Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
// SPDX-License-Identifier: GPL-2.0
/*
* This file is part of STM32 ADC driver
*
* Copyright (C) 2016, STMicroelectronics - All Rights Reserved
* Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/iio/iio.h>
#include <linux/iio/buffer.h>
#include <linux/iio/timer/stm32-lptim-trigger.h>
#include <linux/iio/timer/stm32-timer-trigger.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include "stm32-adc-core.h"
/* Number of linear calibration shadow registers / LINCALRDYW control bits */
#define STM32H7_LINCALFACT_NUM 6
/* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */
#define STM32H7_BOOST_CLKRATE 20000000UL
#define STM32_ADC_CH_MAX 20 /* max number of channels */
#define STM32_ADC_CH_SZ 10 /* max channel name size */
#define STM32_ADC_MAX_SQ 16 /* SQ1..SQ16 */
#define STM32_ADC_MAX_SMP 7 /* SMPx range is [0..7] */
#define STM32_ADC_TIMEOUT_US 100000
#define STM32_ADC_TIMEOUT (msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
#define STM32_ADC_HW_STOP_DELAY_MS 100
#define STM32_DMA_BUFFER_SIZE PAGE_SIZE
/* External trigger enable */
enum stm32_adc_exten {
<------>STM32_EXTEN_SWTRIG,
<------>STM32_EXTEN_HWTRIG_RISING_EDGE,
<------>STM32_EXTEN_HWTRIG_FALLING_EDGE,
<------>STM32_EXTEN_HWTRIG_BOTH_EDGES,
};
/* extsel - trigger mux selection value */
enum stm32_adc_extsel {
<------>STM32_EXT0,
<------>STM32_EXT1,
<------>STM32_EXT2,
<------>STM32_EXT3,
<------>STM32_EXT4,
<------>STM32_EXT5,
<------>STM32_EXT6,
<------>STM32_EXT7,
<------>STM32_EXT8,
<------>STM32_EXT9,
<------>STM32_EXT10,
<------>STM32_EXT11,
<------>STM32_EXT12,
<------>STM32_EXT13,
<------>STM32_EXT14,
<------>STM32_EXT15,
<------>STM32_EXT16,
<------>STM32_EXT17,
<------>STM32_EXT18,
<------>STM32_EXT19,
<------>STM32_EXT20,
};
/**
* struct stm32_adc_trig_info - ADC trigger info
* @name: name of the trigger, corresponding to its source
* @extsel: trigger selection
*/
struct stm32_adc_trig_info {
<------>const char *name;
<------>enum stm32_adc_extsel extsel;
};
/**
* struct stm32_adc_calib - optional adc calibration data
* @calfact_s: Calibration offset for single ended channels
* @calfact_d: Calibration offset in differential
* @lincalfact: Linearity calibration factor
* @calibrated: Indicates calibration status
*/
struct stm32_adc_calib {
<------>u32 calfact_s;
<------>u32 calfact_d;
<------>u32 lincalfact[STM32H7_LINCALFACT_NUM];
<------>bool calibrated;
};
/**
* struct stm32_adc_regs - stm32 ADC misc registers & bitfield desc
* @reg: register offset
* @mask: bitfield mask
* @shift: left shift
*/
struct stm32_adc_regs {
<------>int reg;
<------>int mask;
<------>int shift;
};
/**
* struct stm32_adc_regspec - stm32 registers definition
* @dr: data register offset
* @ier_eoc: interrupt enable register & eocie bitfield
* @ier_ovr: interrupt enable register & overrun bitfield
* @isr_eoc: interrupt status register & eoc bitfield
* @isr_ovr: interrupt status register & overrun bitfield
* @sqr: reference to sequence registers array
* @exten: trigger control register & bitfield
* @extsel: trigger selection register & bitfield
* @res: resolution selection register & bitfield
* @smpr: smpr1 & smpr2 registers offset array
* @smp_bits: smpr1 & smpr2 index and bitfields
*/
struct stm32_adc_regspec {
<------>const u32 dr;
<------>const struct stm32_adc_regs ier_eoc;
<------>const struct stm32_adc_regs ier_ovr;
<------>const struct stm32_adc_regs isr_eoc;
<------>const struct stm32_adc_regs isr_ovr;
<------>const struct stm32_adc_regs *sqr;
<------>const struct stm32_adc_regs exten;
<------>const struct stm32_adc_regs extsel;
<------>const struct stm32_adc_regs res;
<------>const u32 smpr[2];
<------>const struct stm32_adc_regs *smp_bits;
};
struct stm32_adc;
/**
* struct stm32_adc_cfg - stm32 compatible configuration data
* @regs: registers descriptions
* @adc_info: per instance input channels definitions
* @trigs: external trigger sources
* @clk_required: clock is required
* @has_vregready: vregready status flag presence
* @prepare: optional prepare routine (power-up, enable)
* @start_conv: routine to start conversions
* @stop_conv: routine to stop conversions
* @unprepare: optional unprepare routine (disable, power-down)
* @irq_clear: routine to clear irqs
* @smp_cycles: programmable sampling time (ADC clock cycles)
*/
struct stm32_adc_cfg {
<------>const struct stm32_adc_regspec *regs;
<------>const struct stm32_adc_info *adc_info;
<------>struct stm32_adc_trig_info *trigs;
<------>bool clk_required;
<------>bool has_vregready;
<------>int (*prepare)(struct iio_dev *);
<------>void (*start_conv)(struct iio_dev *, bool dma);
<------>void (*stop_conv)(struct iio_dev *);
<------>void (*unprepare)(struct iio_dev *);
<------>void (*irq_clear)(struct iio_dev *indio_dev, u32 msk);
<------>const unsigned int *smp_cycles;
};
/**
* struct stm32_adc - private data of each ADC IIO instance
* @common: reference to ADC block common data
* @offset: ADC instance register offset in ADC block
* @cfg: compatible configuration data
* @completion: end of single conversion completion
* @buffer: data buffer
* @clk: clock for this adc instance
* @irq: interrupt for this adc instance
* @lock: spinlock
* @bufi: data buffer index
* @num_conv: expected number of scan conversions
* @res: data resolution (e.g. RES bitfield value)
* @trigger_polarity: external trigger polarity (e.g. exten)
* @dma_chan: dma channel
* @rx_buf: dma rx buffer cpu address
* @rx_dma_buf: dma rx buffer bus address
* @rx_buf_sz: dma rx buffer size
* @difsel: bitmask to set single-ended/differential channel
* @pcsel: bitmask to preselect channels on some devices
* @smpr_val: sampling time settings (e.g. smpr1 / smpr2)
* @cal: optional calibration data on some devices
* @chan_name: channel name array
*/
struct stm32_adc {
<------>struct stm32_adc_common *common;
<------>u32 offset;
<------>const struct stm32_adc_cfg *cfg;
<------>struct completion completion;
<------>u16 buffer[STM32_ADC_MAX_SQ];
<------>struct clk *clk;
<------>int irq;
<------>spinlock_t lock; /* interrupt lock */
<------>unsigned int bufi;
<------>unsigned int num_conv;
<------>u32 res;
<------>u32 trigger_polarity;
<------>struct dma_chan *dma_chan;
<------>u8 *rx_buf;
<------>dma_addr_t rx_dma_buf;
<------>unsigned int rx_buf_sz;
<------>u32 difsel;
<------>u32 pcsel;
<------>u32 smpr_val[2];
<------>struct stm32_adc_calib cal;
<------>char chan_name[STM32_ADC_CH_MAX][STM32_ADC_CH_SZ];
};
struct stm32_adc_diff_channel {
<------>u32 vinp;
<------>u32 vinn;
};
/**
* struct stm32_adc_info - stm32 ADC, per instance config data
* @max_channels: Number of channels
* @resolutions: available resolutions
* @num_res: number of available resolutions
*/
struct stm32_adc_info {
<------>int max_channels;
<------>const unsigned int *resolutions;
<------>const unsigned int num_res;
};
static const unsigned int stm32f4_adc_resolutions[] = {
<------>/* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
<------>12, 10, 8, 6,
};
/* stm32f4 can have up to 16 channels */
static const struct stm32_adc_info stm32f4_adc_info = {
<------>.max_channels = 16,
<------>.resolutions = stm32f4_adc_resolutions,
<------>.num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
};
static const unsigned int stm32h7_adc_resolutions[] = {
<------>/* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */
<------>16, 14, 12, 10, 8,
};
/* stm32h7 can have up to 20 channels */
static const struct stm32_adc_info stm32h7_adc_info = {
<------>.max_channels = STM32_ADC_CH_MAX,
<------>.resolutions = stm32h7_adc_resolutions,
<------>.num_res = ARRAY_SIZE(stm32h7_adc_resolutions),
};
/*
* stm32f4_sq - describe regular sequence registers
* - L: sequence len (register & bit field)
* - SQ1..SQ16: sequence entries (register & bit field)
*/
static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
<------>/* L: len bit field description to be kept as first element */
<------>{ STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
<------>/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
<------>{ STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
<------>{ STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
<------>{ STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
<------>{ STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
<------>{ STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
<------>{ STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
<------>{ STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
<------>{ STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
<------>{ STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
<------>{ STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
<------>{ STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
<------>{ STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
<------>{ STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
<------>{ STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
<------>{ STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
<------>{ STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
};
/* STM32F4 external trigger sources for all instances */
static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
<------>{ TIM1_CH1, STM32_EXT0 },
<------>{ TIM1_CH2, STM32_EXT1 },
<------>{ TIM1_CH3, STM32_EXT2 },
<------>{ TIM2_CH2, STM32_EXT3 },
<------>{ TIM2_CH3, STM32_EXT4 },
<------>{ TIM2_CH4, STM32_EXT5 },
<------>{ TIM2_TRGO, STM32_EXT6 },
<------>{ TIM3_CH1, STM32_EXT7 },
<------>{ TIM3_TRGO, STM32_EXT8 },
<------>{ TIM4_CH4, STM32_EXT9 },
<------>{ TIM5_CH1, STM32_EXT10 },
<------>{ TIM5_CH2, STM32_EXT11 },
<------>{ TIM5_CH3, STM32_EXT12 },
<------>{ TIM8_CH1, STM32_EXT13 },
<------>{ TIM8_TRGO, STM32_EXT14 },
<------>{}, /* sentinel */
};
/*
* stm32f4_smp_bits[] - describe sampling time register index & bit fields
* Sorted so it can be indexed by channel number.
