Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * Sensirion SPS30 particulate matter sensor driver
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  * Copyright (c) Tomasz Duszynski <tduszyns@gmail.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  * I2C slave address: 0x69
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) #include <asm/unaligned.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) #include <linux/crc8.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) #include <linux/delay.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #include <linux/i2c.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #include <linux/iio/buffer.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) #include <linux/iio/iio.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) #include <linux/iio/sysfs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) #include <linux/iio/trigger_consumer.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) #include <linux/iio/triggered_buffer.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) #define SPS30_CRC8_POLYNOMIAL 0x31
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) /* max number of bytes needed to store PM measurements or serial string */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) #define SPS30_MAX_READ_SIZE 48
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) /* sensor measures reliably up to 3000 ug / m3 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) #define SPS30_MAX_PM 3000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) /* minimum and maximum self cleaning periods in seconds */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) #define SPS30_AUTO_CLEANING_PERIOD_MIN 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) #define SPS30_AUTO_CLEANING_PERIOD_MAX 604800
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) /* SPS30 commands */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) #define SPS30_START_MEAS 0x0010
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) #define SPS30_STOP_MEAS 0x0104
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) #define SPS30_RESET 0xd304
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) #define SPS30_READ_DATA_READY_FLAG 0x0202
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) #define SPS30_READ_DATA 0x0300
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) #define SPS30_READ_SERIAL 0xd033
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) #define SPS30_START_FAN_CLEANING 0x5607
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) #define SPS30_AUTO_CLEANING_PERIOD 0x8004
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) /* not a sensor command per se, used only to distinguish write from read */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) #define SPS30_READ_AUTO_CLEANING_PERIOD 0x8005
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) enum {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) 	PM1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 	PM2P5,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) 	PM4,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) 	PM10,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) enum {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) 	RESET,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) 	MEASURING,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) struct sps30_state {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) 	struct i2c_client *client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) 	 * Guards against concurrent access to sensor registers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 	 * Must be held whenever sequence of commands is to be executed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) 	struct mutex lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) 	int state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) DECLARE_CRC8_TABLE(sps30_crc8_table);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) static int sps30_write_then_read(struct sps30_state *state, u8 *txbuf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 				 int txsize, u8 *rxbuf, int rxsize)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 	 * Sensor does not support repeated start so instead of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 	 * sending two i2c messages in a row we just send one by one.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 	ret = i2c_master_send(state->client, txbuf, txsize);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 	if (ret != txsize)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 		return ret < 0 ? ret : -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 	if (!rxbuf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 	ret = i2c_master_recv(state->client, rxbuf, rxsize);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 	if (ret != rxsize)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 		return ret < 0 ? ret : -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) static int sps30_do_cmd(struct sps30_state *state, u16 cmd, u8 *data, int size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 	 * Internally sensor stores measurements in a following manner:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 	 * PM1: upper two bytes, crc8, lower two bytes, crc8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 	 * PM2P5: upper two bytes, crc8, lower two bytes, crc8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 	 * PM4: upper two bytes, crc8, lower two bytes, crc8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 	 * PM10: upper two bytes, crc8, lower two bytes, crc8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 	 * What follows next are number concentration measurements and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 	 * typical particle size measurement which we omit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 	u8 buf[SPS30_MAX_READ_SIZE] = { cmd >> 8, cmd };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 	int i, ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 	switch (cmd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 	case SPS30_START_MEAS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 		buf[2] = 0x03;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 		buf[3] = 0x00;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 		buf[4] = crc8(sps30_crc8_table, &buf[2], 2, CRC8_INIT_VALUE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 		ret = sps30_write_then_read(state, buf, 5, NULL, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 	case SPS30_STOP_MEAS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 	case SPS30_RESET:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 	case SPS30_START_FAN_CLEANING:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 		ret = sps30_write_then_read(state, buf, 2, NULL, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 	case SPS30_READ_AUTO_CLEANING_PERIOD:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 		buf[0] = SPS30_AUTO_CLEANING_PERIOD >> 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 		buf[1] = (u8)(SPS30_AUTO_CLEANING_PERIOD & 0xff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 		fallthrough;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 	case