Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    3)  * This file is part of STM32 ADC driver
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    5)  * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    6)  * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    7)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    8) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    9) #include <linux/clk.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   10) #include <linux/delay.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   11) #include <linux/dma-mapping.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   12) #include <linux/dmaengine.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   13) #include <linux/iio/iio.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   14) #include <linux/iio/buffer.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   15) #include <linux/iio/timer/stm32-lptim-trigger.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   16) #include <linux/iio/timer/stm32-timer-trigger.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   17) #include <linux/iio/trigger.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   18) #include <linux/iio/trigger_consumer.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   19) #include <linux/iio/triggered_buffer.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   20) #include <linux/interrupt.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   21) #include <linux/io.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   22) #include <linux/iopoll.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   23) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   24) #include <linux/platform_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   25) #include <linux/pm_runtime.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   26) #include <linux/of.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   27) #include <linux/of_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   28) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   29) #include "stm32-adc-core.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   30) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   31) /* Number of linear calibration shadow registers / LINCALRDYW control bits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   32) #define STM32H7_LINCALFACT_NUM		6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   33) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   34) /* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   35) #define STM32H7_BOOST_CLKRATE		20000000UL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   36) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   37) #define STM32_ADC_CH_MAX		20	/* max number of channels */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   38) #define STM32_ADC_CH_SZ			10	/* max channel name size */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   39) #define STM32_ADC_MAX_SQ		16	/* SQ1..SQ16 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   40) #define STM32_ADC_MAX_SMP		7	/* SMPx range is [0..7] */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   41) #define STM32_ADC_TIMEOUT_US		100000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   42) #define STM32_ADC_TIMEOUT	(msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   43) #define STM32_ADC_HW_STOP_DELAY_MS	100
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   44) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   45) #define STM32_DMA_BUFFER_SIZE		PAGE_SIZE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   46) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   47) /* External trigger enable */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   48) enum stm32_adc_exten {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   49) 	STM32_EXTEN_SWTRIG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   50) 	STM32_EXTEN_HWTRIG_RISING_EDGE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   51) 	STM32_EXTEN_HWTRIG_FALLING_EDGE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   52) 	STM32_EXTEN_HWTRIG_BOTH_EDGES,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   53) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   54) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   55) /* extsel - trigger mux selection value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   56) enum stm32_adc_extsel {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   57) 	STM32_EXT0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   58) 	STM32_EXT1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   59) 	STM32_EXT2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   60) 	STM32_EXT3,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   61) 	STM32_EXT4,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   62) 	STM32_EXT5,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   63) 	STM32_EXT6,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   64) 	STM32_EXT7,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   65) 	STM32_EXT8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   66) 	STM32_EXT9,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   67) 	STM32_EXT10,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   68) 	STM32_EXT11,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   69) 	STM32_EXT12,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   70) 	STM32_EXT13,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   71) 	STM32_EXT14,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   72) 	STM32_EXT15,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   73) 	STM32_EXT16,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   74) 	STM32_EXT17,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   75) 	STM32_EXT18,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   76) 	STM32_EXT19,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   77) 	STM32_EXT20,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   78) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   79) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   80) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   81)  * struct stm32_adc_trig_info - ADC trigger info
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   82)  * @name:		name of the trigger, corresponding to its source
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   83)  * @extsel:		trigger selection
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   84)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   85) struct stm32_adc_trig_info {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   86) 	const char *name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   87) 	enum stm32_adc_extsel extsel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   88) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   89) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   90) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   91)  * struct stm32_adc_calib - optional adc calibration data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   92)  * @calfact_s: Calibration offset for single ended channels
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   93)  * @calfact_d: Calibration offset in differential
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   94)  * @lincalfact: Linearity calibration factor
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   95)  * @calibrated: Indicates calibration status
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   96)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   97) struct stm32_adc_calib {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   98) 	u32			calfact_s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   99) 	u32			calfact_d;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  100) 	u32			lincalfact[STM32H7_LINCALFACT_NUM];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  101) 	bool			calibrated;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  102) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  103) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  104) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  105)  * struct stm32_adc_regs - stm32 ADC misc registers & bitfield desc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  106)  * @reg:		register offset
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  107)  * @mask:		bitfield mask
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  108)  * @shift:		left shift
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  109)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  110) struct stm32_adc_regs {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  111) 	int reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  112) 	int mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  113) 	int shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  114) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  115) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  116) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  117)  * struct stm32_adc_regspec - stm32 registers definition
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  118)  * @dr:			data register offset
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  119)  * @ier_eoc:		interrupt enable register & eocie bitfield
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  120)  * @ier_ovr:		interrupt enable register & overrun bitfield
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  121)  * @isr_eoc:		interrupt status register & eoc bitfield
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  122)  * @isr_ovr:		interrupt status register & overrun bitfield
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  123)  * @sqr:		reference to sequence registers array
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  124)  * @exten:		trigger control register & bitfield
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  125)  * @extsel:		trigger selection register & bitfield
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  126)  * @res:		resolution selection register & bitfield
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  127)  * @smpr:		smpr1 & smpr2 registers offset array
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  128)  * @smp_bits:		smpr1 & smpr2 index and bitfields
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  129)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  130) struct stm32_adc_regspec {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  131) 	const u32 dr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  132) 	const struct stm32_adc_regs ier_eoc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  133) 	const struct stm32_adc_regs ier_ovr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  134) 	const struct stm32_adc_regs isr_eoc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  135) 	const struct stm32_adc_regs isr_ovr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  136) 	const struct stm32_adc_regs *sqr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  137) 	const struct stm32_adc_regs exten;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  138) 	const struct stm32_adc_regs extsel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  139) 	const struct stm32_adc_regs res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  140) 	const u32 smpr[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  141) 	const struct stm32_adc_regs *smp_bits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  142) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  143) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  144) struct stm32_adc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  145) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  146) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  147)  * struct stm32_adc_cfg - stm32 compatible configuration data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  148)  * @regs:		registers descriptions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  149)  * @adc_info:		per instance input channels definitions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  150)  * @trigs:		external trigger sources
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  151)  * @clk_required:	clock is required
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  152)  * @has_vregready:	vregready status flag presence
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  153)  * @prepare:		optional prepare routine (power-up, enable)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  154)  * @start_conv:		routine to start conversions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  155)  * @stop_conv:		routine to stop conversions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  156)  * @unprepare:		optional unprepare routine (disable, power-down)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  157)  * @irq_clear:		routine to clear irqs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  158)  * @smp_cycles:		programmable sampling time (ADC clock cycles)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  159)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  160) struct stm32_adc_cfg {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  161) 	const struct stm32_adc_regspec	*regs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  162) 	const struct stm32_adc_info	*adc_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  163) 	struct stm32_adc_trig_info	*trigs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  164) 	bool clk_required;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  165) 	bool has_vregready;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  166) 	int (*prepare)(struct iio_dev *);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  167) 	void (*start_conv)(struct iio_dev *, bool dma);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  168) 	void (*stop_conv)(struct iio_dev *);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  169) 	void (*unprepare)(struct iio_dev *);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  170) 	void (*irq_clear)(struct iio_dev *indio_dev, u32 msk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  171) 	const unsigned int *smp_cycles;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  172) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  173) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  174) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  175)  * struct stm32_adc - private data of each ADC IIO instance
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  176)  * @common:		reference to ADC block common data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  177)  * @offset:		ADC instance register offset in ADC block
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  178)  * @cfg:		compatible configuration data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  179)  * @completion:		end of single conversion completion
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  180)  * @buffer:		data buffer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  181)  * @clk:		clock for this adc instance
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  182)  * @irq:		interrupt for this adc instance
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  183)  * @lock:		spinlock
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  184)  * @bufi:		data buffer index
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  185)  * @num_conv:		expected number of scan conversions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  186)  * @res:		data resolution (e.g. RES bitfield value)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  187)  * @trigger_polarity:	external trigger polarity (e.g. exten)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  188)  * @dma_chan:		dma channel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  189)  * @rx_buf:		dma rx buffer cpu address
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  190)  * @rx_dma_buf:		dma rx buffer bus address
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  191)  * @rx_buf_sz:		dma rx buffer size
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  192)  * @difsel:		bitmask to set single-ended/differential channel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  193)  * @pcsel:		bitmask to preselect channels on some devices
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  194)  * @smpr_val:		sampling time settings (e.g. smpr1 / smpr2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  195)  * @cal:		optional calibration data on some devices
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  196)  * @chan_name:		channel name array
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  197)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  198) struct stm32_adc {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  199) 	struct stm32_adc_common	*common;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  200) 	u32			offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  201) 	const struct stm32_adc_cfg	*cfg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  202) 	struct completion	completion;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  203) 	u16			buffer[STM32_ADC_MAX_SQ];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  204) 	struct clk		*clk;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  205) 	int			irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  206) 	spinlock_t		lock;		/* interrupt lock */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  207) 	unsigned int		bufi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  208) 	unsigned int		num_conv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  209) 	u32			res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  210) 	u32			trigger_polarity;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  211) 	struct dma_chan		*dma_chan;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  212) 	u8			*rx_buf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  213) 	dma_addr_t		rx_dma_buf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  214) 	unsigned int		rx_buf_sz;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  215) 	u32			difsel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  216) 	u32			pcsel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  217) 	u32			smpr_val[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  218) 	struct stm32_adc_calib	cal;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  219) 	char			chan_name[STM32_ADC_CH_MAX][STM32_ADC_CH_SZ];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  220) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  221) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  222) struct stm32_adc_diff_channel {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  223) 	u32 vinp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  224) 	u32 vinn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  225) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  226) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  227) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  228)  * struct stm32_adc_info - stm32 ADC, per instance config data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  229)  * @max_channels:	Number of channels