*/
static const struct stm32_adc_regs stm32f4_smp_bits[] = {
<------>/* STM32F4_ADC_SMPR2: smpr[] index, mask, shift for SMP0 to SMP9 */
<------>{ 1, GENMASK(2, 0), 0 },
<------>{ 1, GENMASK(5, 3), 3 },
<------>{ 1, GENMASK(8, 6), 6 },
<------>{ 1, GENMASK(11, 9), 9 },
<------>{ 1, GENMASK(14, 12), 12 },
<------>{ 1, GENMASK(17, 15), 15 },
<------>{ 1, GENMASK(20, 18), 18 },
<------>{ 1, GENMASK(23, 21), 21 },
<------>{ 1, GENMASK(26, 24), 24 },
<------>{ 1, GENMASK(29, 27), 27 },
<------>/* STM32F4_ADC_SMPR1, smpr[] index, mask, shift for SMP10 to SMP18 */
<------>{ 0, GENMASK(2, 0), 0 },
<------>{ 0, GENMASK(5, 3), 3 },
<------>{ 0, GENMASK(8, 6), 6 },
<------>{ 0, GENMASK(11, 9), 9 },
<------>{ 0, GENMASK(14, 12), 12 },
<------>{ 0, GENMASK(17, 15), 15 },
<------>{ 0, GENMASK(20, 18), 18 },
<------>{ 0, GENMASK(23, 21), 21 },
<------>{ 0, GENMASK(26, 24), 24 },
};
/* STM32F4 programmable sampling time (ADC clock cycles) */
static const unsigned int stm32f4_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
<------>3, 15, 28, 56, 84, 112, 144, 480,
};
static const struct stm32_adc_regspec stm32f4_adc_regspec = {
<------>.dr = STM32F4_ADC_DR,
<------>.ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
<------>.ier_ovr = { STM32F4_ADC_CR1, STM32F4_OVRIE },
<------>.isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
<------>.isr_ovr = { STM32F4_ADC_SR, STM32F4_OVR },
<------>.sqr = stm32f4_sq,
<------>.exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
<------>.extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
<------><------> STM32F4_EXTSEL_SHIFT },
<------>.res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
<------>.smpr = { STM32F4_ADC_SMPR1, STM32F4_ADC_SMPR2 },
<------>.smp_bits = stm32f4_smp_bits,
};
static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = {
<------>/* L: len bit field description to be kept as first element */
<------>{ STM32H7_ADC_SQR1, GENMASK(3, 0), 0 },
<------>/* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
<------>{ STM32H7_ADC_SQR1, GENMASK(10, 6), 6 },
<------>{ STM32H7_ADC_SQR1, GENMASK(16, 12), 12 },
<------>{ STM32H7_ADC_SQR1, GENMASK(22, 18), 18 },
<------>{ STM32H7_ADC_SQR1, GENMASK(28, 24), 24 },
<------>{ STM32H7_ADC_SQR2, GENMASK(4, 0), 0 },
<------>{ STM32H7_ADC_SQR2, GENMASK(10, 6), 6 },
<------>{ STM32H7_ADC_SQR2, GENMASK(16, 12), 12 },
<------>{ STM32H7_ADC_SQR2, GENMASK(22, 18), 18 },
<------>{ STM32H7_ADC_SQR2, GENMASK(28, 24), 24 },
<------>{ STM32H7_ADC_SQR3, GENMASK(4, 0), 0 },
<------>{ STM32H7_ADC_SQR3, GENMASK(10, 6), 6 },
<------>{ STM32H7_ADC_SQR3, GENMASK(16, 12), 12 },
<------>{ STM32H7_ADC_SQR3, GENMASK(22, 18), 18 },
<------>{ STM32H7_ADC_SQR3, GENMASK(28, 24), 24 },
<------>{ STM32H7_ADC_SQR4, GENMASK(4, 0), 0 },
<------>{ STM32H7_ADC_SQR4, GENMASK(10, 6), 6 },
};
/* STM32H7 external trigger sources for all instances */
static struct stm32_adc_trig_info stm32h7_adc_trigs[] = {
<------>{ TIM1_CH1, STM32_EXT0 },
<------>{ TIM1_CH2, STM32_EXT1 },
<------>{ TIM1_CH3, STM32_EXT2 },
<------>{ TIM2_CH2, STM32_EXT3 },
<------>{ TIM3_TRGO, STM32_EXT4 },
<------>{ TIM4_CH4, STM32_EXT5 },
<------>{ TIM8_TRGO, STM32_EXT7 },
<------>{ TIM8_TRGO2, STM32_EXT8 },
<------>{ TIM1_TRGO, STM32_EXT9 },
<------>{ TIM1_TRGO2, STM32_EXT10 },
<------>{ TIM2_TRGO, STM32_EXT11 },
<------>{ TIM4_TRGO, STM32_EXT12 },
<------>{ TIM6_TRGO, STM32_EXT13 },
<------>{ TIM15_TRGO, STM32_EXT14 },
<------>{ TIM3_CH4, STM32_EXT15 },
<------>{ LPTIM1_OUT, STM32_EXT18 },
<------>{ LPTIM2_OUT, STM32_EXT19 },
<------>{ LPTIM3_OUT, STM32_EXT20 },
<------>{},
};
/*
* stm32h7_smp_bits - describe sampling time register index & bit fields
* Sorted so it can be indexed by channel number.
*/
static const struct stm32_adc_regs stm32h7_smp_bits[] = {
<------>/* STM32H7_ADC_SMPR1, smpr[] index, mask, shift for SMP0 to SMP9 */
<------>{ 0, GENMASK(2, 0), 0 },
<------>{ 0, GENMASK(5, 3), 3 },
<------>{ 0, GENMASK(8, 6), 6 },
<------>{ 0, GENMASK(11, 9), 9 },
<------>{ 0, GENMASK(14, 12), 12 },
<------>{ 0, GENMASK(17, 15), 15 },
<------>{ 0, GENMASK(20, 18), 18 },
<------>{ 0, GENMASK(23, 21), 21 },
<------>{ 0, GENMASK(26, 24), 24 },
<------>{ 0, GENMASK(29, 27), 27 },
<------>/* STM32H7_ADC_SMPR2, smpr[] index, mask, shift for SMP10 to SMP19 */
<------>{ 1, GENMASK(2, 0), 0 },
<------>{ 1, GENMASK(5, 3), 3 },
<------>{ 1, GENMASK(8, 6), 6 },
<------>{ 1, GENMASK(11, 9), 9 },
<------>{ 1, GENMASK(14, 12), 12 },
<------>{ 1, GENMASK(17, 15), 15 },
<------>{ 1, GENMASK(20, 18), 18 },
<------>{ 1, GENMASK(23, 21), 21 },
<------>{ 1, GENMASK(26, 24), 24 },
<------>{ 1, GENMASK(29, 27), 27 },
};
/* STM32H7 programmable sampling time (ADC clock cycles, rounded down) */
static const unsigned int stm32h7_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
<------>1, 2, 8, 16, 32, 64, 387, 810,
};
static const struct stm32_adc_regspec stm32h7_adc_regspec = {
<------>.dr = STM32H7_ADC_DR,
<------>.ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
<------>.ier_ovr = { STM32H7_ADC_IER, STM32H7_OVRIE },
<------>.isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
<------>.isr_ovr = { STM32H7_ADC_ISR, STM32H7_OVR },
<------>.sqr = stm32h7_sq,
<------>.exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
<------>.extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
<------><------> STM32H7_EXTSEL_SHIFT },
<------>.res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
<------>.smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
<------>.smp_bits = stm32h7_smp_bits,
};
/**
* STM32 ADC registers access routines
* @adc: stm32 adc instance
* @reg: reg offset in adc instance
*
* Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
* for adc1, adc2 and adc3.