SPS30_READ_DATA_READY_FLAG:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 	case SPS30_READ_DATA:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 	case SPS30_READ_SERIAL:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 		/* every two data bytes are checksummed */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 		size += size / 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 		ret = sps30_write_then_read(state, buf, 2, buf, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 	case SPS30_AUTO_CLEANING_PERIOD:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 		buf[2] = data[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 		buf[3] = data[1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 		buf[4] = crc8(sps30_crc8_table, &buf[2], 2, CRC8_INIT_VALUE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 		buf[5] = data[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 		buf[6] = data[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 		buf[7] = crc8(sps30_crc8_table, &buf[5], 2, CRC8_INIT_VALUE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 		ret = sps30_write_then_read(state, buf, 8, NULL, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 	/* validate received data and strip off crc bytes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 	for (i = 0; i < size; i += 3) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 		u8 crc = crc8(sps30_crc8_table, &buf[i], 2, CRC8_INIT_VALUE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 		if (crc != buf[i + 2]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 			dev_err(&state->client->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 				"data integrity check failed\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 			return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 		*data++ = buf[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 		*data++ = buf[i + 1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) static s32 sps30_float_to_int_clamped(const u8 *fp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 	int val = get_unaligned_be32(fp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 	int mantissa = val & GENMASK(22, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 	/* this is fine since passed float is always non-negative */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 	int exp = val >> 23;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 	int fraction, shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 	/* special case 0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 	if (!exp && !mantissa)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 	exp -= 127;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 	if (exp < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 		/* return values ranging from 1 to 99 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 		return ((((1 << 23) + mantissa) * 100) >> 23) >> (-exp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 	/* return values ranging from 100 to 300000 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 	shift = 23 - exp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 	val = (1 << exp) + (mantissa >> shift);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 	if (val >= SPS30_MAX_PM)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 		return SPS30_MAX_PM * 100;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 	fraction = mantissa & GENMASK(shift - 1, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 	return val * 100 + ((fraction * 100) >> shift);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) static int sps30_do_meas(struct sps30_state *state, s32 *data, int size)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 	int i, ret, tries = 5;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 	u8 tmp[16];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 	if (state->state == RESET) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 		ret = sps30_do_cmd(state, SPS30_START_MEAS, NULL, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 		if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 			return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 		state->state = MEASURING;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 	while (tries--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 		ret = sps30_do_cmd(state, SPS30_READ_DATA_READY_FLAG, tmp, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 		if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 			return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 		/* new measurements ready to be read */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 		if (tmp[1] == 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 		msleep_interruptible(300);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 	if (tries == -1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 		return -ETIMEDOUT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 	ret = sps30_do_cmd(state, SPS30_READ_DATA, tmp, sizeof(int) * size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 	for (i = 0; i < size; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 		data[i] = sps30_float_to_int_clamped(&tmp[4 * i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) static irqreturn_t sps30_trigger_handler(int irq, void *p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 	struct iio_poll_func *pf = p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 	struct iio_dev *indio_dev = pf->indio_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 	struct sps30_state *state = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 	struct {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 		s32 data[4]; /* PM1, PM2P5, PM4, PM10 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 		s64 ts;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 	} scan;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 	mutex_lock(&state->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 	ret = sps30_do_meas(state, scan.data, ARRAY_SIZE(scan.data));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 	mutex_unlock(&state->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 		goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 	iio_push_to_buffers_with_timestamp(indio_dev, &scan,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 					   iio_get_time_ns(indio_dev));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) err:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 	iio_trigger_notify_done(indio_dev->trig);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 	return IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) static int sps30_read_raw(struct iio_dev *indio_dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 			  struct iio_chan_spec const *chan,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 			  int *val, int *val2, long mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 	struct sps30_state *state = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 	int data[4], ret = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 	switch (mask) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 	case IIO_CHAN_INFO_PROCESSED:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 		switch (chan->type) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 		case