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  230)  * @resolutions:	available resolutions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  231)  * @num_res:		number of available resolutions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  232)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  233) struct stm32_adc_info {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  234) 	int max_channels;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  235) 	const unsigned int *resolutions;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  236) 	const unsigned int num_res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  237) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  238) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  239) static const unsigned int stm32f4_adc_resolutions[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  240) 	/* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  241) 	12, 10, 8, 6,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  242) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  243) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  244) /* stm32f4 can have up to 16 channels */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  245) static const struct stm32_adc_info stm32f4_adc_info = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  246) 	.max_channels = 16,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  247) 	.resolutions = stm32f4_adc_resolutions,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  248) 	.num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  249) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  250) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  251) static const unsigned int stm32h7_adc_resolutions[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  252) 	/* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  253) 	16, 14, 12, 10, 8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  254) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  255) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  256) /* stm32h7 can have up to 20 channels */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  257) static const struct stm32_adc_info stm32h7_adc_info = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  258) 	.max_channels = STM32_ADC_CH_MAX,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  259) 	.resolutions = stm32h7_adc_resolutions,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  260) 	.num_res = ARRAY_SIZE(stm32h7_adc_resolutions),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  261) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  262) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  263) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  264)  * stm32f4_sq - describe regular sequence registers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  265)  * - L: sequence len (register & bit field)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  266)  * - SQ1..SQ16: sequence entries (register & bit field)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  267)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  268) static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  269) 	/* L: len bit field description to be kept as first element */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  270) 	{ STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  271) 	/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  272) 	{ STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  273) 	{ STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  274) 	{ STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  275) 	{ STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  276) 	{ STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  277) 	{ STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  278) 	{ STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  279) 	{ STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  280) 	{ STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  281) 	{ STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  282) 	{ STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  283) 	{ STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  284) 	{ STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  285) 	{ STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  286) 	{ STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  287) 	{ STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  288) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  289) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  290) /* STM32F4 external trigger sources for all instances */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  291) static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  292) 	{ TIM1_CH1, STM32_EXT0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  293) 	{ TIM1_CH2, STM32_EXT1 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  294) 	{ TIM1_CH3, STM32_EXT2 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  295) 	{ TIM2_CH2, STM32_EXT3 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  296) 	{ TIM2_CH3, STM32_EXT4 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  297) 	{ TIM2_CH4, STM32_EXT5 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  298) 	{ TIM2_TRGO, STM32_EXT6 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  299) 	{ TIM3_CH1, STM32_EXT7 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  300) 	{ TIM3_TRGO, STM32_EXT8 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  301) 	{ TIM4_CH4, STM32_EXT9 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  302) 	{ TIM5_CH1, STM32_EXT10 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  303) 	{ TIM5_CH2, STM32_EXT11 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  304) 	{ TIM5_CH3, STM32_EXT12 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  305) 	{ TIM8_CH1, STM32_EXT13 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  306) 	{ TIM8_TRGO, STM32_EXT14 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  307) 	{}, /* sentinel */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  308) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  309) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  310) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  311)  * stm32f4_smp_bits[] - describe sampling time register index & bit fields
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  312)  * Sorted so it can be indexed by channel number.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  313)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  314) static const struct stm32_adc_regs stm32f4_smp_bits[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  315) 	/* STM32F4_ADC_SMPR2: smpr[] index, mask, shift for SMP0 to SMP9 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  316) 	{ 1, GENMASK(2, 0), 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  317) 	{ 1, GENMASK(5, 3), 3 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  318) 	{ 1, GENMASK(8, 6), 6 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  319) 	{ 1, GENMASK(11, 9), 9 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  320) 	{ 1, GENMASK(14, 12), 12 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  321) 	{ 1, GENMASK(17, 15), 15 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  322) 	{ 1, GENMASK(20, 18), 18 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  323) 	{ 1, GENMASK(23, 21), 21 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  324) 	{ 1, GENMASK(26, 24), 24 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  325) 	{ 1, GENMASK(29, 27), 27 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  326) 	/* STM32F4_ADC_SMPR1, smpr[] index, mask, shift for SMP10 to SMP18 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  327) 	{ 0, GENMASK(2, 0), 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  328) 	{ 0, GENMASK(5, 3), 3 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  329) 	{ 0, GENMASK(8, 6), 6 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  330) 	{ 0, GENMASK(11, 9), 9 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  331) 	{ 0, GENMASK(14, 12), 12 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  332) 	{ 0, GENMASK(17, 15), 15 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  333) 	{ 0, GENMASK(20, 18), 18 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  334) 	{ 0, GENMASK(23, 21), 21 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  335) 	{ 0, GENMASK(26, 24), 24 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  336) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  337) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  338) /* STM32F4 programmable sampling time (ADC clock cycles) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  339) static const unsigned int stm32f4_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  340) 	3, 15, 28, 56, 84, 112, 144, 480,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  341) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  342) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  343) static const struct stm32_adc_regspec stm32f4_adc_regspec = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  344) 	.dr = STM32F4_ADC_DR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  345) 	.ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  346) 	.ier_ovr = { STM32F4_ADC_CR1, STM32F4_OVRIE },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  347) 	.isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  348) 	.isr_ovr = { STM32F4_ADC_SR, STM32F4_OVR },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  349) 	.sqr = stm32f4_sq,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  350) 	.exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  351) 	.extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  352) 		    STM32F4_EXTSEL_SHIFT },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  353) 	.res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  354) 	.smpr = { STM32F4_ADC_SMPR1, STM32F4_ADC_SMPR2 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  355) 	.smp_bits = stm32f4_smp_bits,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  356) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  357) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  358) static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  359) 	/* L: len bit field description to be kept as first element */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  360) 	{ STM32H7_ADC_SQR1, GENMASK(3, 0), 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  361) 	/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  362) 	{ STM32H7_ADC_SQR1, GENMASK(10, 6), 6 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  363) 	{ STM32H7_ADC_SQR1, GENMASK(16, 12), 12 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  364) 	{ STM32H7_ADC_SQR1, GENMASK(22, 18), 18 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  365) 	{ STM32H7_ADC_SQR1, GENMASK(28, 24), 24 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  366) 	{ STM32H7_ADC_SQR2, GENMASK(4, 0), 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  367) 	{ STM32H7_ADC_SQR2, GENMASK(10, 6), 6 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  368) 	{ STM32H7_ADC_SQR2, GENMASK(16, 12), 12 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  369) 	{ STM32H7_ADC_SQR2, GENMASK(22, 18), 18 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  370) 	{ STM32H7_ADC_SQR2, GENMASK(28, 24), 24 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  371) 	{ STM32H7_ADC_SQR3, GENMASK(4, 0), 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  372) 	{ STM32H7_ADC_SQR3, GENMASK(10, 6), 6 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  373) 	{ STM32H7_ADC_SQR3, GENMASK(16, 12), 12 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  374) 	{ STM32H7_ADC_SQR3, GENMASK(22, 18), 18 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  375) 	{ STM32H7_ADC_SQR3, GENMASK(28, 24), 24 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  376) 	{ STM32H7_ADC_SQR4, GENMASK(4, 0), 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  377) 	{ STM32H7_ADC_SQR4, GENMASK(10, 6), 6 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  378) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  379) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  380) /* STM32H7 external trigger sources for all instances */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  381) static struct stm32_adc_trig_info stm32h7_adc_trigs[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  382) 	{ TIM1_CH1, STM32_EXT0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  383) 	{ TIM1_CH2, STM32_EXT1 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  384) 	{ TIM1_CH3, STM32_EXT2 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  385) 	{ TIM2_CH2, STM32_EXT3 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  386) 	{ TIM3_TRGO, STM32_EXT4 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  387) 	{ TIM4_CH4, STM32_EXT5 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  388) 	{ TIM8_TRGO, STM32_EXT7 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  389) 	{ TIM8_TRGO2, STM32_EXT8 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  390) 	{ TIM1_TRGO, STM32_EXT9 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  391) 	{ TIM1_TRGO2, STM32_EXT10 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  392) 	{ TIM2_TRGO, STM32_EXT11 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  393) 	{ TIM4_TRGO, STM32_EXT12 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  394) 	{ TIM6_TRGO, STM32_EXT13 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  395) 	{ TIM15_TRGO, STM32_EXT14 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  396) 	{ TIM3_CH4, STM32_EXT15 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  397) 	{ LPTIM1_OUT, STM32_EXT18 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  398) 	{ LPTIM2_OUT, STM32_EXT19 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  399) 	{ LPTIM3_OUT, STM32_EXT20 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  400) 	{},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  401) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  402) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  403) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  404)  * stm32h7_smp_bits - describe sampling time register index & bit fields
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  405)  * Sorted so it can be indexed by channel number.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  406)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  407) static const struct stm32_adc_regs stm32h7_smp_bits[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  408) 	/* STM32H7_ADC_SMPR1, smpr[] index, mask, shift for SMP0 to SMP9 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  409) 	{ 0, GENMASK(2, 0), 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  410) 	{ 0, GENMASK(5, 3), 3 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  411) 	{ 0, GENMASK(8, 6), 6 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  412) 	{ 0, GENMASK(11, 9), 9 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  413) 	{ 0, GENMASK(14, 12), 12 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  414) 	{ 0, GENMASK(17, 15), 15 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  415) 	{ 0, GENMASK(20, 18), 18 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  416) 	{ 0, GENMASK(23, 21), 21 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  417) 	{ 0, GENMASK(26, 24), 24 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  418) 	{ 0, GENMASK(29, 27), 27 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  419) 	/* STM32H7_ADC_SMPR2, smpr[] index, mask, shift for SMP10 to SMP19 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  420) 	{ 1, GENMASK(2, 0), 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  421) 	{ 1, GENMASK(5, 3), 3 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  422) 	{ 1, GENMASK(8, 6), 6 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  423) 	{ 1, GENMASK(11, 9), 9 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  424) 	{ 1, GENMASK(14, 12), 12 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  425) 	{ 1, GENMASK(17, 15), 15 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  426) 	{ 1, GENMASK(20, 18), 18 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  427) 	{ 1, GENMASK(23, 21), 21 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  428) 	{ 1, GENMASK(26, 24), 24 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  429) 	{ 1, GENMASK(29, 27), 27 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  430) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  431) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  432) /* STM32H7 programmable sampling time (ADC clock cycles, rounded down) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  433) static const unsigned int stm32h7_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  434) 	1, 2, 8, 16, 32, 64, 387, 810,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  435) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  436) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  437) static const struct stm32_adc_regspec stm32h7_adc_regspec = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  438) 	.dr = STM32H7_ADC_DR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  439) 	.ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  440) 	.ier_ovr = { STM32H7_ADC_IER, STM32H7_OVRIE },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  441) 	.isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  442) 	.isr_ovr = { STM32H7_ADC_ISR, STM32H7_OVR },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  443) 	.sqr = stm32h7_sq,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  444) 	.exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  445) 	.extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  446) 		    STM32H7_EXTSEL_SHIFT },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  447) 	.res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  448) 	.smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  449) 	.smp_bits = stm32h7_smp_bits,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  450) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  451) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  452) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  453)  * STM32 ADC registers access routines
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  454)  * @adc: stm32 adc instance
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  455)  * @reg: reg offset in adc instance
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  456)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  457)  * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  458)  * for adc1, adc2 and adc3.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  459)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  460) static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  461) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  462) 	return readl_relaxed(adc->common->base + adc->offset + reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  463) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  464) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  465) #define stm32_adc_readl_addr(addr)	stm32_adc_readl(adc, addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  466) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  467) #define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  468) 	readx_poll_timeout(stm32_adc_readl_addr, reg, val, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  469) 			   cond, sleep_us, timeout_us)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  470) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  471) static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  472) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  473) 	return readw_relaxed(adc->common->base + adc->offset + reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  474) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  475) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  476) static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  477) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  478) 	writel_relaxed(val, adc->common->base + adc->offset + reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  479) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  480) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  481) static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  482) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  483) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  484) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  485) 	spin_lock_irqsave(&adc->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  486) 	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  487) 	spin_unlock_irqrestore(&adc->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  488) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  489) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  490) static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  491) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  492) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  493) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  494) 	spin_lock_irqsave(&adc->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  495) 	stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  496) 	spin_unlock_irqrestore(&adc->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  497) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  498) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  499) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  500)  * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  501)  * @adc: stm32 adc instance