*/
static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
{
<------>return readl_relaxed(adc->common->base + adc->offset + reg);
}
#define stm32_adc_readl_addr(addr) stm32_adc_readl(adc, addr)
#define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \
<------>readx_poll_timeout(stm32_adc_readl_addr, reg, val, \
<------><------><------> cond, sleep_us, timeout_us)
static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
{
<------>return readw_relaxed(adc->common->base + adc->offset + reg);
}
static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
{
<------>writel_relaxed(val, adc->common->base + adc->offset + reg);
}
static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
{
<------>unsigned long flags;
<------>spin_lock_irqsave(&adc->lock, flags);
<------>stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
<------>spin_unlock_irqrestore(&adc->lock, flags);
}
static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
{
<------>unsigned long flags;
<------>spin_lock_irqsave(&adc->lock, flags);
<------>stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
<------>spin_unlock_irqrestore(&adc->lock, flags);
}
/**
* stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
* @adc: stm32 adc instance
*/
static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
{
<------>stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
<------><------><------> adc->cfg->regs->ier_eoc.mask);
};
/**
* stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
* @adc: stm32 adc instance
*/
static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
{
<------>stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
<------><------><------> adc->cfg->regs->ier_eoc.mask);
}
static void stm32_adc_ovr_irq_enable(struct stm32_adc *adc)
{
<------>stm32_adc_set_bits(adc, adc->cfg->regs->ier_ovr.reg,
<------><------><------> adc->cfg->regs->ier_ovr.mask);
}
static void stm32_adc_ovr_irq_disable(struct stm32_adc *adc)
{
<------>stm32_adc_clr_bits(adc, adc->cfg->regs->ier_ovr.reg,
<------><------><------> adc->cfg->regs->ier_ovr.mask);
}
static void stm32_adc_set_res(struct stm32_adc *adc)
{
<------>const struct stm32_adc_regs *res = &adc->cfg->regs->res;
<------>u32 val;
<------>val = stm32_adc_readl(adc, res->reg);
<------>val = (val & ~res->mask) | (adc->res << res->shift);
<------>stm32_adc_writel(adc, res->reg, val);
}
static int stm32_adc_hw_stop(struct device *dev)
{
<------>struct iio_dev *indio_dev = dev_get_drvdata(dev);
<------>struct stm32_adc *adc = iio_priv(indio_dev);
<------>if (adc->cfg->unprepare)
<------><------>adc->cfg->unprepare(indio_dev);
<------>if (adc->clk)
<------><------>clk_disable_unprepare(adc->clk);
<------>return 0;
}
static int stm32_adc_hw_start(struct device *dev)
{
<------>struct iio_dev *indio_dev = dev_get_drvdata(dev);
<------>struct stm32_adc *adc = iio_priv(indio_dev);
<------>int ret;
<------>if (adc->clk) {
<------><------>ret = clk_prepare_enable(adc->clk);
<------><------>if (ret)
<------><------><------>return ret;
<------>}
<------>stm32_adc_set_res(adc);
<------>if (adc->cfg->prepare) {
<------><------>ret = adc->cfg->prepare(indio_dev);
<------><------>if (ret)
<------><------><------>goto err_clk_dis;
<------>}
<------>return 0;
err_clk_dis:
<------>if (adc->clk)
<------><------>clk_disable_unprepare(adc->clk);
<------>return ret;
}
/**
* stm32f4_adc_start_conv() - Start conversions for regular channels.
* @indio_dev: IIO device instance
* @dma: use dma to transfer conversion result
*
* Start conversions for regular channels.
* Also take care of normal or DMA mode. Circular DMA may be used for regular
* conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
* DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
*/
static void stm32f4_adc_start_conv(struct iio_dev *indio_dev, bool dma)
{
<------>struct stm32_adc *adc = iio_priv(indio_dev);
<------>stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
<------>if (dma)
<------><------>stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
<------><------><------><------> STM32F4_DMA | STM32F4_DDS);
<------>stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);
<------>/* Wait for Power-up time (tSTAB from datasheet) */
<------>usleep_range(2, 3);
<------>/* Software start ? (e.g. trigger detection disabled ?) */
<------>if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
<------><------>stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
}
static void stm32f4_adc_stop_conv(struct iio_dev *indio_dev)
{
<------>struct stm32_adc *adc = iio_priv(indio_dev);
<------>stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
<------>stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
<------>stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
<------>stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
<------><------><------> STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
}
static void stm32f4_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
{
<------>struct stm32_adc *adc = iio_priv(indio_dev);
<------>stm32_adc_clr_bits(adc, adc->cfg->regs->isr_eoc.reg, msk);
}
static void stm32h7_adc_start_conv(struct iio_dev *indio_dev, bool dma)
{
<------>struct stm32_adc *adc = iio_priv(indio_dev);
<------>enum stm32h7_adc_dmngt dmngt;
<------>unsigned long flags;
<------>u32 val;
<------>if (dma)
<------><------>dmngt = STM32H7_DMNGT_DMA_CIRC;
<------>else
<------><------>dmngt = STM32H7_DMNGT_DR_ONLY;
<------>spin_lock_irqsave(&adc->lock, flags);
<------>val = stm32_adc_readl(adc, STM32H7_ADC_CFGR);
<------>val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT);
<------>stm32_adc_writel(adc, STM32H7_ADC_CFGR, val);
<------>spin_unlock_irqrestore(&adc->lock, flags);
<------>stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
}
static void stm32h7_adc_stop_conv(struct iio_dev *indio_dev)
{
<------>struct stm32_adc *adc = iio_priv(indio_dev);
<------>int ret;
<------>u32 val;
<------>stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP);
<------>ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
<------><------><------><------><------> !(val & (STM32H7_ADSTART)),
<------><------><------><------><------> 100, STM32_ADC_TIMEOUT_US);
<------>if (ret)
<------><------>dev_warn(&indio_dev->dev, "stop failed\n");
<------>stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK);
}
static void stm32h7_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
{
<------>struct stm32_adc *adc = iio_priv(indio_dev);
<------>/* On STM32H7 IRQs are cleared by writing 1 into ISR register */
<------>stm32_adc_set_bits(adc, adc->cfg->regs->isr_eoc.reg, msk);
}
static int stm32h7_adc_exit_pwr_down(struct iio_dev *indio_dev)
{
<------>struct stm32_adc *adc = iio_priv(indio_dev);
<------>int ret;
<------>u32 val;
<------>/* Exit deep power down, then enable ADC voltage regulator */
<------>stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
<------>stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN);
<------>if (adc->common->rate > STM32H7_BOOST_CLKRATE)
<------><------>stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
<------>/* Wait for startup time */
<------>if (!adc->cfg->has_vregready) {
<------><------>usleep_range(10, 20);
<------><------>return 0;
<------>}
<------>ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
<------><------><------><------><------> val & STM32MP1_VREGREADY, 100,
<------><------><------><------><------> STM32_ADC_TIMEOUT_US);
<------>if (ret) {
<------><------>stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
<------><------>dev_err(&indio_dev->dev, "Failed to exit power down\n");
<------>}
<------>return ret;
}
static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc)
{
<------>stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
<------>/* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */
<------>stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
}
static int stm32h7_adc_enable(struct iio_dev *indio_dev)
{
<------>struct stm32_adc *adc = iio_priv(indio_dev);
<------>int ret;
<------>u32 val;
<------>stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
<------>/* Poll for ADRDY to be set (after adc startup time) */
<------>ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
<------><------><------><------><------> val & STM32H7_ADRDY,
<------><------><------><------><------> 100, STM32_ADC_TIMEOUT_US);
<------>if (ret) {
<------><------>stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
<------><------>dev_err(&indio_dev->dev, "Failed to enable ADC\n");
<------>} else {
<------><------>/* Clear ADRDY by writing one */
<------><------>stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY);
<------>}
<------>return ret;
}
static void stm32h7_adc_disable(struct iio_dev *indio_dev)
{
<------>struct stm32_adc *adc = iio_priv(indio_dev);
<------>int ret;
<------>u32 val;
<------>/* Disable ADC and wait until it's effectively disabled */
<------>stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
<------>ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
<------><------><------><------><------> !(val & STM32H7_ADEN), 100,
<------><------><------><------><------> STM32_ADC_TIMEOUT_US);
<------>if (ret)
<------><------>dev_warn(&indio_dev->dev, "Failed to disable\n");
}
/**
* stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result
* @indio_dev: IIO device instance
* Note: Must be called once ADC is enabled, so LINCALRDYW[1..6] are writable
*/
static int stm32h7_adc_read_selfcalib(struct iio_dev *indio_dev)
{
<------>struct stm32_adc *adc = iio_priv(indio_dev);
<------>int i, ret;
<------>u32 lincalrdyw_mask, val;
<------>/* Read linearity calibration */
<------>lincalrdyw_mask = STM32H7_LINCALRDYW6;
<------>for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
<------><------>/* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */
<------><------>stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
<------><------>/* Poll: wait calib data to be ready in CALFACT2 register */
<------><------>ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
<------><------><------><------><------><------> !(val & lincalrdyw_mask),
<------><------><------><------><------><------> 100, STM32_ADC_TIMEOUT_US);
<------><------>if (ret) {
<------><------><------>dev_err(&indio_dev->dev, "Failed to read calfact\n");
<------><------><------>return ret;
<------><------>}
<------><------>val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
<------><------>adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK);
<------><------>adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT;
<------><------>lincalrdyw_mask >>= 1;
<------>}
<------>/* Read offset calibration */
<------>val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT);
<------>adc->cal.calfact_s = (val & STM32H7_CALFACT_S_MASK);
<------>adc->cal.calfact_s >>= STM32H7_CALFACT_S_SHIFT;
<------>adc->cal.calfact_d = (val & STM32H7_CALFACT_D_MASK);
<------>adc->cal.calfact_d >>= STM32H7_CALFACT_D_SHIFT;
<------>adc->cal.calibrated = true;
<------>return 0;
}
/**
* stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result
* @indio_dev: IIO device instance
* Note: ADC must be enabled, with no on-going conversions.
