^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * Sensirion SPS30 particulate matter sensor driver
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) * Copyright (c) Tomasz Duszynski <tduszyns@gmail.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) * I2C slave address: 0x69
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) #include <asm/unaligned.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) #include <linux/crc8.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) #include <linux/delay.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) #include <linux/i2c.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) #include <linux/iio/buffer.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) #include <linux/iio/iio.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) #include <linux/iio/sysfs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) #include <linux/iio/trigger_consumer.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) #include <linux/iio/triggered_buffer.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) #define SPS30_CRC8_POLYNOMIAL 0x31
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) /* max number of bytes needed to store PM measurements or serial string */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) #define SPS30_MAX_READ_SIZE 48
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) /* sensor measures reliably up to 3000 ug / m3 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) #define SPS30_MAX_PM 3000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) /* minimum and maximum self cleaning periods in seconds */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) #define SPS30_AUTO_CLEANING_PERIOD_MIN 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) #define SPS30_AUTO_CLEANING_PERIOD_MAX 604800
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) /* SPS30 commands */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) #define SPS30_START_MEAS 0x0010
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) #define SPS30_STOP_MEAS 0x0104
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) #define SPS30_RESET 0xd304
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) #define SPS30_READ_DATA_READY_FLAG 0x0202
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) #define SPS30_READ_DATA 0x0300
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) #define SPS30_READ_SERIAL 0xd033
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) #define SPS30_START_FAN_CLEANING 0x5607
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) #define SPS30_AUTO_CLEANING_PERIOD 0x8004
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) /* not a sensor command per se, used only to distinguish write from read */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) #define SPS30_READ_AUTO_CLEANING_PERIOD 0x8005
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) enum {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) PM1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) PM2P5,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) PM4,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) PM10,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) enum {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) RESET,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) MEASURING,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) struct sps30_state {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) struct i2c_client *client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) * Guards against concurrent access to sensor registers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) * Must be held whenever sequence of commands is to be executed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) struct mutex lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) int state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) DECLARE_CRC8_TABLE(sps30_crc8_table);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) static int sps30_write_then_read(struct sps30_state *state, u8 *txbuf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) int txsize, u8 *rxbuf, int rxsize)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) * Sensor does not support repeated start so instead of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) * sending two i2c messages in a row we just send one by one.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) ret = i2c_master_send(state->client, txbuf, txsize);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) if (ret != txsize)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) return ret < 0 ? ret : -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) if (!rxbuf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) ret = i2c_master_recv(state->client, rxbuf, rxsize);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) if (ret != rxsize)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) return ret < 0 ? ret : -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) static int sps30_do_cmd(struct sps30_state *state, u16 cmd, u8 *data, int size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) * Internally sensor stores measurements in a following manner:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) * PM1: upper two bytes, crc8, lower two bytes, crc8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) * PM2P5: upper two bytes, crc8, lower two bytes, crc8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) * PM4: upper two bytes, crc8, lower two bytes, crc8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) * PM10: upper two bytes, crc8, lower two bytes, crc8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) * What follows next are number concentration measurements and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) * typical particle size measurement which we omit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) u8 buf[SPS30_MAX_READ_SIZE] = { cmd >> 8, cmd };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) int i, ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) switch (cmd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) case SPS30_START_MEAS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) buf[2] = 0x03;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) buf[3] = 0x00;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) buf[4] = crc8(sps30_crc8_table, &buf[2], 2, CRC8_INIT_VALUE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) ret = sps30_write_then_read(state, buf, 5, NULL, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) case SPS30_STOP_MEAS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) case SPS30_RESET:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) case SPS30_START_FAN_CLEANING:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) ret = sps30_write_then_read(state, buf, 2, NULL, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) case SPS30_READ_AUTO_CLEANING_PERIOD:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) buf[0] = SPS30_AUTO_CLEANING_PERIOD >> 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) buf[1] = (u8)(SPS30_AUTO_CLEANING_PERIOD & 0xff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) fallthrough;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) case SPS30_READ_DATA_READY_FLAG:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) case SPS30_READ_DATA:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) case SPS30_READ_SERIAL:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) /* every two data bytes are checksummed */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) size += size / 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) ret = sps30_write_then_read(state, buf, 2, buf, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) case SPS30_AUTO_CLEANING_PERIOD:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) buf[2] = data[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) buf[3] = data[1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) buf[4] = crc8(sps30_crc8_table, &buf[2], 2, CRC8_INIT_VALUE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) buf[5] = data[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) buf[6] = data[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) buf[7] = crc8(sps30_crc8_table, &buf[5], 2, CRC8_INIT_VALUE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) ret = sps30_write_then_read(state, buf, 8, NULL, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) /* validate received data and strip off crc bytes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) for (i = 0; i < size; i += 3) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) u8 crc = crc8(sps30_crc8_table, &buf[i], 2, CRC8_INIT_VALUE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) if (crc != buf[i + 2]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) dev_err(&state->client->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) "data integrity check failed\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) *data++ = buf[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) *data++ = buf[i + 1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) static s32 sps30_float_to_int_clamped(const u8 *fp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) int val = get_unaligned_be32(fp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) int mantissa = val & GENMASK(22, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) /* this is fine since passed float is always non-negative */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) int exp = val >> 23;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) int fraction, shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) /* special case 0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) if (!exp && !mantissa)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) exp -= 127;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) if (exp < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) /* return values ranging from 1 to 99 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) return ((((1 << 23) + mantissa) * 100) >> 23) >> (-exp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) /* return values ranging from 100 to 300000 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) shift = 23 - exp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) val = (1 << exp) + (mantissa >> shift);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) if (val >= SPS30_MAX_PM)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) return SPS30_MAX_PM * 100;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) fraction = mantissa & GENMASK(shift - 1, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) return val * 100 + ((fraction * 100) >> shift);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) static int sps30_do_meas(struct sps30_state *state, s32 *data, int size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) int i, ret, tries = 5;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) u8 tmp[16];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) if (state->state == RESET) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) ret = sps30_do_cmd(state, SPS30_START_MEAS, NULL, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) state->state = MEASURING;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) while (tries--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) ret = sps30_do_cmd(state, SPS30_READ_DATA_READY_FLAG, tmp, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) /* new measurements ready to be read */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) if (tmp[1] == 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) msleep_interruptible(300);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) if (tries == -1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) return -ETIMEDOUT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) ret = sps30_do_cmd(state, SPS30_READ_DATA, tmp, sizeof(int) * size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) for (i = 0; i < size; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) data[i] = sps30_float_to_int_clamped(&tmp[4 * i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) static irqreturn_t sps30_trigger_handler(int irq, void *p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) struct iio_poll_func *pf = p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) struct iio_dev *indio_dev = pf->indio_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) struct sps30_state *state = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) struct {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) s32 data[4]; /* PM1, PM2P5, PM4, PM10 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) s64 ts;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) } scan;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) mutex_lock(&state->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) ret = sps30_do_meas(state, scan.data, ARRAY_SIZE(scan.data));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) mutex_unlock(&state->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) iio_push_to_buffers_with_timestamp(indio_dev, &scan,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) iio_get_time_ns(indio_dev));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) err:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) iio_trigger_notify_done(indio_dev->trig);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) return IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) static int sps30_read_raw(struct iio_dev *indio_dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) struct iio_chan_spec const *chan,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) int *val, int *val2, long mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) struct sps30_state *state = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) int data[4], ret = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) switch (mask) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) case IIO_CHAN_INFO_PROCESSED:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) switch (chan->type) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) case IIO_MASSCONCENTRATION:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) mutex_lock(&state->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) /* read up to the number of bytes actually needed */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) switch (chan->channel2) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) case IIO_MOD_PM1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) ret = sps30_do_meas(state, data, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) case IIO_MOD_PM2P5:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) ret = sps30_do_meas(state, data, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) case IIO_MOD_PM4:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) ret = sps30_do_meas(state, data, 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) case IIO_MOD_PM10:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) ret = sps30_do_meas(state, data, 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) mutex_unlock(&state->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) *val = data[chan->address] / 100;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) *val2 = (data[chan->address] % 100) * 10000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) return IIO_VAL_INT_PLUS_MICRO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) case IIO_CHAN_INFO_SCALE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) switch (chan->type) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) case IIO_MASSCONCENTRATION:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) switch (chan->channel2) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) case IIO_MOD_PM1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) case IIO_MOD_PM2P5:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) case IIO_MOD_PM4:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) case IIO_MOD_PM10:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) *val = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) *val2 = 10000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) return IIO_VAL_INT_PLUS_MICRO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) static int sps30_do_cmd_reset(struct sps30_state *state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) ret = sps30_do_cmd(state, SPS30_RESET, NULL, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) msleep(300);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) * Power-on-reset causes sensor to produce some glitch on i2c bus and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) * some controllers end up in error state. Recover simply by placing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) * some data on the bus, for example STOP_MEAS command, which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) * is NOP in this case.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) sps30_do_cmd(state, SPS30_STOP_MEAS, NULL, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) state->state = RESET;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) static ssize_t start_cleaning_store(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) const char *buf, size_t len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) struct iio_dev *indio_dev = dev_to_iio_dev(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) struct sps30_state *state = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) int val, ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) if (kstrtoint(buf, 0, &val) || val != 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) mutex_lock(&state->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) ret = sps30_do_cmd(state, SPS30_START_FAN_CLEANING, NULL, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) mutex_unlock(&state->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) return len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) static ssize_t cleaning_period_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) struct iio_dev *indio_dev = dev_to_iio_dev(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) struct sps30_state *state = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) u8 tmp[4];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) mutex_lock(&state->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) ret = sps30_do_cmd(state, SPS30_READ_AUTO_CLEANING_PERIOD, tmp, 