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  502)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  503) static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  504) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  505) 	stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  506) 			   adc->cfg->regs->ier_eoc.mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  507) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  508) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  509) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  510)  * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  511)  * @adc: stm32 adc instance
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  512)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  513) static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  514) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  515) 	stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  516) 			   adc->cfg->regs->ier_eoc.mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  517) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  518) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  519) static void stm32_adc_ovr_irq_enable(struct stm32_adc *adc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  520) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  521) 	stm32_adc_set_bits(adc, adc->cfg->regs->ier_ovr.reg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  522) 			   adc->cfg->regs->ier_ovr.mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  523) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  524) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  525) static void stm32_adc_ovr_irq_disable(struct stm32_adc *adc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  526) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  527) 	stm32_adc_clr_bits(adc, adc->cfg->regs->ier_ovr.reg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  528) 			   adc->cfg->regs->ier_ovr.mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  529) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  530) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  531) static void stm32_adc_set_res(struct stm32_adc *adc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  532) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  533) 	const struct stm32_adc_regs *res = &adc->cfg->regs->res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  534) 	u32 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  535) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  536) 	val = stm32_adc_readl(adc, res->reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  537) 	val = (val & ~res->mask) | (adc->res << res->shift);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  538) 	stm32_adc_writel(adc, res->reg, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  539) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  540) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  541) static int stm32_adc_hw_stop(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  542) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  543) 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  544) 	struct stm32_adc *adc = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  545) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  546) 	if (adc->cfg->unprepare)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  547) 		adc->cfg->unprepare(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  548) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  549) 	if (adc->clk)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  550) 		clk_disable_unprepare(adc->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  551) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  552) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  553) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  554) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  555) static int stm32_adc_hw_start(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  556) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  557) 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  558) 	struct stm32_adc *adc = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  559) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  560) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  561) 	if (adc->clk) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  562) 		ret = clk_prepare_enable(adc->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  563) 		if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  564) 			return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  565) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  566) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  567) 	stm32_adc_set_res(adc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  568) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  569) 	if (adc->cfg->prepare) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  570) 		ret = adc->cfg->prepare(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  571) 		if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  572) 			goto err_clk_dis;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  573) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  574) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  575) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  576) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  577) err_clk_dis:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  578) 	if (adc->clk)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  579) 		clk_disable_unprepare(adc->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  580) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  581) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  582) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  583) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  584) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  585)  * stm32f4_adc_start_conv() - Start conversions for regular channels.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  586)  * @indio_dev: IIO device instance
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  587)  * @dma: use dma to transfer conversion result
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  588)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  589)  * Start conversions for regular channels.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  590)  * Also take care of normal or DMA mode. Circular DMA may be used for regular
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  591)  * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  592)  * DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  593)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  594) static void stm32f4_adc_start_conv(struct iio_dev *indio_dev, bool dma)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  595) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  596) 	struct stm32_adc *adc = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  597) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  598) 	stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  599) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  600) 	if (dma)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  601) 		stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  602) 				   STM32F4_DMA | STM32F4_DDS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  603) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  604) 	stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  605) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  606) 	/* Wait for Power-up time (tSTAB from datasheet) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  607) 	usleep_range(2, 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  608) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  609) 	/* Software start ? (e.g. trigger detection disabled ?) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  610) 	if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  611) 		stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  612) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  613) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  614) static void stm32f4_adc_stop_conv(struct iio_dev *indio_dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  615) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  616) 	struct stm32_adc *adc = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  617) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  618) 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  619) 	stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  620) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  621) 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  622) 	stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  623) 			   STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  624) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  625) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  626) static void stm32f4_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  627) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  628) 	struct stm32_adc *adc = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  629) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  630) 	stm32_adc_clr_bits(adc, adc->cfg->regs->isr_eoc.reg, msk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  631) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  632) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  633) static void stm32h7_adc_start_conv(struct iio_dev *indio_dev, bool dma)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  634) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  635) 	struct stm32_adc *adc = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  636) 	enum stm32h7_adc_dmngt dmngt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  637) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  638) 	u32 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  639) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  640) 	if (dma)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  641) 		dmngt = STM32H7_DMNGT_DMA_CIRC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  642) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  643) 		dmngt = STM32H7_DMNGT_DR_ONLY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  644) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  645) 	spin_lock_irqsave(&adc->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  646) 	val = stm32_adc_readl(adc, STM32H7_ADC_CFGR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  647) 	val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  648) 	stm32_adc_writel(adc, STM32H7_ADC_CFGR, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  649) 	spin_unlock_irqrestore(&adc->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  650) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  651) 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  652) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  653) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  654) static void stm32h7_adc_stop_conv(struct iio_dev *indio_dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  655) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  656) 	struct stm32_adc *adc = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  657) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  658) 	u32 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  659) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  660) 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  661) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  662) 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  663) 					   !(val & (STM32H7_ADSTART)),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  664) 					   100, STM32_ADC_TIMEOUT_US);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  665) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  666) 		dev_warn(&indio_dev->dev, "stop failed\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  667) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  668) 	stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  669) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  670) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  671) static void stm32h7_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  672) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  673) 	struct stm32_adc *adc = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  674) 	/* On STM32H7 IRQs are cleared by writing 1 into ISR register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  675) 	stm32_adc_set_bits(adc, adc->cfg->regs->isr_eoc.reg, msk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  676) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  677) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  678) static int stm32h7_adc_exit_pwr_down(struct iio_dev *indio_dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  679) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  680) 	struct stm32_adc *adc = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  681) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  682) 	u32 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  683) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  684) 	/* Exit deep power down, then enable ADC voltage regulator */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  685) 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  686) 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  687) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  688) 	if (adc->common->rate > STM32H7_BOOST_CLKRATE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  689) 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  690) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  691) 	/* Wait for startup time */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  692) 	if (!adc->cfg->has_vregready) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  693) 		usleep_range(10, 20);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  694) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  695) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  696) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  697) 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  698) 					   val & STM32MP1_VREGREADY, 100,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  699) 					   STM32_ADC_TIMEOUT_US);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  700) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  701) 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  702) 		dev_err(&indio_dev->dev, "Failed to exit power down\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  703) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  704) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  705) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  706) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  707) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  708) static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  709) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  710) 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  711) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  712) 	/* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  713) 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  714) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  715) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  716) static int stm32h7_adc_enable(struct iio_dev *indio_dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  717) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  718) 	struct stm32_adc *adc = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  719) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  720) 	u32 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  721) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  722) 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  723) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  724) 	/* Poll for ADRDY to be set (after adc startup time) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  725) 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  726) 					   val & STM32H7_ADRDY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  727) 					   100, STM32_ADC_TIMEOUT_US);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  728) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  729) 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  730) 		dev_err(&indio_dev->dev, "Failed to enable ADC\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  731) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  732) 		/* Clear ADRDY by writing one */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  733) 		stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  734) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  735) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  736) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  737) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  738) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  739) static void stm32h7_adc_disable(struct iio_dev *indio_dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  740) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  741) 	struct stm32_adc *adc = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  742) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  743) 	u32 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  744) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  745) 	/* Disable ADC and wait until it's effectively disabled */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  746) 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  747) 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  748) 					   !(val & STM32H7_ADEN), 100,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  749) 					   STM32_ADC_TIMEOUT_US);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  750) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  751) 		dev_warn(&indio_dev->dev, "Failed to disable\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  752) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  753) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  754) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  755)  * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  756)  * @indio_dev: IIO device instance
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  757)  * Note: Must be called once ADC is enabled, so LINCALRDYW[1..6] are writable
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  758)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  759) static int stm32h7_adc_read_selfcalib(struct iio_dev *indio_dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  760) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  761) 	struct stm32_adc *adc = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  762) 	int i, ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  763) 	u32 lincalrdyw_mask, val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  764) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  765) 	/* Read linearity calibration */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  766) 	lincalrdyw_mask = STM32H7_LINCALRDYW6;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  767) 	for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  768) 		/* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  769) 		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  770) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  771) 		/* Poll: wait calib data to be ready in CALFACT2 register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  772) 		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  773) 						   !(val & lincalrdyw_mask),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  774) 						   100, STM32_ADC_TIMEOUT_US);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  775) 		if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  776) 			dev_err(&indio_dev->dev, "Failed to read calfact\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  777) 			return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  778) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  779) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  780) 		val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  781) 		adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  782) 		adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  783) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  784) 		lincalrdyw_mask >>= 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  785) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  786) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  787) 	/* Read offset calibration */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  788) 	val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  789) 	adc->cal.calfact_s = (val & STM32H7_CALFACT_S_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  790) 	adc->cal.calfact_s >>= STM32H7_CALFACT_S_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  791) 	adc->cal.calfact_d = (val & STM32H7_CALFACT_D_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  792) 	adc->cal.calfact_d >>= STM32H7_CALFACT_D_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  793) 	adc->cal.calibrated = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  794) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  795) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  796) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  797) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  798) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  799)  * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  800)  * @indio_dev: IIO device instance