*/
static int stm32h7_adc_restore_selfcalib(struct iio_dev *indio_dev)
{
<------>struct stm32_adc *adc = iio_priv(indio_dev);
<------>int i, ret;
<------>u32 lincalrdyw_mask, val;
<------>val = (adc->cal.calfact_s << STM32H7_CALFACT_S_SHIFT) |
<------><------>(adc->cal.calfact_d << STM32H7_CALFACT_D_SHIFT);
<------>stm32_adc_writel(adc, STM32H7_ADC_CALFACT, val);
<------>lincalrdyw_mask = STM32H7_LINCALRDYW6;
<------>for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
<------><------>/*
<------><------> * Write saved calibration data to shadow registers:
<------><------> * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger
<------><------> * data write. Then poll to wait for complete transfer.
<------><------> */
<------><------>val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT;
<------><------>stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val);
<------><------>stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
<------><------>ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
<------><------><------><------><------><------> val & lincalrdyw_mask,
<------><------><------><------><------><------> 100, STM32_ADC_TIMEOUT_US);
<------><------>if (ret) {
<------><------><------>dev_err(&indio_dev->dev, "Failed to write calfact\n");
<------><------><------>return ret;
<------><------>}
<------><------>/*
<------><------> * Read back calibration data, has two effects:
<------><------> * - It ensures bits LINCALRDYW[6..1] are kept cleared
<------><------> * for next time calibration needs to be restored.
<------><------> * - BTW, bit clear triggers a read, then check data has been
<------><------> * correctly written.
<------><------> */
<------><------>stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
<------><------>ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
<------><------><------><------><------><------> !(val & lincalrdyw_mask),
<------><------><------><------><------><------> 100, STM32_ADC_TIMEOUT_US);
<------><------>if (ret) {
<------><------><------>dev_err(&indio_dev->dev, "Failed to read calfact\n");
<------><------><------>return ret;
<------><------>}
<------><------>val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
<------><------>if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) {
<------><------><------>dev_err(&indio_dev->dev, "calfact not consistent\n");
<------><------><------>return -EIO;
<------><------>}
<------><------>lincalrdyw_mask >>= 1;
<------>}
<------>return 0;
}
/**
* Fixed timeout value for ADC calibration.
* worst cases:
* - low clock frequency
* - maximum prescalers
* Calibration requires:
* - 131,072 ADC clock cycle for the linear calibration
* - 20 ADC clock cycle for the offset calibration
*
* Set to 100ms for now
*/
#define STM32H7_ADC_CALIB_TIMEOUT_US 100000
/**
* stm32h7_adc_selfcalib() - Procedure to calibrate ADC
* @indio_dev: IIO device instance
* Note: Must be called once ADC is out of power down.
*/
static int stm32h7_adc_selfcalib(struct iio_dev *indio_dev)
{
<------>struct stm32_adc *adc = iio_priv(indio_dev);
<------>int ret;
<------>u32 val;
<------>if (adc->cal.calibrated)
<------><------>return true;
<------>/*
<------> * Select calibration mode:
<------> * - Offset calibration for single ended inputs
<------> * - No linearity calibration (do it later, before reading it)
<------> */
<------>stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALDIF);
<------>stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALLIN);
<------>/* Start calibration, then wait for completion */
<------>stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
<------>ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
<------><------><------><------><------> !(val & STM32H7_ADCAL), 100,
<------><------><------><------><------> STM32H7_ADC_CALIB_TIMEOUT_US);
<------>if (ret) {
<------><------>dev_err(&indio_dev->dev, "calibration failed\n");
<------><------>goto out;
<------>}
<------>/*
<------> * Select calibration mode, then start calibration:
<------> * - Offset calibration for differential input
<------> * - Linearity calibration (needs to be done only once for single/diff)
<------> * will run simultaneously with offset calibration.
<------> */
<------>stm32_adc_set_bits(adc, STM32H7_ADC_CR,
<------><------><------> STM32H7_ADCALDIF | STM32H7_ADCALLIN);
<------>stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
<------>ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
<------><------><------><------><------> !(val & STM32H7_ADCAL), 100,
<------><------><------><------><------> STM32H7_ADC_CALIB_TIMEOUT_US);
<------>if (ret) {
<------><------>dev_err(&indio_dev->dev, "calibration failed\n");
<------><------>goto out;
<------>}
out:
<------>stm32_adc_clr_bits(adc, STM32H7_ADC_CR,
<------><------><------> STM32H7_ADCALDIF | STM32H7_ADCALLIN);
<------>return ret;
}
/**
* stm32h7_adc_prepare() - Leave power down mode to enable ADC.
* @indio_dev: IIO device instance
* Leave power down mode.
* Configure channels as single ended or differential before enabling ADC.
* Enable ADC.
* Restore calibration data.
* Pre-select channels that may be used in PCSEL (required by input MUX / IO):
* - Only one input is selected for single ended (e.g. 'vinp')
* - Two inputs are selected for differential channels (e.g. 'vinp' & 'vinn')
*/
static int stm32h7_adc_prepare(struct iio_dev *indio_dev)
{
<------>struct stm32_adc *adc = iio_priv(indio_dev);
<------>int calib, ret;
<------>ret = stm32h7_adc_exit_pwr_down(indio_dev);
<------>if (ret)
<------><------>return ret;
<------>ret = stm32h7_adc_selfcalib(indio_dev);
<------>if (ret < 0)
<------><------>goto pwr_dwn;
<------>calib = ret;
<------>stm32_adc_writel(adc, STM32H7_ADC_DIFSEL, adc->difsel);
<------>ret = stm32h7_adc_enable(indio_dev);
<------>if (ret)
<------><------>goto pwr_dwn;
<------>/* Either restore or read calibration result for future reference */
<------>if (calib)
<------><------>ret = stm32h7_adc_restore_selfcalib(indio_dev);
<------>else
<------><------>ret = stm32h7_adc_read_selfcalib(indio_dev);
<------>if (ret)
<------><------>goto disable;
<------>stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel);
<------>return 0;
disable:
<------>stm32h7_adc_disable(indio_dev);
pwr_dwn:
<------>stm32h7_adc_enter_pwr_down(adc);
<------>return ret;
}
static void stm32h7_adc_unprepare(struct iio_dev *indio_dev)
{
<------>struct stm32_adc *adc = iio_priv(indio_dev);
<------>stm32_adc_writel(adc, STM32H7_ADC_PCSEL, 0);
<------>stm32h7_adc_disable(indio_dev);
<------>stm32h7_adc_enter_pwr_down(adc);
}
/**
* stm32_adc_conf_scan_seq() - Build regular channels scan sequence
* @indio_dev: IIO device
* @scan_mask: channels to be converted
*
* Conversion sequence :
* Apply sampling time settings for all channels.
* Configure ADC scan sequence based on selected channels in scan_mask.
* Add channels to SQR registers, from scan_mask LSB to MSB, then
* program sequence len.
*/
static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
<------><------><------><------> const unsigned long *scan_mask)
{
<------>struct stm32_adc *adc = iio_priv(indio_dev);
<------>const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
<------>const struct iio_chan_spec *chan;
<------>u32 val, bit;
<------>int i = 0;
<------>/* Apply sampling time settings */
<------>stm32_adc_writel(adc, adc->cfg->regs->smpr[0], adc->smpr_val[0]);
<------>stm32_adc_writel(adc, adc->cfg->regs->smpr[1], adc->smpr_val[1]);
<------>for_each_set_bit(bit, scan_mask, indio_dev->masklength) {
<------><------>chan = indio_dev->channels + bit;
<------><------>/*
<------><------> * Assign one channel per SQ entry in regular
<------><------> * sequence, starting with SQ1.
