer[i++] = get_unaligned_be24(&rx[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) /* Disable reading from the device */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) tx[3] = AFE440X_CONTROL0_WRITE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) ret = spi_write_then_read(afe->spi, tx, 4, NULL, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) iio_push_to_buffers_with_timestamp(indio_dev, afe->buffer,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) pf->timestamp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) err:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) iio_trigger_notify_done(indio_dev->trig);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) return IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) static const struct iio_trigger_ops afe4403_trigger_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) #define AFE4403_TIMING_PAIRS \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) { AFE440X_LED2STC, 0x000050 }, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) { AFE440X_LED2ENDC, 0x0003e7 }, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) { AFE440X_LED1LEDSTC, 0x0007d0 }, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) { AFE440X_LED1LEDENDC, 0x000bb7 }, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) { AFE440X_ALED2STC, 0x000438 }, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) { AFE440X_ALED2ENDC, 0x0007cf }, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) { AFE440X_LED1STC, 0x000820 }, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) { AFE440X_LED1ENDC, 0x000bb7 }, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) { AFE440X_LED2LEDSTC, 0x000000 }, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) { AFE440X_LED2LEDENDC, 0x0003e7 }, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) { AFE440X_ALED1STC, 0x000c08 }, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) { AFE440X_ALED1ENDC, 0x000f9f }, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) { AFE440X_LED2CONVST, 0x0003ef }, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) { AFE440X_LED2CONVEND, 0x0007cf }, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) { AFE440X_ALED2CONVST, 0x0007d7 }, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) { AFE440X_ALED2CONVEND, 0x000bb7 }, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) { AFE440X_LED1CONVST, 0x000bbf }, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) { AFE440X_LED1CONVEND, 0x009c3f }, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) { AFE440X_ALED1CONVST, 0x000fa7 }, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) { AFE440X_ALED1CONVEND, 0x001387 }, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) { AFE440X_ADCRSTSTCT0, 0x0003e8 }, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) { AFE440X_ADCRSTENDCT0, 0x0003eb }, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) { AFE440X_ADCRSTSTCT1, 0x0007d0 }, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) { AFE440X_ADCRSTENDCT1, 0x0007d3 }, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) { AFE440X_ADCRSTSTCT2, 0x000bb8 }, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) { AFE440X_ADCRSTENDCT2, 0x000bbb }, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) { AFE440X_ADCRSTSTCT3, 0x000fa0 }, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) { AFE440X_ADCRSTENDCT3, 0x000fa3 }, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) { AFE440X_PRPCOUNT, 0x009c3f }, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) { AFE440X_PDNCYCLESTC, 0x001518 }, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) { AFE440X_PDNCYCLEENDC, 0x00991f }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) static const struct reg_sequence afe4403_reg_sequences[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) AFE4403_TIMING_PAIRS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) { AFE440X_CONTROL1, AFE440X_CONTROL1_TIMEREN },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) { AFE4403_TIAGAIN, AFE440X_TIAGAIN_ENSEPGAIN },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) static const struct regmap_range afe4403_yes_ranges[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) regmap_reg_range(AFE440X_LED2VAL, AFE440X_LED1_ALED1VAL),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) static const struct regmap_access_table afe4403_volatile_table = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) .yes_ranges = afe4403_yes_ranges,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) .n_yes_ranges = ARRAY_SIZE(afe4403_yes_ranges),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) static const struct regmap_config afe4403_regmap_config = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) .reg_bits = 8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) .val_bits = 24,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) .max_register = AFE440X_PDNCYCLEENDC,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) .cache_type = REGCACHE_RBTREE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) .volatile_table = &afe4403_volatile_table,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) static const struct of_device_id afe4403_of_match[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) { .compatible = "ti,afe4403", },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) { /* sentinel */ }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) MODULE_DEVICE_TABLE(of, afe4403_of_match);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) static int __maybe_unused afe4403_suspend(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) struct iio_dev *indio_dev = spi_get_drvdata(to_spi_device(dev));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) struct afe4403_data *afe = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) ret = regmap_update_bits(afe->regmap, AFE440X_CONTROL2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) AFE440X_CONTROL2_PDN_AFE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) AFE440X_CONTROL2_PDN_AFE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) ret = regulator_disable(afe->regulator);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) dev_err(dev, "Unable to disable regulator\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) static int __maybe_unused afe4403_resume(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) struct iio_dev *indio_dev = spi_get_drvdata(to_spi_device(dev));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) struct afe4403_data *afe = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) ret = regulator_enable(afe->regulator);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) dev_err(dev, "Unable to enable regulator\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) ret = regmap_update_bits(afe->regmap, AFE440X_CONTROL2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) AFE440X_CONTROL2_PDN_AFE, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) static SIMPLE_DEV_PM_OPS(afe4403_pm_ops, afe4403_suspend, afe4403_resume);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) static int afe4403_probe(struct spi_device *spi)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) struct iio_dev *indio_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) struct afe4403_data *afe;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) int i, ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*afe));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) if (!indio_dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) afe = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) spi_set_drvdata(spi, indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) afe->dev = &spi->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) afe->spi = spi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) afe->irq = spi->irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) afe->regmap = devm_regmap_init_spi(spi, &afe4403_regmap_config);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) if (IS_ERR(afe->regmap)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) dev_err(afe->dev, "Unable to allocate register map\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) return PTR_ERR(afe->regmap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) for (i = 0; i < F_MAX_FIELDS; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) afe->fields[i] = devm_regmap_field_alloc(afe->dev, afe->regmap,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) afe4403_reg_fields[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) if (IS_ERR(afe->fields[i])) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) dev_err(afe->dev, "Unable to allocate regmap fields\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) return PTR_ERR(afe->fields[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) afe->regulator = devm_regulator_get(afe->dev, "tx_sup");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) if (IS_ERR(afe->regulator)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) dev_err(afe->dev, "Unable to get regulator\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) return PTR_ERR(afe->regulator);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) ret = regulator_enable(afe->regulator);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) dev_err(afe->dev, "Unable to enable regulator\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) ret = regmap_write(afe->regmap, AFE440X_CONTROL0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) AFE440X_CONTROL0_SW_RESET);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) dev_err(afe->dev, "Unable to reset device\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) goto err_disable_reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) ret = regmap_multi_reg_write(afe->regmap, afe4403_reg_sequences,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) ARRAY_SIZE(afe4403_reg_sequences));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) dev_err(afe->dev, "Unable to set register defaults\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) goto err_disable_reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) indio_dev->modes = INDIO_DIRECT_MODE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) indio_dev->channels = afe4403_channels;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) indio_dev->num_channels = ARRAY_SIZE(afe4403_channels);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) indio_dev->name = AFE4403_DRIVER_NAME;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) indio_dev->info = &afe4403_iio_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) if (afe->irq > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) afe->trig = devm_iio_trigger_alloc(afe->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) "%s-dev%d",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) indio_dev->name,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) indio_dev->id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) if (!afe->trig) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) dev_err(afe->dev, "Unable to allocate IIO trigger\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) ret = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) goto err_disable_reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) iio_trigger_set_drvdata(afe->trig, indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) afe->trig->ops = &afe4403_trigger_ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) afe->trig->dev.parent = afe->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) ret = iio_trigger_register(afe->trig);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) dev_err(afe->dev, "Unable to register IIO trigger\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) goto err_disable_reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) ret = devm_request_threaded_irq(afe->dev, afe->irq,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) iio_trigger_generic_data_rdy_poll,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) NULL, IRQF_ONESHOT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) AFE4403_DRIVER_NAME,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) afe->trig);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) dev_err(afe->dev, "Unable to request IRQ\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) goto err_trig;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) ret = iio_triggered_buffer_setup(indio_dev, &iio_pollfunc_store_time,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) afe4403_trigger_handler, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) dev_err(afe->dev, "Unable to setup buffer\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) goto err_trig;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) ret = iio_device_register(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) dev_err(afe->dev, "Unable to register IIO device\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) goto err_buff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) err_buff:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) iio_triggered_buffer_cleanup(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) err_trig:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) if (afe->irq > 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) iio_trigger_unregister(afe->trig);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) err_disable_reg:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) regulator_disable(afe->regulator);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) static int afe4403_remove(struct spi_device *spi)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) struct iio_dev *indio_dev = spi_get_drvdata(spi);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) struct afe4403_data *afe = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) iio_device_unregister(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) iio_triggered_buffer_cleanup(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) if (afe->irq > 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) iio_trigger_unregister(afe->trig);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) ret = regulator_disable(afe->regulator);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) dev_err(afe->dev, "Unable to disable regulator\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) static const struct spi_device_id afe4403_ids[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) { "afe4403", 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603) { /* sentinel */ }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) MODULE_DEVICE_TABLE(spi, afe4403_ids);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) static struct spi_driver afe4403_spi_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) .driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) .name = AFE4403_DRIVER_NAME,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) .of_match_table = afe4403_of_match,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611) .pm = &afe4403_pm_ops,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) .probe = afe4403_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614) .remove = afe4403_remove,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615) .id_table = afe4403_ids,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) module_spi_driver(afe4403_spi_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619) MODULE_AUTHOR("Andrew F. Davis <afd@ti.com>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620) MODULE_DESCRIPTION("TI AFE4403 Heart Rate Monitor and Pulse Oximeter AFE");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621) MODULE_LICENSE("GPL v2");