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  801)  * Note: ADC must be enabled, with no on-going conversions.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  802)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  803) static int stm32h7_adc_restore_selfcalib(struct iio_dev *indio_dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  804) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  805) 	struct stm32_adc *adc = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  806) 	int i, ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  807) 	u32 lincalrdyw_mask, val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  808) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  809) 	val = (adc->cal.calfact_s << STM32H7_CALFACT_S_SHIFT) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  810) 		(adc->cal.calfact_d << STM32H7_CALFACT_D_SHIFT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  811) 	stm32_adc_writel(adc, STM32H7_ADC_CALFACT, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  812) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  813) 	lincalrdyw_mask = STM32H7_LINCALRDYW6;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  814) 	for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  815) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  816) 		 * Write saved calibration data to shadow registers:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  817) 		 * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  818) 		 * data write. Then poll to wait for complete transfer.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  819) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  820) 		val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  821) 		stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  822) 		stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  823) 		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  824) 						   val & lincalrdyw_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  825) 						   100, STM32_ADC_TIMEOUT_US);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  826) 		if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  827) 			dev_err(&indio_dev->dev, "Failed to write calfact\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  828) 			return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  829) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  830) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  831) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  832) 		 * Read back calibration data, has two effects:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  833) 		 * - It ensures bits LINCALRDYW[6..1] are kept cleared
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  834) 		 *   for next time calibration needs to be restored.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  835) 		 * - BTW, bit clear triggers a read, then check data has been
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  836) 		 *   correctly written.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  837) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  838) 		stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  839) 		ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  840) 						   !(val & lincalrdyw_mask),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  841) 						   100, STM32_ADC_TIMEOUT_US);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  842) 		if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  843) 			dev_err(&indio_dev->dev, "Failed to read calfact\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  844) 			return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  845) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  846) 		val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  847) 		if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  848) 			dev_err(&indio_dev->dev, "calfact not consistent\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  849) 			return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  850) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  851) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  852) 		lincalrdyw_mask >>= 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  853) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  854) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  855) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  856) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  857) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  858) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  859)  * Fixed timeout value for ADC calibration.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  860)  * worst cases:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  861)  * - low clock frequency
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  862)  * - maximum prescalers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  863)  * Calibration requires:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  864)  * - 131,072 ADC clock cycle for the linear calibration
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  865)  * - 20 ADC clock cycle for the offset calibration
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  866)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  867)  * Set to 100ms for now
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  868)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  869) #define STM32H7_ADC_CALIB_TIMEOUT_US		100000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  870) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  871) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  872)  * stm32h7_adc_selfcalib() - Procedure to calibrate ADC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  873)  * @indio_dev: IIO device instance
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  874)  * Note: Must be called once ADC is out of power down.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  875)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  876) static int stm32h7_adc_selfcalib(struct iio_dev *indio_dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  877) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  878) 	struct stm32_adc *adc = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  879) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  880) 	u32 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  881) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  882) 	if (adc->cal.calibrated)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  883) 		return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  884) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  885) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  886) 	 * Select calibration mode:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  887) 	 * - Offset calibration for single ended inputs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  888) 	 * - No linearity calibration (do it later, before reading it)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  889) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  890) 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALDIF);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  891) 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALLIN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  892) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  893) 	/* Start calibration, then wait for completion */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  894) 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  895) 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  896) 					   !(val & STM32H7_ADCAL), 100,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  897) 					   STM32H7_ADC_CALIB_TIMEOUT_US);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  898) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  899) 		dev_err(&indio_dev->dev, "calibration failed\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  900) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  901) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  902) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  903) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  904) 	 * Select calibration mode, then start calibration:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  905) 	 * - Offset calibration for differential input
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  906) 	 * - Linearity calibration (needs to be done only once for single/diff)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  907) 	 *   will run simultaneously with offset calibration.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  908) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  909) 	stm32_adc_set_bits(adc, STM32H7_ADC_CR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  910) 			   STM32H7_ADCALDIF | STM32H7_ADCALLIN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  911) 	stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  912) 	ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  913) 					   !(val & STM32H7_ADCAL), 100,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  914) 					   STM32H7_ADC_CALIB_TIMEOUT_US);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  915) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  916) 		dev_err(&indio_dev->dev, "calibration failed\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  917) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  918) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  919) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  920) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  921) 	stm32_adc_clr_bits(adc, STM32H7_ADC_CR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  922) 			   STM32H7_ADCALDIF | STM32H7_ADCALLIN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  923) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  924) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  925) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  926) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  927) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  928)  * stm32h7_adc_prepare() - Leave power down mode to enable ADC.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  929)  * @indio_dev: IIO device instance
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  930)  * Leave power down mode.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  931)  * Configure channels as single ended or differential before enabling ADC.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  932)  * Enable ADC.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  933)  * Restore calibration data.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  934)  * Pre-select channels that may be used in PCSEL (required by input MUX / IO):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  935)  * - Only one input is selected for single ended (e.g. 'vinp')
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  936)  * - Two inputs are selected for differential channels (e.g. 'vinp' & 'vinn')
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  937)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  938) static int stm32h7_adc_prepare(struct iio_dev *indio_dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  939) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  940) 	struct stm32_adc *adc = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  941) 	int calib, ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  942) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  943) 	ret = stm32h7_adc_exit_pwr_down(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  944) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  945) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  946) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  947) 	ret = stm32h7_adc_selfcalib(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  948) 	if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  949) 		goto pwr_dwn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  950) 	calib = ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  951) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  952) 	stm32_adc_writel(adc, STM32H7_ADC_DIFSEL, adc->difsel);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  953) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  954) 	ret = stm32h7_adc_enable(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  955) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  956) 		goto pwr_dwn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  957) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  958) 	/* Either restore or read calibration result for future reference */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  959) 	if (calib)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  960) 		ret = stm32h7_adc_restore_selfcalib(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  961) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  962) 		ret = stm32h7_adc_read_selfcalib(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  963) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  964) 		goto disable;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  965) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  966) 	stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  967) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  968) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  969) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  970) disable:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  971) 	stm32h7_adc_disable(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  972) pwr_dwn:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  973) 	stm32h7_adc_enter_pwr_down(adc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  974) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  975) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  976) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  977) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  978) static void stm32h7_adc_unprepare(struct iio_dev *indio_dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  979) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  980) 	struct stm32_adc *adc = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  981) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  982) 	stm32_adc_writel(adc, STM32H7_ADC_PCSEL, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  983) 	stm32h7_adc_disable(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  984) 	stm32h7_adc_enter_pwr_down(adc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  985) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  986) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  987) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  988)  * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  989)  * @indio_dev: IIO device
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  990)  * @scan_mask: channels to be converted
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  991)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  992)  * Conversion sequence :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  993)  * Apply sampling time settings for all channels.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  994)  * Configure ADC scan sequence based on selected channels in scan_mask.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  995)  * Add channels to SQR registers, from scan_mask LSB to MSB, then
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  996)  * program sequence len.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  997)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  998) static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  999) 				   const unsigned long *scan_mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) 	struct stm32_adc *adc = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) 	const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) 	const struct iio_chan_spec *chan;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) 	u32 val, bit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005) 	int i = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) 	/* Apply sampling time settings */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008) 	stm32_adc_writel(adc, adc->cfg->regs->smpr[0], adc->smpr_val[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) 	stm32_adc_writel(adc, adc->cfg->regs->smpr[1], adc->smpr_val[1]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011) 	for_each_set_bit(bit, scan_mask, indio_dev->masklength) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012) 		chan = indio_dev->channels + bit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014) 		 * Assign one channel per SQ entry in regular
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) 		 * sequence, starting with SQ1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017) 		i++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018) 		if (i > STM32_ADC_MAX_SQ)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019) 			return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021) 		dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022) 			__func__, chan->channel, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) 		val = stm32_adc_readl(adc, sqr[i].reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) 		val &= ~sqr[i].mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) 		val |= chan->channel << sqr[i].shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027) 		stm32_adc_writel(adc, sqr[i].reg, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030) 	if (!i)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033) 	/* Sequence len */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) 	val = stm32_adc_readl(adc, sqr[0].reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035) 	val &= ~sqr[0].mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036) 	val |= ((i - 1) << sqr[0].shift);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037) 	stm32_adc_writel(adc, sqr[0].reg, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043)  * stm32_adc_get_trig_extsel() - Get external trigger selection
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044)  * @indio_dev: IIO device structure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045)  * @trig: trigger
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047)  * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049) static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050) 				     struct iio_trigger *trig)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052) 	struct stm32_adc *adc = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055) 	/* lookup triggers registered by stm32 timer trigger driver */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056) 	for (i = 0; adc->cfg->trigs[i].name; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057) 		/**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058) 		 * Checking both stm32 timer trigger type and trig name