<------><------> */
<------><------>i++;
<------><------>if (i > STM32_ADC_MAX_SQ)
<------><------><------>return -EINVAL;
<------><------>dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
<------><------><------>__func__, chan->channel, i);
<------><------>val = stm32_adc_readl(adc, sqr[i].reg);
<------><------>val &= ~sqr[i].mask;
<------><------>val |= chan->channel << sqr[i].shift;
<------><------>stm32_adc_writel(adc, sqr[i].reg, val);
<------>}
<------>if (!i)
<------><------>return -EINVAL;
<------>/* Sequence len */
<------>val = stm32_adc_readl(adc, sqr[0].reg);
<------>val &= ~sqr[0].mask;
<------>val |= ((i - 1) << sqr[0].shift);
<------>stm32_adc_writel(adc, sqr[0].reg, val);
<------>return 0;
}
/**
* stm32_adc_get_trig_extsel() - Get external trigger selection
* @indio_dev: IIO device structure
* @trig: trigger
*
* Returns trigger extsel value, if trig matches, -EINVAL otherwise.
*/
static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
<------><------><------><------> struct iio_trigger *trig)
{
<------>struct stm32_adc *adc = iio_priv(indio_dev);
<------>int i;
<------>/* lookup triggers registered by stm32 timer trigger driver */
<------>for (i = 0; adc->cfg->trigs[i].name; i++) {
<------><------>/**
<------><------> * Checking both stm32 timer trigger type and trig name
<------><------> * should be safe against arbitrary trigger names.
<------><------> */
<------><------>if ((is_stm32_timer_trigger(trig) ||
<------><------> is_stm32_lptim_trigger(trig)) &&
<------><------> !strcmp(adc->cfg->trigs[i].name, trig->name)) {
<------><------><------>return adc->cfg->trigs[i].extsel;
<------><------>}
<------>}
<------>return -EINVAL;
}
/**
* stm32_adc_set_trig() - Set a regular trigger
* @indio_dev: IIO device
* @trig: IIO trigger
*
* Set trigger source/polarity (e.g. SW, or HW with polarity) :
* - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
* - if HW trigger enabled, set source & polarity
*/
static int stm32_adc_set_trig(struct iio_dev *indio_dev,
<------><------><------> struct iio_trigger *trig)
{
<------>struct stm32_adc *adc = iio_priv(indio_dev);
<------>u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
<------>unsigned long flags;
<------>int ret;
<------>if (trig) {
<------><------>ret = stm32_adc_get_trig_extsel(indio_dev, trig);
<------><------>if (ret < 0)
<------><------><------>return ret;
<------><------>/* set trigger source and polarity (default to rising edge) */
<------><------>extsel = ret;
<------><------>exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
<------>}
<------>spin_lock_irqsave(&adc->lock, flags);
<------>val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
<------>val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
<------>val |= exten << adc->cfg->regs->exten.shift;
<------>val |= extsel << adc->cfg->regs->extsel.shift;
<------>stm32_adc_writel(adc, adc->cfg->regs->exten.reg, val);
<------>spin_unlock_irqrestore(&adc->lock, flags);
<------>return 0;
}
static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
<------><------><------><------> const struct iio_chan_spec *chan,
<------><------><------><------> unsigned int type)
{
<------>struct stm32_adc *adc = iio_priv(indio_dev);
<------>adc->trigger_polarity = type;
<------>return 0;
}
static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
<------><------><------><------> const struct iio_chan_spec *chan)
{
<------>struct stm32_adc *adc = iio_priv(indio_dev);
<------>return adc->trigger_polarity;
}
static const char * const stm32_trig_pol_items[] = {
<------>"rising-edge", "falling-edge", "both-edges",
};
static const struct iio_enum stm32_adc_trig_pol = {
<------>.items = stm32_trig_pol_items,
<------>.num_items = ARRAY_SIZE(stm32_trig_pol_items),
<------>.get = stm32_adc_get_trig_pol,
<------>.set = stm32_adc_set_trig_pol,
};
/**
* stm32_adc_single_conv() - Performs a single conversion
* @indio_dev: IIO device
* @chan: IIO channel
* @res: conversion result
*
* The function performs a single conversion on a given channel:
* - Apply sampling time settings
* - Program sequencer with one channel (e.g. in SQ1 with len = 1)
* - Use SW trigger
* - Start conversion, then wait for interrupt completion.
*/
static int stm32_adc_single_conv(struct iio_dev *indio_dev,
<------><------><------><------> const struct iio_chan_spec *chan,
<------><------><------><------> int *res)
{
<------>struct stm32_adc *adc = iio_priv(indio_dev);
<------>struct device *dev = indio_dev->dev.parent;
<------>const struct stm32_adc_regspec *regs = adc->cfg->regs;
<------>long timeout;
<------>u32 val;
<------>int ret;
<------>reinit_completion(&adc->completion);
<------>adc->bufi = 0;
<------>ret = pm_runtime_get_sync(dev);
<------>if (ret < 0) {
<------><------>pm_runtime_put_noidle(dev);
<------><------>return ret;
<------>}
<------>/* Apply sampling time settings */
<------>stm32_adc_writel(adc, regs->smpr[0], adc->smpr_val[0]);
<------>stm32_adc_writel(adc, regs->smpr[1], adc->smpr_val[1]);
<------>/* Program chan number in regular sequence (SQ1) */
<------>val = stm32_adc_readl(adc, regs->sqr[1].reg);
<------>val &= ~regs->sqr[1].mask;
<------>val |= chan->channel << regs->sqr[1].shift;
<------>stm32_adc_writel(adc, regs->sqr[1].reg, val);
<------>/* Set regular sequence len (0 for 1 conversion) */
<------>stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);
<------>/* Trigger detection disabled (conversion can be launched in SW) */
<------>stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);
<------>stm32_adc_conv_irq_enable(adc);
<------>adc->cfg->start_conv(indio_dev, false);
<------>timeout = wait_for_completion_interruptible_timeout(
<------><------><------><------><------>&adc->completion, STM32_ADC_TIMEOUT);
<------>if (timeout == 0) {
<------><------>ret = -ETIMEDOUT;
<------>} else if (timeout < 0) {
<------><------>ret = timeout;
<------>} else {
<------><------>*res = adc->buffer[0];
<------><------>ret = IIO_VAL_INT;
<------>}
<------>adc->cfg->stop_conv(indio_dev);
<------>stm32_adc_conv_irq_disable(adc);
<------>pm_runtime_mark_last_busy(dev);
<------>pm_runtime_put_autosuspend(dev);
<------>return ret;
}
static int stm32_adc_read_raw(struct iio_dev *indio_dev,
<------><------><------> struct iio_chan_spec const *chan,
<------><------><------> int *val, int *val2, long mask)
{
<------>struct stm32_adc *adc = iio_priv(indio_dev);
<------>int ret;
<------>switch (mask) {
<------>case IIO_CHAN_INFO_RAW:
<------><------>ret = iio_device_claim_direct_mode(indio_dev);
<------><------>if (ret)
<------><------><------>return ret;
<------><------>if (chan->type == IIO_VOLTAGE)
<------><------><------>ret = stm32_adc_single_conv(indio_dev, chan, val);
<------><------>else
<------><------><------>ret = -EINVAL;
<------><------>iio_device_release_direct_mode(indio_dev);
<------><------>return ret;
<------>case IIO_CHAN_INFO_SCALE:
<------><------>if (chan->differential) {
<------><------><------>*val = adc->common->vref_mv * 2;
<------><------><------>*val2 = chan->scan_type.realbits;
<------><------>} else {
<------><------><------>*val = adc->common->vref_mv;
<------><------><------>*val2 = chan->scan_type.realbits;
<------><------>}
<------><------>return IIO_VAL_FRACTIONAL_LOG2;
<------>case IIO_CHAN_INFO_OFFSET:
<------><------>if (chan->differential)
<------><------><------>/* ADC_full_scale / 2 */
<------><------><------>*val = -((1 << chan->scan_type.realbits) / 2);
<------><------>else
<------><------><------>*val = 0;
<------><------>return IIO_VAL_INT;
<------>default:
<------><------>return -EINVAL;
<------>}
}
static void stm32_adc_irq_clear(struct iio_dev *indio_dev, u32 msk)
{
<------>struct stm32_adc *adc = iio_priv(indio_dev);
<------>adc->cfg->irq_clear(indio_dev, msk);
}
static irqreturn_t stm32_adc_threaded_isr(int irq, void *data)
{
<------>struct iio_dev *indio_dev = data;
<------>struct stm32_adc *adc = iio_priv(indio_dev);
<------>const struct stm32_adc_regspec *regs = adc->cfg->regs;
<------>u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
<------>u32 mask = stm32_adc_readl(adc, regs->ier_eoc.reg);
<------>/* Check ovr status right now, as ovr mask should be already disabled */
<------>if (status & regs->isr_ovr.mask) {
<------><------>/*
<------><------> * Clear ovr bit to avoid subsequent calls to IRQ handler.
<------><------> * This requires to stop ADC first. OVR bit state in ISR,
<------><------> * is propaged to CSR register by hardware.