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) mutex_unlock(&state->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) return sprintf(buf, "%d\n", get_unaligned_be32(tmp));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) static ssize_t cleaning_period_store(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) const char *buf, size_t len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) struct iio_dev *indio_dev = dev_to_iio_dev(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) struct sps30_state *state = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) int val, ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) u8 tmp[4];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) if (kstrtoint(buf, 0, &val))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) if ((val < SPS30_AUTO_CLEANING_PERIOD_MIN) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) (val > SPS30_AUTO_CLEANING_PERIOD_MAX))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) put_unaligned_be32(val, tmp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) mutex_lock(&state->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) ret = sps30_do_cmd(state, SPS30_AUTO_CLEANING_PERIOD, tmp, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) mutex_unlock(&state->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) msleep(20);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) * sensor requires reset in order to return up to date self cleaning
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) * period
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) ret = sps30_do_cmd_reset(state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) dev_warn(dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) "period changed but reads will return the old value\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) mutex_unlock(&state->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) return len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) static ssize_t cleaning_period_available_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) return snprintf(buf, PAGE_SIZE, "[%d %d %d]\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) SPS30_AUTO_CLEANING_PERIOD_MIN, 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) SPS30_AUTO_CLEANING_PERIOD_MAX);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) static IIO_DEVICE_ATTR_WO(start_cleaning, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) static IIO_DEVICE_ATTR_RW(cleaning_period, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) static IIO_DEVICE_ATTR_RO(cleaning_period_available, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) static struct attribute *sps30_attrs[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) &iio_dev_attr_start_cleaning.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) &iio_dev_attr_cleaning_period.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) &iio_dev_attr_cleaning_period_available.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) NULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) static const struct attribute_group sps30_attr_group = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) .attrs = sps30_attrs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) static const struct iio_info sps30_info = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) .attrs = &sps30_attr_group,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) .read_raw = sps30_read_raw,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) #define SPS30_CHAN(_index, _mod) { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) .type = IIO_MASSCONCENTRATION, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) .modified = 1, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) .channel2 = IIO_MOD_ ## _mod, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) .address = _mod, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) .scan_index = _index, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) .scan_type = { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) .sign = 'u', \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) .realbits = 19, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) .storagebits = 32, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) .endianness = IIO_CPU, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) }, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) static const struct iio_chan_spec sps30_channels[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) SPS30_CHAN(0, PM1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) SPS30_CHAN(1, PM2P5),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) SPS30_CHAN(2, PM4),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) SPS30_CHAN(3, PM10),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) IIO_CHAN_SOFT_TIMESTAMP(4),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) static void sps30_stop_meas(void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) struct sps30_state *state = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) sps30_do_cmd(state, SPS30_STOP_MEAS, NULL, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) static const unsigned long sps30_scan_masks[] = { 0x0f, 0x00 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) static int sps30_probe(struct i2c_client *client)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) struct iio_dev *indio_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) struct sps30_state *state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) u8 buf[32];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) return -EOPNOTSUPP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*state));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) if (!indio_dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) state = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) i2c_set_clientdata(client, indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) state->client = client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) state->state = RESET;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) indio_dev->info = &sps30_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) indio_dev->name = client->name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) indio_dev->channels = sps30_channels;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) indio_dev->num_channels = ARRAY_SIZE(sps30_channels);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) indio_dev->modes = INDIO_DIRECT_MODE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) indio_dev->available_scan_masks = sps30_scan_masks;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) mutex_init(&state->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) crc8_populate_msb(sps30_crc8_table, SPS30_CRC8_POLYNOMIAL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) ret = sps30_do_cmd_reset(state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) dev_err(&client->dev, "failed to reset device\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) ret = sps30_do_cmd(state, SPS30_READ_SERIAL, buf, sizeof(buf));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) dev_err(&client->dev, "failed to read serial number\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) /* returned serial number is already NUL terminated */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) dev_info(&client->dev, "serial number: %s\n", buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) ret = devm_add_action_or_reset(&client->dev, sps30_stop_meas, state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) ret = devm_iio_triggered_buffer_setup(&client->dev, indio_dev, NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) sps30_trigger_handler, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) return devm_iio_device_register(&client->dev, indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) static const struct i2c_device_id sps30_id[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) { "sps30" },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) { }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) MODULE_DEVICE_TABLE(i2c, sps30_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) static const struct of_device_id sps30_of_match[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) { .compatible = "sensirion,sps30" },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) { }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) MODULE_DEVICE_TABLE(of, sps30_of_match);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) static struct i2c_driver sps30_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) .driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) .name = "sps30",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) .of_match_table = sps30_of_match,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) .id_table = sps30_id,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) .probe_new = sps30_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) module_i2c_driver(sps30_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) MODULE_AUTHOR("Tomasz Duszynski <tduszyns@gmail.com>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) MODULE_DESCRIPTION("Sensirion SPS30 particulate matter sensor driver");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) MODULE_LICENSE("GPL v2");