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) 		 * should be safe against arbitrary trigger names.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) 		if ((is_stm32_timer_trigger(trig) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) 		     is_stm32_lptim_trigger(trig)) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) 		    !strcmp(adc->cfg->trigs[i].name, trig->name)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) 			return adc->cfg->trigs[i].extsel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) 	return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072)  * stm32_adc_set_trig() - Set a regular trigger
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073)  * @indio_dev: IIO device
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074)  * @trig: IIO trigger
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076)  * Set trigger source/polarity (e.g. SW, or HW with polarity) :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077)  * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078)  * - if HW trigger enabled, set source & polarity
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) static int stm32_adc_set_trig(struct iio_dev *indio_dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) 			      struct iio_trigger *trig)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) 	struct stm32_adc *adc = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) 	u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) 	unsigned long flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088) 	if (trig) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) 		ret = stm32_adc_get_trig_extsel(indio_dev, trig);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090) 		if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) 			return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) 		/* set trigger source and polarity (default to rising edge) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) 		extsel = ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) 		exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098) 	spin_lock_irqsave(&adc->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099) 	val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100) 	val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101) 	val |= exten << adc->cfg->regs->exten.shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102) 	val |= extsel << adc->cfg->regs->extsel.shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103) 	stm32_adc_writel(adc,  adc->cfg->regs->exten.reg, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104) 	spin_unlock_irqrestore(&adc->lock, flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109) static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110) 				  const struct iio_chan_spec *chan,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111) 				  unsigned int type)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) 	struct stm32_adc *adc = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115) 	adc->trigger_polarity = type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) 				  const struct iio_chan_spec *chan)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123) 	struct stm32_adc *adc = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125) 	return adc->trigger_polarity;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128) static const char * const stm32_trig_pol_items[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129) 	"rising-edge", "falling-edge", "both-edges",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132) static const struct iio_enum stm32_adc_trig_pol = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133) 	.items = stm32_trig_pol_items,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134) 	.num_items = ARRAY_SIZE(stm32_trig_pol_items),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135) 	.get = stm32_adc_get_trig_pol,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136) 	.set = stm32_adc_set_trig_pol,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140)  * stm32_adc_single_conv() - Performs a single conversion
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141)  * @indio_dev: IIO device
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142)  * @chan: IIO channel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143)  * @res: conversion result
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145)  * The function performs a single conversion on a given channel:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146)  * - Apply sampling time settings
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147)  * - Program sequencer with one channel (e.g. in SQ1 with len = 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148)  * - Use SW trigger
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149)  * - Start conversion, then wait for interrupt completion.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151) static int stm32_adc_single_conv(struct iio_dev *indio_dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152) 				 const struct iio_chan_spec *chan,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153) 				 int *res)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155) 	struct stm32_adc *adc = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156) 	struct device *dev = indio_dev->dev.parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157) 	const struct stm32_adc_regspec *regs = adc->cfg->regs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158) 	long timeout;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159) 	u32 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1162) 	reinit_completion(&adc->completion);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1163) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1164) 	adc->bufi = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1165) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1166) 	ret = pm_runtime_get_sync(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1167) 	if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1168) 		pm_runtime_put_noidle(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1169) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1170) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1171) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1172) 	/* Apply sampling time settings */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1173) 	stm32_adc_writel(adc, regs->smpr[0], adc->smpr_val[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1174) 	stm32_adc_writel(adc, regs->smpr[1], adc->smpr_val[1]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1175) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1176) 	/* Program chan number in regular sequence (SQ1) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1177) 	val = stm32_adc_readl(adc, regs->sqr[1].reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1178) 	val &= ~regs->sqr[1].mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1179) 	val |= chan->channel << regs->sqr[1].shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1180) 	stm32_adc_writel(adc, regs->sqr[1].reg, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1181) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1182) 	/* Set regular sequence len (0 for 1 conversion) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1183) 	stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1184) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1185) 	/* Trigger detection disabled (conversion can be launched in SW) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1186) 	stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1187) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1188) 	stm32_adc_conv_irq_enable(adc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1189) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1190) 	adc->cfg->start_conv(indio_dev, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1191) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1192) 	timeout = wait_for_completion_interruptible_timeout(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1193) 					&adc->completion, STM32_ADC_TIMEOUT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1194) 	if (timeout == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1195) 		ret = -ETIMEDOUT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1196) 	} else if (timeout < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1197) 		ret = timeout;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1198) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1199) 		*res = adc->buffer[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1200) 		ret = IIO_VAL_INT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1201) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1202) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1203) 	adc->cfg->stop_conv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1204) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1205) 	stm32_adc_conv_irq_disable(adc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1206) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1207) 	pm_runtime_mark_last_busy(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1208) 	pm_runtime_put_autosuspend(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1209) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1210) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1211) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1212) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1213) static int stm32_adc_read_raw(struct iio_dev *indio_dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1214) 			      struct iio_chan_spec const *chan,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1215) 			      int *val, int *val2, long mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1216) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1217) 	struct stm32_adc *adc = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1218) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1219) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1220) 	switch (mask) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1221) 	case IIO_CHAN_INFO_RAW:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1222) 		ret = iio_device_claim_direct_mode(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1223) 		if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1224) 			return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1225) 		if (chan->type == IIO_VOLTAGE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1226) 			ret = stm32_adc_single_conv(indio_dev, chan, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1227) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1228) 			ret = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1229) 		iio_device_release_direct_mode(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1230) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1231) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1232) 	case IIO_CHAN_INFO_SCALE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1233) 		if (chan->differential) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1234) 			*val = adc->common->vref_mv * 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1235) 			*val2 = chan->scan_type.realbits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1236) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1237) 			*val = adc->common->vref_mv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1238) 			*val2 = chan->scan_type.realbits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1239) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1240) 		return IIO_VAL_FRACTIONAL_LOG2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1241) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1242) 	case IIO_CHAN_INFO_OFFSET:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1243) 		if (chan->differential)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1244) 			/* ADC_full_scale / 2 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1245) 			*val = -((1 << chan->scan_type.realbits) / 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1246) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1247) 			*val = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1248) 		return IIO_VAL_INT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1249) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1250) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1251) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1252) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1253) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1254) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1255) static void stm32_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1256) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1257) 	struct stm32_adc *adc = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1258) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1259) 	adc->cfg->irq_clear(indio_dev, msk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1260) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1261) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1262) static irqreturn_t stm32_adc_threaded_isr(int irq, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1263) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1264) 	struct iio_dev *indio_dev = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1265) 	struct stm32_adc *adc = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1266) 	const struct stm32_adc_regspec *regs = adc->cfg->regs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1267) 	u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1268) 	u32 mask = stm32_adc_readl(adc, regs->ier_eoc.reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1269) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1270) 	/* Check ovr status right now, as ovr mask should be already disabled */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1271) 	if (status & regs->isr_ovr.mask) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1272) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1273) 		 * Clear ovr bit to avoid subsequent calls to IRQ handler.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1274) 		 * This requires to stop ADC first. OVR bit state in ISR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1275) 		 * is propaged to CSR register by hardware.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1276) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1277) 		adc->cfg->stop_conv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1278) 		stm32_adc_irq_clear(indio_dev, regs->isr_ovr.mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1279) 		dev_err(&indio_dev->dev, "Overrun, stopping: restart needed\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1280) 		return IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1281) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1282) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1283) 	if (!(status & mask))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1284) 		dev_err_ratelimited(&indio_dev->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1285) 				    "Unexpected IRQ: IER=0x%08x, ISR=0x%08x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1286) 				    mask, status);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1287) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1288) 	return IRQ_NONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1289) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1290) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1291) static irqreturn_t stm32_adc_isr(int irq, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1292) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1293) 	struct iio_dev *indio_dev = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1294) 	struct stm32_adc *adc = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1295) 	const struct stm32_adc_regspec *regs = adc->cfg->regs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1296) 	u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1297) 	u32 mask = stm32_adc_readl(adc, regs->ier_eoc.reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1298) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1299) 	if (!(status & mask))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1300) 		return IRQ_WAKE_THREAD;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1301) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1302) 	if (status & regs->isr_ovr.mask) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1303) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1304) 		 * Overrun occurred on regular conversions: data for wrong
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1305) 		 * channel may be read. Unconditionally disable interrupts
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1306) 		 * to stop processing data and print error message.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1307) 		 * Restarting the capture can be done by disabling, then
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1308) 		 * re-enabling it (e.g. write 0, then 1 to buffer/enable).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1309) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1310) 		stm32_adc_ovr_irq_disable(adc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1311) 		stm32_adc_conv_irq_disable(adc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1312) 		return IRQ_WAKE_THREAD;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1313) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1314) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1315) 	if (status & regs->isr_eoc.mask) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1316) 		/* Reading DR also clears EOC status flag */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1317) 		adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1318) 		if (iio_buffer_enabled(indio_dev)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1319) 			adc->bufi++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1320) 			if (adc->bufi >= adc->num_conv) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1321) 				stm32_adc_conv_irq_disable(adc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1322) 				iio_trigger_poll(indio_dev->trig);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1323) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1324) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1325) 			complete(&adc->completion);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1326) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1327) 		return IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1328) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1329) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1330) 	return IRQ_NONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1331) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1332) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1333) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1334)  * stm32_adc_validate_trigger() - validate trigger for stm32 adc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1335)  * @indio_dev: IIO device
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1336)  * @trig: new trigger
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1337)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1338)  * Returns: 0 if trig matches one of the triggers registered by stm32 adc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1339)  * driver, -EINVAL otherwise.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1340)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1341) static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1342) 				      struct iio_trigger *trig)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1343) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1344) 	return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1345) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1346) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1347) static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1348) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1349) 	struct stm32_adc *adc = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1350) 	unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1351) 	unsigned int rx_buf_sz = STM32_DMA_BUFFER_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1352) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1353) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1354) 	 * dma cyclic transfers are used, buffer is split into two periods.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1355) 	 * There should be :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1356) 	 * - always one buffer (period) dma is working on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1357) 	 * - one buffer (period) driver can push with iio_trigger_poll().