<------><------> */
<------><------>adc->cfg->stop_conv(indio_dev);
<------><------>stm32_adc_irq_clear(indio_dev, regs->isr_ovr.mask);
<------><------>dev_err(&indio_dev->dev, "Overrun, stopping: restart needed\n");
<------><------>return IRQ_HANDLED;
<------>}
<------>if (!(status & mask))
<------><------>dev_err_ratelimited(&indio_dev->dev,
<------><------><------><------> "Unexpected IRQ: IER=0x%08x, ISR=0x%08x\n",
<------><------><------><------> mask, status);
<------>return IRQ_NONE;
}
static irqreturn_t stm32_adc_isr(int irq, void *data)
{
<------>struct iio_dev *indio_dev = data;
<------>struct stm32_adc *adc = iio_priv(indio_dev);
<------>const struct stm32_adc_regspec *regs = adc->cfg->regs;
<------>u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
<------>u32 mask = stm32_adc_readl(adc, regs->ier_eoc.reg);
<------>if (!(status & mask))
<------><------>return IRQ_WAKE_THREAD;
<------>if (status & regs->isr_ovr.mask) {
<------><------>/*
<------><------> * Overrun occurred on regular conversions: data for wrong
<------><------> * channel may be read. Unconditionally disable interrupts
<------><------> * to stop processing data and print error message.
<------><------> * Restarting the capture can be done by disabling, then
<------><------> * re-enabling it (e.g. write 0, then 1 to buffer/enable).
<------><------> */
<------><------>stm32_adc_ovr_irq_disable(adc);
<------><------>stm32_adc_conv_irq_disable(adc);
<------><------>return IRQ_WAKE_THREAD;
<------>}
<------>if (status & regs->isr_eoc.mask) {
<------><------>/* Reading DR also clears EOC status flag */
<------><------>adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
<------><------>if (iio_buffer_enabled(indio_dev)) {
<------><------><------>adc->bufi++;
<------><------><------>if (adc->bufi >= adc->num_conv) {
<------><------><------><------>stm32_adc_conv_irq_disable(adc);
<------><------><------><------>iio_trigger_poll(indio_dev->trig);
<------><------><------>}
<------><------>} else {
<------><------><------>complete(&adc->completion);
<------><------>}
<------><------>return IRQ_HANDLED;
<------>}
<------>return IRQ_NONE;
}
/**
* stm32_adc_validate_trigger() - validate trigger for stm32 adc
* @indio_dev: IIO device
* @trig: new trigger
*
* Returns: 0 if trig matches one of the triggers registered by stm32 adc
* driver, -EINVAL otherwise.
*/
static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
<------><------><------><------> struct iio_trigger *trig)
{
<------>return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
}
static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
{
<------>struct stm32_adc *adc = iio_priv(indio_dev);
<------>unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
<------>unsigned int rx_buf_sz = STM32_DMA_BUFFER_SIZE;
<------>/*
<------> * dma cyclic transfers are used, buffer is split into two periods.
<------> * There should be :
<------> * - always one buffer (period) dma is working on
<------> * - one buffer (period) driver can push with iio_trigger_poll().
<------> */
<------>watermark = min(watermark, val * (unsigned)(sizeof(u16)));
<------>adc->rx_buf_sz = min(rx_buf_sz, watermark * 2 * adc->num_conv);
<------>return 0;
}
static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
<------><------><------><------> const unsigned long *scan_mask)
{
<------>struct stm32_adc *adc = iio_priv(indio_dev);
<------>struct device *dev = indio_dev->dev.parent;
<------>int ret;
<------>ret = pm_runtime_get_sync(dev);
<------>if (ret < 0) {
<------><------>pm_runtime_put_noidle(dev);
<------><------>return ret;
<------>}
<------>adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength);
<------>ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
<------>pm_runtime_mark_last_busy(dev);
<------>pm_runtime_put_autosuspend(dev);
<------>return ret;
}
static int stm32_adc_of_xlate(struct iio_dev *indio_dev,
<------><------><------> const struct of_phandle_args *iiospec)
{
<------>int i;
<------>for (i = 0; i < indio_dev->num_channels; i++)
<------><------>if (indio_dev->channels[i].channel == iiospec->args[0])
<------><------><------>return i;
<------>return -EINVAL;
}
/**
* stm32_adc_debugfs_reg_access - read or write register value
* @indio_dev: IIO device structure
* @reg: register offset
* @writeval: value to write
* @readval: value to read
*
* To read a value from an ADC register:
* echo [ADC reg offset] > direct_reg_access
* cat direct_reg_access
*
* To write a value in a ADC register:
* echo [ADC_reg_offset] [value] > direct_reg_access
*/
static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
<------><------><------><------><------>unsigned reg, unsigned writeval,
<------><------><------><------><------>unsigned *readval)
{
<------>struct stm32_adc *adc = iio_priv(indio_dev);
<------>struct device *dev = indio_dev->dev.parent;
<------>int ret;
<------>ret = pm_runtime_get_sync(dev);
<------>if (ret < 0) {
<------><------>pm_runtime_put_noidle(dev);
<------><------>return ret;
<------>}
<------>if (!readval)
<------><------>stm32_adc_writel(adc, reg, writeval);
<------>else
<------><------>*readval = stm32_adc_readl(adc, reg);
<------>pm_runtime_mark_last_busy(dev);
<------>pm_runtime_put_autosuspend(dev);
<------>return 0;
}
static const struct iio_info stm32_adc_iio_info = {
<------>.read_raw = stm32_adc_read_raw,
<------>.validate_trigger = stm32_adc_validate_trigger,
<------>.hwfifo_set_watermark = stm32_adc_set_watermark,
<------>.update_scan_mode = stm32_adc_update_scan_mode,
<------>.debugfs_reg_access = stm32_adc_debugfs_reg_access,
<------>.of_xlate = stm32_adc_of_xlate,
};
static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
{
<------>struct dma_tx_state state;
<------>enum dma_status status;
<------>status = dmaengine_tx_status(adc->dma_chan,
<------><------><------><------> adc->dma_chan->cookie,
<------><------><------><------> &state);
<------>if (status == DMA_IN_PROGRESS) {
<------><------>/* Residue is size in bytes from end of buffer */
<------><------>unsigned int i = adc->rx_buf_sz - state.residue;
<------><------>unsigned int size;
<------><------>/* Return available bytes */
<------><------>if (i >= adc->bufi)
<------><------><------>size = i - adc->bufi;
<------><------>else
<------><------><------>size = adc->rx_buf_sz + i - adc->bufi;
<------><------>return size;
<------>}
<------>return 0;
}
static void stm32_adc_dma_buffer_done(void *data)
{
<------>struct iio_dev *indio_dev = data;
<------>struct stm32_adc *adc = iio_priv(indio_dev);
<------>int residue = stm32_adc_dma_residue(adc);
<------>/*
<------> * In DMA mode the trigger services of IIO are not used
<------> * (e.g. no call to iio_trigger_poll).
<------> * Calling irq handler associated to the hardware trigger is not
<------> * relevant as the conversions have already been done. Data
<------> * transfers are performed directly in DMA callback instead.
<------> * This implementation avoids to call trigger irq handler that
<------> * may sleep, in an atomic context (DMA irq handler context).