IIO_MASSCONCENTRATION:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 			mutex_lock(&state->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 			/* read up to the number of bytes actually needed */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 			switch (chan->channel2) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 			case IIO_MOD_PM1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) 				ret = sps30_do_meas(state, data, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 			case IIO_MOD_PM2P5:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 				ret = sps30_do_meas(state, data, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 			case IIO_MOD_PM4:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) 				ret = sps30_do_meas(state, data, 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) 			case IIO_MOD_PM10:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 				ret = sps30_do_meas(state, data, 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 			mutex_unlock(&state->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) 			if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 				return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 			*val = data[chan->address] / 100;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) 			*val2 = (data[chan->address] % 100) * 10000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 			return IIO_VAL_INT_PLUS_MICRO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 		default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 			return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 	case IIO_CHAN_INFO_SCALE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 		switch (chan->type) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) 		case IIO_MASSCONCENTRATION:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 			switch (chan->channel2) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 			case IIO_MOD_PM1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 			case IIO_MOD_PM2P5:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 			case IIO_MOD_PM4:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 			case IIO_MOD_PM10:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 				*val = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 				*val2 = 10000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 				return IIO_VAL_INT_PLUS_MICRO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 			default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 				return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 		default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 			return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 	return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) static int sps30_do_cmd_reset(struct sps30_state *state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) 	ret = sps30_do_cmd(state, SPS30_RESET, NULL, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) 	msleep(300);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) 	 * Power-on-reset causes sensor to produce some glitch on i2c bus and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) 	 * some controllers end up in error state. Recover simply by placing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) 	 * some data on the bus, for example STOP_MEAS command, which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) 	 * is NOP in this case.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 	sps30_do_cmd(state, SPS30_STOP_MEAS, NULL, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 	state->state = RESET;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) static ssize_t start_cleaning_store(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) 				    struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 				    const char *buf, size_t len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) 	struct sps30_state *state = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) 	int val, ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) 	if (kstrtoint(buf, 0, &val) || val != 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) 	mutex_lock(&state->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) 	ret = sps30_do_cmd(state, SPS30_START_FAN_CLEANING, NULL, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) 	mutex_unlock(&state->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) 	return len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) static ssize_t cleaning_period_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) 				      struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) 				      char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) 	struct sps30_state *state = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) 	u8 tmp[4];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) 	mutex_lock(&state->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 	ret = sps30_do_cmd(state, SPS30_READ_AUTO_CLEANING_PERIOD, tmp, 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) 	mutex_unlock(&state->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) 	return sprintf(buf, "%d\n", get_unaligned_be32(tmp));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) static ssize_t cleaning_period_store(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) 				       struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) 				       const char *buf, size_t len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) 	struct sps30_state *state = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) 	int val, ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) 	u8 tmp[4];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) 	if (kstrtoint(buf, 0, &val))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) 	if ((val < SPS30_AUTO_CLEANING_PERIOD_MIN) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) 	    (val > SPS30_AUTO_CLEANING_PERIOD_MAX))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) 	put_unaligned_be32(val, tmp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) 	mutex_lock(&state->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) 	ret = sps30_do_cmd(state, SPS30_AUTO_CLEANING_PERIOD, tmp, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) 		mutex_unlock(&state->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) 	msleep(20);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) 	 * sensor requires reset in order to return up to date self cleaning
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) 	 * period