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1358) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1359) 	watermark = min(watermark, val * (unsigned)(sizeof(u16)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1360) 	adc->rx_buf_sz = min(rx_buf_sz, watermark * 2 * adc->num_conv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1361) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1362) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1363) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1364) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1365) static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1366) 				      const unsigned long *scan_mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1367) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1368) 	struct stm32_adc *adc = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1369) 	struct device *dev = indio_dev->dev.parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1370) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1371) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1372) 	ret = pm_runtime_get_sync(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1373) 	if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1374) 		pm_runtime_put_noidle(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1375) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1376) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1377) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1378) 	adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1379) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1380) 	ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1381) 	pm_runtime_mark_last_busy(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1382) 	pm_runtime_put_autosuspend(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1383) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1384) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1385) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1386) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1387) static int stm32_adc_of_xlate(struct iio_dev *indio_dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1388) 			      const struct of_phandle_args *iiospec)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1389) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1390) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1391) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1392) 	for (i = 0; i < indio_dev->num_channels; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1393) 		if (indio_dev->channels[i].channel == iiospec->args[0])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1394) 			return i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1395) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1396) 	return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1397) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1398) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1399) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1400)  * stm32_adc_debugfs_reg_access - read or write register value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1401)  * @indio_dev: IIO device structure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1402)  * @reg: register offset
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1403)  * @writeval: value to write
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1404)  * @readval: value to read
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1405)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1406)  * To read a value from an ADC register:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1407)  *   echo [ADC reg offset] > direct_reg_access
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1408)  *   cat direct_reg_access
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1409)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1410)  * To write a value in a ADC register:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1411)  *   echo [ADC_reg_offset] [value] > direct_reg_access
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1412)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1413) static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1414) 					unsigned reg, unsigned writeval,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1415) 					unsigned *readval)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1416) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1417) 	struct stm32_adc *adc = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1418) 	struct device *dev = indio_dev->dev.parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1419) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1420) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1421) 	ret = pm_runtime_get_sync(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1422) 	if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1423) 		pm_runtime_put_noidle(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1424) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1425) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1426) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1427) 	if (!readval)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1428) 		stm32_adc_writel(adc, reg, writeval);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1429) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1430) 		*readval = stm32_adc_readl(adc, reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1431) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1432) 	pm_runtime_mark_last_busy(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1433) 	pm_runtime_put_autosuspend(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1434) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1435) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1436) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1437) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1438) static const struct iio_info stm32_adc_iio_info = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1439) 	.read_raw = stm32_adc_read_raw,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1440) 	.validate_trigger = stm32_adc_validate_trigger,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1441) 	.hwfifo_set_watermark = stm32_adc_set_watermark,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1442) 	.update_scan_mode = stm32_adc_update_scan_mode,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1443) 	.debugfs_reg_access = stm32_adc_debugfs_reg_access,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1444) 	.of_xlate = stm32_adc_of_xlate,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1445) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1446) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1447) static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1448) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1449) 	struct dma_tx_state state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1450) 	enum dma_status status;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1451) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1452) 	status = dmaengine_tx_status(adc->dma_chan,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1453) 				     adc->dma_chan->cookie,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1454) 				     &state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1455) 	if (status == DMA_IN_PROGRESS) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1456) 		/* Residue is size in bytes from end of buffer */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1457) 		unsigned int i = adc->rx_buf_sz - state.residue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1458) 		unsigned int size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1459) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1460) 		/* Return available bytes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1461) 		if (i >= adc->bufi)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1462) 			size = i - adc->bufi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1463) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1464) 			size = adc->rx_buf_sz + i - adc->bufi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1465) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1466) 		return size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1467) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1468) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1469) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1470) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1471) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1472) static void stm32_adc_dma_buffer_done(void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1473) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1474) 	struct iio_dev *indio_dev = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1475) 	struct stm32_adc *adc = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1476) 	int residue = stm32_adc_dma_residue(adc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1477) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1478) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1479) 	 * In DMA mode the trigger services of IIO are not used
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1480) 	 * (e.g. no call to iio_trigger_poll).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1481) 	 * Calling irq handler associated to the hardware trigger is not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1482) 	 * relevant as the conversions have already been done. Data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1483) 	 * transfers are performed directly in DMA callback instead.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1484) 	 * This implementation avoids to call trigger irq handler that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1485) 	 * may sleep, in an atomic context (DMA irq handler context).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1486) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1487) 	dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1488) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1489) 	while (residue >= indio_dev->scan_bytes) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1490) 		u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1491) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1492) 		iio_push_to_buffers(indio_dev, buffer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1493) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1494) 		residue -= indio_dev->scan_bytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1495) 		adc->bufi += indio_dev->scan_bytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1496) 		if (adc->bufi >= adc->rx_buf_sz)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1497) 			adc->bufi = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1498) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1499) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1500) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1501) static int stm32_adc_dma_start(struct iio_dev *indio_dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1502) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1503) 	struct stm32_adc *adc = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1504) 	struct dma_async_tx_descriptor *desc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1505) 	dma_cookie_t cookie;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1506) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1507) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1508) 	if (!adc->dma_chan)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1509) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1510) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1511) 	dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1512) 		adc->rx_buf_sz, adc->rx_buf_sz / 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1513) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1514) 	/* Prepare a DMA cyclic transaction */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1515) 	desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1516) 					 adc->rx_dma_buf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1517) 					 adc->rx_buf_sz, adc->rx_buf_sz / 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1518) 					 DMA_DEV_TO_MEM,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1519) 					 DMA_PREP_INTERRUPT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1520) 	if (!desc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1521) 		return -EBUSY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1522) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1523) 	desc->callback = stm32_adc_dma_buffer_done;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1524) 	desc->callback_param = indio_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1525) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1526) 	cookie = dmaengine_submit(desc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1527) 	ret = dma_submit_error(cookie);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1528) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1529) 		dmaengine_terminate_sync(adc->dma_chan);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1530) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1531) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1532) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1533) 	/* Issue pending DMA requests */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1534) 	dma_async_issue_pending(adc->dma_chan);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1535) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1536) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1537) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1538) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1539) static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1540) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1541) 	struct stm32_adc *adc = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1542) 	struct device *dev = indio_dev->dev.parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1543) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1544) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1545) 	ret = pm_runtime_get_sync(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1546) 	if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1547) 		pm_runtime_put_noidle(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1548) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1549) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1550) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1551) 	ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1552) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1553) 		dev_err(&indio_dev->dev, "Can't set trigger\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1554) 		goto err_pm_put;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1555) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1556) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1557) 	ret = stm32_adc_dma_start(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1558) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1559) 		dev_err(&indio_dev->dev, "Can't start dma\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1560) 		goto err_clr_trig;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1561) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1562) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1563) 	/* Reset adc buffer index */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1564) 	adc->bufi = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1565) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1566) 	stm32_adc_ovr_irq_enable(adc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1567) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1568) 	if (!adc->dma_chan)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1569) 		stm32_adc_conv_irq_enable(adc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1570) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1571) 	adc->cfg->start_conv(indio_dev, !!adc->dma_chan);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1572) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1573) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1574) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1575) err_clr_trig:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1576) 	stm32_adc_set_trig(indio_dev, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1577) err_pm_put:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1578) 	pm_runtime_mark_last_busy(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1579) 	pm_runtime_put_autosuspend(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1580) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1581) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1582) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1583) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1584) static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1585) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1586) 	struct stm32_adc *adc = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1587) 	struct device *dev = indio_dev->dev.parent;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1588) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1589) 	adc->cfg->stop_conv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1590) 	if (!adc->dma_chan)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1591) 		stm32_adc_conv_irq_disable(adc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1592) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1593) 	stm32_adc_ovr_irq_disable(adc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1594) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1595) 	if (adc->dma_chan)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1596) 		dmaengine_terminate_sync(adc->dma_chan);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1597) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1598) 	if (stm32_adc_set_trig(indio_dev, NULL))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1599) 		dev_err(&indio_dev->dev, "Can't clear trigger\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1600) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1601) 	pm_runtime_mark_last_busy(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1602) 	pm_runtime_put_autosuspend(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1603) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1604) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1605) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1606) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1607) static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1608) 	.postenable = &stm32_adc_buffer_postenable,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1609) 	.predisable = &stm32_adc_buffer_predisable,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1610) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1611) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1612) static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1613) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1614) 	struct iio_poll_func *pf = p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1615) 	struct iio_dev *indio_dev = pf->indio_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1616) 	struct stm32_adc *adc = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1617) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1618) 	dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1619) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1620) 	if (!adc->dma_chan) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1621) 		/* reset buffer index */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1622) 		adc->bufi = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1623) 		iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1624) 						   pf->timestamp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1625) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1626) 		int residue = stm32_adc_dma_residue(adc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1627) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1628) 		while (residue >= indio_dev->scan_bytes) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1629) 			u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1630) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1631) 			iio_push_to_buffers_with_timestamp(indio_dev, buffer,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1632) 							   pf->timestamp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1633) 			residue -= indio_dev->scan_bytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1634) 			adc->bufi += indio_dev->scan_bytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1635) 			if (adc->bufi >= adc->rx_buf_sz)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1636) 				adc->bufi = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1637) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1638) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1639) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1640) 	iio_trigger_notify_done(indio_dev->trig);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1641) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1642) 	/* re-enable eoc irq */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1643) 	if (!adc->dma_chan)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1644) 		stm32_adc_conv_irq_enable(adc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1645) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1646) 	return IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1647) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1648) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1649) static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1650) 	IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1651) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1652) 		.name = "trigger_polarity_available",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1653) 		.shared = IIO_SHARED_BY_ALL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1654) 		.read = iio_enum_available_read,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1655) 		.private = (uintptr_t)&stm32_adc_trig_pol,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1656) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1657) 	{},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1658) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1659) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1660) static int stm32_adc_of_get_resolution(struct iio_dev *indio_dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1661) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1662) 	struct device_node *node = indio_dev->dev.of_node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1663) 	struct stm32_adc *adc = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1664) 	unsigned int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1665) 	u32 res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1666) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1667) 	if (of_property_read_u32(node, "assigned-resolution-bits", &res))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1668) 		res = adc->cfg->adc_info->resolutions[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1669) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1670) 	for (i = 0; i < adc->cfg->adc_info->num_res; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1671) 		if (res == adc->cfg->adc_info->resolutions[i])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1672) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1673) 	if (i >= adc->cfg->adc_info->num_res) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1674) 		dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1675) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1676) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1677) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1678) 	dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1679) 	adc->res = i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1680) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1681) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1682) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1683) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1684) static void stm32_adc_smpr_init(struct stm32_adc *adc, int channel, u32 smp_ns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1685) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1686) 	const struct stm32_adc_regs *smpr = &adc->cfg->regs->smp_bits[channel];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1687) 	u32 period_ns, shift = smpr->shift, mask = smpr->mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1688) 	unsigned int smp, r = smpr->reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1689) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1690) 	/* Determine sampling time (ADC clock cycles) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1691) 	period_ns = NSEC_PER_SEC / adc->common->rate;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1692) 	for (smp = 0; smp <= STM32_ADC_MAX_SMP; smp++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1693) 		if ((period_ns * adc->cfg->smp_cycles[smp]) >= smp_ns)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1694) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1695) 	if (smp > STM32_ADC_MAX_SMP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1696) 		smp = STM32_ADC_MAX_SMP;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1697) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1698) 	/* pre-build sampling time registers (e.g. smpr1, smpr2) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1699) 	adc->smpr_val[r] = (adc->smpr_val[r] & ~mask) | (smp << shift);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1700) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1701) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1702) static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1703) 				    struct iio_chan_spec *chan, u32 vinp,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1704) 				    u32 vinn, int scan_index, bool differential)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1705) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1706) 	struct stm32_adc *adc = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1707) 	char *name = adc->chan_name[vinp];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1708) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1709) 	chan->type = IIO_VOLTAGE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1710) 	chan->channel = vinp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1711) 	if (differential) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1712) 		chan->differential = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1713) 		chan->channel2 = vinn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1714) 		snprintf(name, STM32_ADC_CH_SZ, "in%d-in%d", vinp, vinn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1715) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1716) 		snprintf(name, STM32_ADC_CH_SZ, "in%d", vinp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1717) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1718) 	chan->datasheet_name = name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1719) 	chan->scan_index = scan_index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1720) 	chan->indexed = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1721) 	chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1722) 	chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1723) 					 BIT(IIO_CHAN_INFO_OFFSET);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1724) 	chan->scan_type.sign = 'u';
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1725) 	chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1726) 	chan->scan_type.storagebits = 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1727) 	chan->ext_info = stm32_adc_ext_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1728) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1729) 	/* pre-build selected channels mask */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1730) 	adc->pcsel |= BIT(chan->channel);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1731) 	if (differential) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1732) 		/* pre-build diff channels mask */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1733) 		adc->difsel |= BIT(chan->channel);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1734) 		/* Also add negative input to pre-selected channels */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1735) 		adc->pcsel |= BIT(chan->channel2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1736) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1737) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1738) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1739) static int stm32_adc_chan_of_init(struct iio_dev *indio_dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1740) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1741) 	struct device_node *node = indio_dev->dev.of_node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1742) 	struct stm32_adc *adc = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1743) 	const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1744) 	struct stm32_adc_diff_channel diff[STM32_ADC_CH_MAX];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1745) 	struct property *prop;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1746) 	const __be32 *cur;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1747) 	struct iio_chan_spec *channels;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1748) 	int scan_index = 0, num_channels = 0, num_diff = 0, ret, i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1749) 	u32 val, smp = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1750) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1751) 	ret = of_property_count_u32_elems(node, "st,adc-channels");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1752) 	if (ret > adc_info->max_channels) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1753) 		dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1754) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1755) 	} else if (ret > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1756) 		num_channels += ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1757) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1758) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1759) 	ret = of_property_count_elems_of_size(node, "st,adc-diff-channels",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1760) 					      sizeof(*diff));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1761) 	if (ret > adc_info->max_channels) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1762) 		dev_err(&indio_dev->dev, "Bad st,adc-diff-channels?\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1763) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1764) 	} else if (ret > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1765) 		int size = ret * sizeof(*diff) / sizeof(u32);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1766) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1767) 		num_diff = ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1768) 		num_channels += ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1769) 		ret = of_property_read_u32_array(node, "st,adc-diff-channels",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1770) 						 (u32 *)diff, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1771) 		if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1772) 			return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1773) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1774) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1775) 	if (!num_channels) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1776) 		dev_err(&indio_dev->dev, "No channels configured\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1777) 		return -ENODATA;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1778) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1779) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1780) 	/* Optional sample time is provided either for each, or all channels */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1781) 	ret = of_property_count_u32_elems(node, "st,min-sample-time-nsecs");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1782) 	if (ret > 1 && ret != num_channels) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1783) 		dev_err(&indio_dev->dev, "Invalid st,min-sample-time-nsecs\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1784) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1785) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1786) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1787) 	channels = devm_kcalloc(&indio_dev->dev, num_channels,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1788) 				sizeof(struct iio_chan_spec), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1789) 	if (!channels)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1790) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1791) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1792) 	of_property_for_each_u32(node, "st,adc-channels", prop, cur, val) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1793) 		if (val >= adc_info->max_channels) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1794) 			dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1795) 			return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1796) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1797) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1798) 		/* Channel can't be configured both as single-ended & diff */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1799) 		for (i = 0; i < num_diff; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1800) 			if (val == diff[i].vinp) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1801) 				dev_err(&indio_dev->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1802) 					"channel %d miss-configured\n",	val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1803) 				return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1804) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1805) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1806) 		stm32_adc_chan_init_one(indio_dev, &channels[scan_index], val,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1807) 					0, scan_index, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1808) 		scan_index++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1809) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1810) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1811) 	for (i = 0; i < num_diff; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1812) 		if (diff[i].vinp >= adc_info->max_channels ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1813) 		    diff[i].vinn >= adc_info->max_channels) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1814) 			dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1815) 				diff[i].vinp, diff[i].vinn);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1816) 			return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1817) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1818) 		stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1819) 					diff[i].vinp, diff[i].vinn, scan_index,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1820) 					true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1821) 		scan_index++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1822) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1823) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1824) 	for (i = 0; i < scan_index; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1825) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1826) 		 * Using of_property_read_u32_index(), smp value will only be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1827) 		 * modified if valid u32 value can be decoded. This allows to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1828) 		 * get either no value, 1 shared value for all indexes, or one
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1829) 		 * value per channel.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1830) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1831) 		of_property_read_u32_index(node, "st,min-sample-time-nsecs",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1832) 					   i, &smp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1833) 		/* Prepare sampling time settings */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1834) 		stm32_adc_smpr_init(adc, channels[i].channel, smp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1835) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1836) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1837) 	indio_dev->num_channels = scan_index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1838) 	indio_dev->channels = channels;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1839) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1840) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1841) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1842) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1843) static int stm32_adc_dma_request(struct device *dev, struct iio_dev *indio_dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1844) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1845) 	struct stm32_adc *adc = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1846) 	struct dma_slave_config config;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1847) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1848) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1849) 	adc->dma_chan = dma_request_chan(dev, "rx");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1850) 	if (IS_ERR(adc->dma_chan)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1851) 		ret = PTR_ERR(adc->dma_chan);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1852) 		if (ret != -ENODEV)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1853) 			return dev_err_probe(dev, ret,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1854) 					     "DMA channel request failed with\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1855) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1856) 		/* DMA is optional: fall back to IRQ mode */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1857) 		adc->dma_chan = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1858) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1859) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1860) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1861) 	adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1862) 					 STM32_DMA_BUFFER_SIZE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1863) 					 &adc->rx_dma_buf, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1864) 	if (!adc->rx_buf) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1865) 		ret = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1866) 		goto err_release;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1867) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1868) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1869) 	/* Configure DMA channel to read data register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1870) 	memset(&config, 0, sizeof(config));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1871) 	config.src_addr = (dma_addr_t)adc->common->phys_base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1872) 	config.src_addr += adc->offset + adc->cfg->regs->dr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1873) 	config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1874) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1875) 	ret = dmaengine_slave_config(adc->dma_chan, &config);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1876) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1877) 		goto