<------> */
<------>dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
<------>while (residue >= indio_dev->scan_bytes) {
<------><------>u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
<------><------>iio_push_to_buffers(indio_dev, buffer);
<------><------>residue -= indio_dev->scan_bytes;
<------><------>adc->bufi += indio_dev->scan_bytes;
<------><------>if (adc->bufi >= adc->rx_buf_sz)
<------><------><------>adc->bufi = 0;
<------>}
}
static int stm32_adc_dma_start(struct iio_dev *indio_dev)
{
<------>struct stm32_adc *adc = iio_priv(indio_dev);
<------>struct dma_async_tx_descriptor *desc;
<------>dma_cookie_t cookie;
<------>int ret;
<------>if (!adc->dma_chan)
<------><------>return 0;
<------>dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
<------><------>adc->rx_buf_sz, adc->rx_buf_sz / 2);
<------>/* Prepare a DMA cyclic transaction */
<------>desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
<------><------><------><------><------> adc->rx_dma_buf,
<------><------><------><------><------> adc->rx_buf_sz, adc->rx_buf_sz / 2,
<------><------><------><------><------> DMA_DEV_TO_MEM,
<------><------><------><------><------> DMA_PREP_INTERRUPT);
<------>if (!desc)
<------><------>return -EBUSY;
<------>desc->callback = stm32_adc_dma_buffer_done;
<------>desc->callback_param = indio_dev;
<------>cookie = dmaengine_submit(desc);
<------>ret = dma_submit_error(cookie);
<------>if (ret) {
<------><------>dmaengine_terminate_sync(adc->dma_chan);
<------><------>return ret;
<------>}
<------>/* Issue pending DMA requests */
<------>dma_async_issue_pending(adc->dma_chan);
<------>return 0;
}
static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
{
<------>struct stm32_adc *adc = iio_priv(indio_dev);
<------>struct device *dev = indio_dev->dev.parent;
<------>int ret;
<------>ret = pm_runtime_get_sync(dev);
<------>if (ret < 0) {
<------><------>pm_runtime_put_noidle(dev);
<------><------>return ret;
<------>}
<------>ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
<------>if (ret) {
<------><------>dev_err(&indio_dev->dev, "Can't set trigger\n");
<------><------>goto err_pm_put;
<------>}
<------>ret = stm32_adc_dma_start(indio_dev);
<------>if (ret) {
<------><------>dev_err(&indio_dev->dev, "Can't start dma\n");
<------><------>goto err_clr_trig;
<------>}
<------>/* Reset adc buffer index */
<------>adc->bufi = 0;
<------>stm32_adc_ovr_irq_enable(adc);
<------>if (!adc->dma_chan)
<------><------>stm32_adc_conv_irq_enable(adc);
<------>adc->cfg->start_conv(indio_dev, !!adc->dma_chan);
<------>return 0;
err_clr_trig:
<------>stm32_adc_set_trig(indio_dev, NULL);
err_pm_put:
<------>pm_runtime_mark_last_busy(dev);
<------>pm_runtime_put_autosuspend(dev);
<------>return ret;
}
static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
{
<------>struct stm32_adc *adc = iio_priv(indio_dev);
<------>struct device *dev = indio_dev->dev.parent;
<------>adc->cfg->stop_conv(indio_dev);
<------>if (!adc->dma_chan)
<------><------>stm32_adc_conv_irq_disable(adc);
<------>stm32_adc_ovr_irq_disable(adc);
<------>if (adc->dma_chan)
<------><------>dmaengine_terminate_sync(adc->dma_chan);
<------>if (stm32_adc_set_trig(indio_dev, NULL))
<------><------>dev_err(&indio_dev->dev, "Can't clear trigger\n");
<------>pm_runtime_mark_last_busy(dev);
<------>pm_runtime_put_autosuspend(dev);
<------>return 0;
}
static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
<------>.postenable = &stm32_adc_buffer_postenable,
<------>.predisable = &stm32_adc_buffer_predisable,
};
static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
{
<------>struct iio_poll_func *pf = p;
<------>struct iio_dev *indio_dev = pf->indio_dev;
<------>struct stm32_adc *adc = iio_priv(indio_dev);
<------>dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
<------>if (!adc->dma_chan) {
<------><------>/* reset buffer index */
<------><------>adc->bufi = 0;
<------><------>iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
<------><------><------><------><------><------> pf->timestamp);
<------>} else {
<------><------>int residue = stm32_adc_dma_residue(adc);
<------><------>while (residue >= indio_dev->scan_bytes) {
<------><------><------>u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
<------><------><------>iio_push_to_buffers_with_timestamp(indio_dev, buffer,
<------><------><------><------><------><------><------> pf->timestamp);
<------><------><------>residue -= indio_dev->scan_bytes;
<------><------><------>adc->bufi += indio_dev->scan_bytes;
<------><------><------>if (adc->bufi >= adc->rx_buf_sz)
<------><------><------><------>adc->bufi = 0;
<------><------>}
<------>}
<------>iio_trigger_notify_done(indio_dev->trig);
<------>/* re-enable eoc irq */
<------>if (!adc->dma_chan)
<------><------>stm32_adc_conv_irq_enable(adc);
<------>return IRQ_HANDLED;
}
static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
<------>IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
<------>{
<------><------>.name = "trigger_polarity_available",
<------><------>.shared = IIO_SHARED_BY_ALL,
<------><------>.read = iio_enum_available_read,
<------><------>.private = (uintptr_t)&stm32_adc_trig_pol,
<------>},
<------>{},
};
static int stm32_adc_of_get_resolution(struct iio_dev *indio_dev)
{
<------>struct device_node *node = indio_dev->dev.of_node;
<------>struct stm32_adc *adc = iio_priv(indio_dev);
<------>unsigned int i;
<------>u32 res;
<------>if (of_property_read_u32(node, "assigned-resolution-bits", &res))
<------><------>res = adc->cfg->adc_info->resolutions[0];
<------>for (i = 0; i < adc->cfg->adc_info->num_res; i++)
<------><------>if (res == adc->cfg->adc_info->resolutions[i])
<------><------><------>break;
<------>if (i >= adc->cfg->adc_info->num_res) {
<------><------>dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
<------><------>return -EINVAL;
<------>}
<------>dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
<------>adc->res = i;
<------>return 0;
}
static void stm32_adc_smpr_init(struct stm32_adc *adc, int channel, u32 smp_ns)
{
<------>const struct stm32_adc_regs *smpr = &adc->cfg->regs->smp_bits[channel];
<------>u32 period_ns, shift = smpr->shift, mask = smpr->mask;
<------>unsigned int smp, r = smpr->reg;
<------>/* Determine sampling time (ADC clock cycles) */
<------>period_ns = NSEC_PER_SEC / adc->common->rate;
<------>for (smp = 0; smp <= STM32_ADC_MAX_SMP; smp++)
<------><------>if ((period_ns * adc->cfg->smp_cycles[smp]) >= smp_ns)
<------><------><------>break;
<------>if (smp > STM32_ADC_MAX_SMP)
<------><------>smp = STM32_ADC_MAX_SMP;
<------>/* pre-build sampling time registers (e.g. smpr1, smpr2) */
<------>adc->smpr_val[r] = (adc->smpr_val[r] & ~mask) | (smp << shift);
}
static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
<------><------><------><------> struct iio_chan_spec *chan, u32 vinp,
<------><------><------><------> u32 vinn, int scan_index, bool differential)
{
<------>struct stm32_adc *adc = iio_priv(indio_dev);
<------>char *name = adc->chan_name[vinp];
<------>chan->type = IIO_VOLTAGE;
<------>chan->channel = vinp;
<------>if (differential) {
<------><------>chan->differential = 1;
<------><------>chan->channel2 = vinn;
<------><------>snprintf(name, STM32_ADC_CH_SZ, "in%d-in%d", vinp, vinn);
<------>} else {
<------><------>snprintf(name, STM32_ADC_CH_SZ, "in%d", vinp);
<------>}
<------>chan->datasheet_name = name;
<------>chan->scan_index = scan_index;
<------>chan->indexed = 1;
<------>chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
<------>chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
<------><------><------><------><------> BIT(IIO_CHAN_INFO_OFFSET);
<------>chan->scan_type.sign = 'u';
<------>chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
<------>chan->scan_type.storagebits = 16;
<------>chan->ext_info = stm32_adc_ext_info;
<------>/* pre-build selected channels mask */
<------>adc->pcsel |= BIT(chan->channel);
<------>if (differential) {
<------><------>/* pre-build diff channels mask */
<------><------>adc->difsel |= BIT(chan->channel);
<------><------>/* Also add negative input to pre-selected channels */
<------><------>adc->pcsel |= BIT(chan->channel2);
<------>}
}
static int stm32_adc_chan_of_init(struct iio_dev *indio_dev)
{
<------>struct device_node *node = indio_dev->dev.of_node;
<------>struct stm32_adc *adc = iio_priv(indio_dev);
<------>const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
<------>struct stm32_adc_diff_channel diff[STM32_ADC_CH_MAX];
<------>struct property *prop;
<------>const __be32 *cur;
<------>struct iio_chan_spec *channels;
<------>int scan_index = 0, num_channels = 0, num_diff = 0, ret, i;
<------>u32 val, smp = 0;
<------>ret = of_property_count_u32_elems(node, "st,adc-channels");
<------>if (ret > adc_info->max_channels) {
<------><------>dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
<------><------>return -EINVAL;
<------>} else if (ret > 0) {
<------><------>num_channels += ret;
<------>}
<------>ret = of_property_count_elems_of_size(node, "st,adc-diff-channels",
<------><------><------><------><------> sizeof(*diff));
<------>if (ret > adc_info->max_channels) {
<------><------>dev_err(&indio_dev->dev, "Bad st,adc-diff-channels?\n");
<------><------>return -EINVAL;
<------>} else if (ret > 0) {
<------><------>int size = ret * sizeof(*diff) / sizeof(u32);
<------><------>num_diff = ret;
<------><------>num_channels += ret;
<------><------>ret = of_property_read_u32_array(node, "st,adc-diff-channels",
<------><------><------><------><------><------> (u32 *)diff, size);
<------><------>if (ret)
<------><------><------>return ret;
<------>}
<------>if (!num_channels) {
<------><------>dev_err(&indio_dev->dev, "No channels configured\n");
<------><------>return -ENODATA;
<------>}
<------>/* Optional sample time is provided either for each, or all channels */
<------>ret = of_property_count_u32_elems(node, "st,min-sample-time-nsecs");
<------>if (ret > 1 && ret != num_channels) {
<------><------>dev_err(&indio_dev->dev, "Invalid st,min-sample-time-nsecs\n");
<------><------>return -EINVAL;
<------>}
<------>channels = devm_kcalloc(&indio_dev->dev, num_channels,
<------><------><------><------>sizeof(struct iio_chan_spec), GFP_KERNEL);
<------>if (!channels)
<------><------>return -ENOMEM;
<------>of_property_for_each_u32(node, "st,adc-channels", prop, cur, val) {
<------><------>if (val >= adc_info->max_channels) {
<------><------><------>dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
<------><------><------>return -EINVAL;
<------><------>}
<------><------>/* Channel can't be configured both as single-ended & diff */
<------><------>for (i = 0; i < num_diff; i++) {
<------><------><------>if (val == diff[i].vinp) {
<------><------><------><------>dev_err(&indio_dev->dev,
<------><------><------><------><------>"channel %d miss-configured\n", val);
<------><------><------><------>return -EINVAL;
<------><------><------>}
<------><------>}
<------><------>stm32_adc_chan_init_one(indio_dev, &channels[scan_index], val,
<------><------><------><------><------>0, scan_index, false);
<------><------>scan_index++;
<------>}
<------>for (i = 0; i < num_diff; i++) {
<------><------>if (diff[i].vinp >= adc_info->max_channels ||
<------><------> diff[i].vinn >= adc_info->max_channels) {
<------><------><------>dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n",
<------><------><------><------>diff[i].vinp, diff[i].vinn);
<------><------><------>return -EINVAL;
<------><------>}
<------><------>stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
<------><------><------><------><------>diff[i].vinp, diff[i].vinn, scan_index,
<------><------><------><------><------>true);
<------><------>scan_index++;
<------>}
<------>for (i = 0; i < scan_index; i++) {
<------><------>/*
<------><------> * Using of_property_read_u32_index(), smp value will only be
<------><------> * modified if valid u32 value can be decoded. This allows to
<------><------> * get either no value, 1 shared value for all indexes, or one
<------><------> * value per channel.