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) 	ret = sps30_do_cmd_reset(state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) 		dev_warn(dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) 			 "period changed but reads will return the old value\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) 	mutex_unlock(&state->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) 	return len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) static ssize_t cleaning_period_available_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) 					      struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) 					      char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) 	return snprintf(buf, PAGE_SIZE, "[%d %d %d]\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) 			SPS30_AUTO_CLEANING_PERIOD_MIN, 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) 			SPS30_AUTO_CLEANING_PERIOD_MAX);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) static IIO_DEVICE_ATTR_WO(start_cleaning, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) static IIO_DEVICE_ATTR_RW(cleaning_period, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) static IIO_DEVICE_ATTR_RO(cleaning_period_available, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) static struct attribute *sps30_attrs[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) 	&iio_dev_attr_start_cleaning.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) 	&iio_dev_attr_cleaning_period.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) 	&iio_dev_attr_cleaning_period_available.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) 	NULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) static const struct attribute_group sps30_attr_group = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) 	.attrs = sps30_attrs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) static const struct iio_info sps30_info = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) 	.attrs = &sps30_attr_group,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) 	.read_raw = sps30_read_raw,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) #define SPS30_CHAN(_index, _mod) { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) 	.type = IIO_MASSCONCENTRATION, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) 	.modified = 1, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) 	.channel2 = IIO_MOD_ ## _mod, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) 	.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) 	.address = _mod, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) 	.scan_index = _index, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) 	.scan_type = { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) 		.sign = 'u', \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) 		.realbits = 19, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) 		.storagebits = 32, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) 		.endianness = IIO_CPU, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) 	}, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) static const struct iio_chan_spec sps30_channels[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) 	SPS30_CHAN(0, PM1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) 	SPS30_CHAN(1, PM2P5),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) 	SPS30_CHAN(2, PM4),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) 	SPS30_CHAN(3, PM10),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) 	IIO_CHAN_SOFT_TIMESTAMP(4),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) static void sps30_stop_meas(void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) 	struct sps30_state *state = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) 	sps30_do_cmd(state, SPS30_STOP_MEAS, NULL, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) static const unsigned long sps30_scan_masks[] = { 0x0f, 0x00 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) static int sps30_probe(struct i2c_client *client)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) 	struct iio_dev *indio_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) 	struct sps30_state *state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) 	u8 buf[32];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) 		return -EOPNOTSUPP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) 	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*state));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) 	if (!indio_dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) 	state = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) 	i2c_set_clientdata(client, indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) 	state->client = client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) 	state->state = RESET;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) 	indio_dev->info = &sps30_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) 	indio_dev->name = client->name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) 	indio_dev->channels = sps30_channels;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) 	indio_dev->num_channels = ARRAY_SIZE(sps30_channels);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) 	indio_dev->modes = INDIO_DIRECT_MODE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) 	indio_dev->available_scan_masks = sps30_scan_masks;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) 	mutex_init(&state->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) 	crc8_populate_msb(sps30_crc8_table, SPS30_CRC8_POLYNOMIAL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) 	ret = sps30_do_cmd_reset(state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) 		dev_err(&client->dev, "failed to reset device\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) 	ret = sps30_do_cmd(state, SPS30_READ_SERIAL, buf, sizeof(buf));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) 		dev_err(&client->dev, "failed to read serial number\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) 	/* returned serial number is already NUL terminated */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) 	dev_info(&client->dev, "serial number: %s\n", buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) 	ret = devm_add_action_or_reset(&client->dev, sps30_stop_meas, state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) 	ret = devm_iio_triggered_buffer_setup(&client->dev, indio_dev, NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) 					      sps30_trigger_handler, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) 	return devm_iio_device_register(&client->dev, indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) static const struct i2c_device_id sps30_id[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) 	{ "sps30" },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) 	{ }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) MODULE_DEVICE_TABLE(i2c, sps30_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) static const struct of_device_id sps30_of_match[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) 	{ .compatible = "sensirion,sps30" },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) 	{ }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) MODULE_DEVICE_TABLE(of, sps30_of_match);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) static struct i2c_driver sps30_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) 	.driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) 		.name = "sps30",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) 		.of_match_table = sps30_of_match,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) 	.id_table = sps30_id,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) 	.probe_new = sps30_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) module_i2c_driver(sps30_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) MODULE_AUTHOR("Tomasz Duszynski <tduszyns@gmail.com>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) MODULE_DESCRIPTION("Sensirion SPS30 particulate matter sensor driver");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) MODULE_LICENSE("GPL v2");