err_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1878) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1879) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1880) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1881) err_free:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1882) 	dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1883) 			  adc->rx_buf, adc->rx_dma_buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1884) err_release:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1885) 	dma_release_channel(adc->dma_chan);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1886) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1887) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1888) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1889) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1890) static int stm32_adc_probe(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1891) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1892) 	struct iio_dev *indio_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1893) 	struct device *dev = &pdev->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1894) 	irqreturn_t (*handler)(int irq, void *p) = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1895) 	struct stm32_adc *adc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1896) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1897) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1898) 	if (!pdev->dev.of_node)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1899) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1900) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1901) 	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1902) 	if (!indio_dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1903) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1904) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1905) 	adc = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1906) 	adc->common = dev_get_drvdata(pdev->dev.parent);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1907) 	spin_lock_init(&adc->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1908) 	init_completion(&adc->completion);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1909) 	adc->cfg = (const struct stm32_adc_cfg *)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1910) 		of_match_device(dev->driver->of_match_table, dev)->data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1911) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1912) 	indio_dev->name = dev_name(&pdev->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1913) 	indio_dev->dev.of_node = pdev->dev.of_node;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1914) 	indio_dev->info = &stm32_adc_iio_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1915) 	indio_dev->modes = INDIO_DIRECT_MODE | INDIO_HARDWARE_TRIGGERED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1916) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1917) 	platform_set_drvdata(pdev, indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1918) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1919) 	ret = of_property_read_u32(pdev->dev.of_node, "reg", &adc->offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1920) 	if (ret != 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1921) 		dev_err(&pdev->dev, "missing reg property\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1922) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1923) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1924) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1925) 	adc->irq = platform_get_irq(pdev, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1926) 	if (adc->irq < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1927) 		return adc->irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1928) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1929) 	ret = devm_request_threaded_irq(&pdev->dev, adc->irq, stm32_adc_isr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1930) 					stm32_adc_threaded_isr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1931) 					0, pdev->name, indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1932) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1933) 		dev_err(&pdev->dev, "failed to request IRQ\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1934) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1935) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1936) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1937) 	adc->clk = devm_clk_get(&pdev->dev, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1938) 	if (IS_ERR(adc->clk)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1939) 		ret = PTR_ERR(adc->clk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1940) 		if (ret == -ENOENT && !adc->cfg->clk_required) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1941) 			adc->clk = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1942) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1943) 			dev_err(&pdev->dev, "Can't get clock\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1944) 			return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1945) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1946) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1947) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1948) 	ret = stm32_adc_of_get_resolution(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1949) 	if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1950) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1951) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1952) 	ret = stm32_adc_chan_of_init(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1953) 	if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1954) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1955) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1956) 	ret = stm32_adc_dma_request(dev, indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1957) 	if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1958) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1959) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1960) 	if (!adc->dma_chan)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1961) 		handler = &stm32_adc_trigger_handler;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1962) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1963) 	ret = iio_triggered_buffer_setup(indio_dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1964) 					 &iio_pollfunc_store_time, handler,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1965) 					 &stm32_adc_buffer_setup_ops);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1966) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1967) 		dev_err(&pdev->dev, "buffer setup failed\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1968) 		goto err_dma_disable;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1969) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1970) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1971) 	/* Get stm32-adc-core PM online */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1972) 	pm_runtime_get_noresume(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1973) 	pm_runtime_set_active(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1974) 	pm_runtime_set_autosuspend_delay(dev, STM32_ADC_HW_STOP_DELAY_MS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1975) 	pm_runtime_use_autosuspend(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1976) 	pm_runtime_enable(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1977) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1978) 	ret = stm32_adc_hw_start(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1979) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1980) 		goto err_buffer_cleanup;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1981) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1982) 	ret = iio_device_register(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1983) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1984) 		dev_err(&pdev->dev, "iio dev register failed\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1985) 		goto err_hw_stop;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1986) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1987) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1988) 	pm_runtime_mark_last_busy(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1989) 	pm_runtime_put_autosuspend(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1990) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1991) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1992) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1993) err_hw_stop:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1994) 	stm32_adc_hw_stop(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1995) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1996) err_buffer_cleanup:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1997) 	pm_runtime_disable(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1998) 	pm_runtime_set_suspended(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1999) 	pm_runtime_put_noidle(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2000) 	iio_triggered_buffer_cleanup(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2001) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2002) err_dma_disable:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2003) 	if (adc->dma_chan) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2004) 		dma_free_coherent(adc->dma_chan->device->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2005) 				  STM32_DMA_BUFFER_SIZE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2006) 				  adc->rx_buf, adc->rx_dma_buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2007) 		dma_release_channel(adc->dma_chan);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2008) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2009) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2010) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2011) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2012) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2013) static int stm32_adc_remove(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2014) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2015) 	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2016) 	struct stm32_adc *adc = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2017) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2018) 	pm_runtime_get_sync(&pdev->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2019) 	iio_device_unregister(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2020) 	stm32_adc_hw_stop(&pdev->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2021) 	pm_runtime_disable(&pdev->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2022) 	pm_runtime_set_suspended(&pdev->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2023) 	pm_runtime_put_noidle(&pdev->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2024) 	iio_triggered_buffer_cleanup(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2025) 	if (adc->dma_chan) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2026) 		dma_free_coherent(adc->dma_chan->device->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2027) 				  STM32_DMA_BUFFER_SIZE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2028) 				  adc->rx_buf, adc->rx_dma_buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2029) 		dma_release_channel(adc->dma_chan);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2030) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2031) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2032) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2033) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2034) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2035) #if defined(CONFIG_PM_SLEEP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2036) static int stm32_adc_suspend(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2037) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2038) 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2039) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2040) 	if (iio_buffer_enabled(indio_dev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2041) 		stm32_adc_buffer_predisable(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2042) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2043) 	return pm_runtime_force_suspend(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2044) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2045) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2046) static int stm32_adc_resume(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2047) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2048) 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2049) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2050) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2051) 	ret = pm_runtime_force_resume(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2052) 	if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2053) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2054) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2055) 	if (!iio_buffer_enabled(indio_dev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2056) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2057) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2058) 	ret = stm32_adc_update_scan_mode(indio_dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2059) 					 indio_dev->active_scan_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2060) 	if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2061) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2062) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2063) 	return stm32_adc_buffer_postenable(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2064) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2065) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2066) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2067) #if defined(CONFIG_PM)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2068) static int stm32_adc_runtime_suspend(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2069) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2070) 	return stm32_adc_hw_stop(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2071) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2072) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2073) static int stm32_adc_runtime_resume(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2074) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2075) 	return stm32_adc_hw_start(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2076) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2077) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2078) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2079) static const struct dev_pm_ops stm32_adc_pm_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2080) 	SET_SYSTEM_SLEEP_PM_OPS(stm32_adc_suspend, stm32_adc_resume)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2081) 	SET_RUNTIME_PM_OPS(stm32_adc_runtime_suspend, stm32_adc_runtime_resume,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2082) 			   NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2083) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2084) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2085) static const struct stm32_adc_cfg stm32f4_adc_cfg = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2086) 	.regs = &stm32f4_adc_regspec,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2087) 	.adc_info = &stm32f4_adc_info,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2088) 	.trigs = stm32f4_adc_trigs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2089) 	.clk_required = true,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2090) 	.start_conv = stm32f4_adc_start_conv,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2091) 	.stop_conv = stm32f4_adc_stop_conv,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2092) 	.smp_cycles = stm32f4_adc_smp_cycles,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2093) 	.irq_clear = stm32f4_adc_irq_clear,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2094) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2095) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2096) static const struct stm32_adc_cfg stm32h7_adc_cfg = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2097) 	.regs = &stm32h7_adc_regspec,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2098) 	.adc_info = &stm32h7_adc_info,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2099) 	.trigs = stm32h7_adc_trigs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2100) 	.start_conv = stm32h7_adc_start_conv,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2101) 	.stop_conv = stm32h7_adc_stop_conv,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2102) 	.prepare = stm32h7_adc_prepare,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2103) 	.unprepare = stm32h7_adc_unprepare,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2104) 	.smp_cycles = stm32h7_adc_smp_cycles,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2105) 	.irq_clear = stm32h7_adc_irq_clear,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2106) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2107) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2108) static const struct stm32_adc_cfg stm32mp1_adc_cfg = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2109) 	.regs = &stm32h7_adc_regspec,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2110) 	.adc_info = &stm32h7_adc_info,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2111) 	.trigs = stm32h7_adc_trigs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2112) 	.has_vregready = true,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2113) 	.start_conv = stm32h7_adc_start_conv,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2114) 	.stop_conv = stm32h7_adc_stop_conv,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2115) 	.prepare = stm32h7_adc_prepare,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2116) 	.unprepare = stm32h7_adc_unprepare,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2117) 	.smp_cycles = stm32h7_adc_smp_cycles,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2118) 	.irq_clear = stm32h7_adc_irq_clear,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2119) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2120) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2121) static const struct of_device_id stm32_adc_of_match[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2122) 	{ .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2123) 	{ .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2124) 	{ .compatible = "st,stm32mp1-adc", .data = (void *)&stm32mp1_adc_cfg },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2125) 	{},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2126) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2127) MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2128) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2129) static struct platform_driver stm32_adc_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2130) 	.probe = stm32_adc_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2131) 	.remove = stm32_adc_remove,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2132) 	.driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2133) 		.name = "stm32-adc",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2134) 		.of_match_table = stm32_adc_of_match,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2135) 		.pm = &stm32_adc_pm_ops,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2136) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2137) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2138) module_platform_driver(stm32_adc_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2139) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2140) MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2141) MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2142) MODULE_LICENSE("GPL v2");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2143) MODULE_ALIAS("platform:stm32-adc");