<------><------> */
<------><------>of_property_read_u32_index(node, "st,min-sample-time-nsecs",
<------><------><------><------><------> i, &smp);
<------><------>/* Prepare sampling time settings */
<------><------>stm32_adc_smpr_init(adc, channels[i].channel, smp);
<------>}
<------>indio_dev->num_channels = scan_index;
<------>indio_dev->channels = channels;
<------>return 0;
}
static int stm32_adc_dma_request(struct device *dev, struct iio_dev *indio_dev)
{
<------>struct stm32_adc *adc = iio_priv(indio_dev);
<------>struct dma_slave_config config;
<------>int ret;
<------>adc->dma_chan = dma_request_chan(dev, "rx");
<------>if (IS_ERR(adc->dma_chan)) {
<------><------>ret = PTR_ERR(adc->dma_chan);
<------><------>if (ret != -ENODEV)
<------><------><------>return dev_err_probe(dev, ret,
<------><------><------><------><------> "DMA channel request failed with\n");
<------><------>/* DMA is optional: fall back to IRQ mode */
<------><------>adc->dma_chan = NULL;
<------><------>return 0;
<------>}
<------>adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
<------><------><------><------><------> STM32_DMA_BUFFER_SIZE,
<------><------><------><------><------> &adc->rx_dma_buf, GFP_KERNEL);
<------>if (!adc->rx_buf) {
<------><------>ret = -ENOMEM;
<------><------>goto err_release;
<------>}
<------>/* Configure DMA channel to read data register */
<------>memset(&config, 0, sizeof(config));
<------>config.src_addr = (dma_addr_t)adc->common->phys_base;
<------>config.src_addr += adc->offset + adc->cfg->regs->dr;
<------>config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
<------>ret = dmaengine_slave_config(adc->dma_chan, &config);
<------>if (ret)
<------><------>goto err_free;
<------>return 0;
err_free:
<------>dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
<------><------><------> adc->rx_buf, adc->rx_dma_buf);
err_release:
<------>dma_release_channel(adc->dma_chan);
<------>return ret;
}
static int stm32_adc_probe(struct platform_device *pdev)
{
<------>struct iio_dev *indio_dev;
<------>struct device *dev = &pdev->dev;
<------>irqreturn_t (*handler)(int irq, void *p) = NULL;
<------>struct stm32_adc *adc;
<------>int ret;
<------>if (!pdev->dev.of_node)
<------><------>return -ENODEV;
<------>indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
<------>if (!indio_dev)
<------><------>return -ENOMEM;
<------>adc = iio_priv(indio_dev);
<------>adc->common = dev_get_drvdata(pdev->dev.parent);
<------>spin_lock_init(&adc->lock);
<------>init_completion(&adc->completion);
<------>adc->cfg = (const struct stm32_adc_cfg *)
<------><------>of_match_device(dev->driver->of_match_table, dev)->data;
<------>indio_dev->name = dev_name(&pdev->dev);
<------>indio_dev->dev.of_node = pdev->dev.of_node;
<------>indio_dev->info = &stm32_adc_iio_info;
<------>indio_dev->modes = INDIO_DIRECT_MODE | INDIO_HARDWARE_TRIGGERED;
<------>platform_set_drvdata(pdev, indio_dev);
<------>ret = of_property_read_u32(pdev->dev.of_node, "reg", &adc->offset);
<------>if (ret != 0) {
<------><------>dev_err(&pdev->dev, "missing reg property\n");
<------><------>return -EINVAL;
<------>}
<------>adc->irq = platform_get_irq(pdev, 0);
<------>if (adc->irq < 0)
<------><------>return adc->irq;
<------>ret = devm_request_threaded_irq(&pdev->dev, adc->irq, stm32_adc_isr,
<------><------><------><------><------>stm32_adc_threaded_isr,
<------><------><------><------><------>0, pdev->name, indio_dev);
<------>if (ret) {
<------><------>dev_err(&pdev->dev, "failed to request IRQ\n");
<------><------>return ret;
<------>}
<------>adc->clk = devm_clk_get(&pdev->dev, NULL);
<------>if (IS_ERR(adc->clk)) {
<------><------>ret = PTR_ERR(adc->clk);
<------><------>if (ret == -ENOENT && !adc->cfg->clk_required) {
<------><------><------>adc->clk = NULL;
<------><------>} else {
<------><------><------>dev_err(&pdev->dev, "Can't get clock\n");
<------><------><------>return ret;
<------><------>}
<------>}
<------>ret = stm32_adc_of_get_resolution(indio_dev);
<------>if (ret < 0)
<------><------>return ret;
<------>ret = stm32_adc_chan_of_init(indio_dev);
<------>if (ret < 0)
<------><------>return ret;
<------>ret = stm32_adc_dma_request(dev, indio_dev);
<------>if (ret < 0)
<------><------>return ret;
<------>if (!adc->dma_chan)
<------><------>handler = &stm32_adc_trigger_handler;
<------>ret = iio_triggered_buffer_setup(indio_dev,
<------><------><------><------><------> &iio_pollfunc_store_time, handler,
<------><------><------><------><------> &stm32_adc_buffer_setup_ops);
<------>if (ret) {
<------><------>dev_err(&pdev->dev, "buffer setup failed\n");
<------><------>goto err_dma_disable;
<------>}
<------>/* Get stm32-adc-core PM online */
<------>pm_runtime_get_noresume(dev);
<------>pm_runtime_set_active(dev);
<------>pm_runtime_set_autosuspend_delay(dev, STM32_ADC_HW_STOP_DELAY_MS);
<------>pm_runtime_use_autosuspend(dev);
<------>pm_runtime_enable(dev);
<------>ret = stm32_adc_hw_start(dev);
<------>if (ret)
<------><------>goto err_buffer_cleanup;
<------>ret = iio_device_register(indio_dev);
<------>if (ret) {
<------><------>dev_err(&pdev->dev, "iio dev register failed\n");
<------><------>goto err_hw_stop;
<------>}
<------>pm_runtime_mark_last_busy(dev);
<------>pm_runtime_put_autosuspend(dev);
<------>return 0;
err_hw_stop:
<------>stm32_adc_hw_stop(dev);
err_buffer_cleanup:
<------>pm_runtime_disable(dev);
<------>pm_runtime_set_suspended(dev);
<------>pm_runtime_put_noidle(dev);
<------>iio_triggered_buffer_cleanup(indio_dev);
err_dma_disable:
<------>if (adc->dma_chan) {
<------><------>dma_free_coherent(adc->dma_chan->device->dev,
<------><------><------><------> STM32_DMA_BUFFER_SIZE,
<------><------><------><------> adc->rx_buf, adc->rx_dma_buf);
<------><------>dma_release_channel(adc->dma_chan);
<------>}
<------>return ret;
}
static int stm32_adc_remove(struct platform_device *pdev)
{
<------>struct iio_dev *indio_dev = platform_get_drvdata(pdev);
<------>struct stm32_adc *adc = iio_priv(indio_dev);
<------>pm_runtime_get_sync(&pdev->dev);
<------>iio_device_unregister(indio_dev);
<------>stm32_adc_hw_stop(&pdev->dev);
<------>pm_runtime_disable(&pdev->dev);
<------>pm_runtime_set_suspended(&pdev->dev);
<------>pm_runtime_put_noidle(&pdev->dev);
<------>iio_triggered_buffer_cleanup(indio_dev);
<------>if (adc->dma_chan) {
<------><------>dma_free_coherent(adc->dma_chan->device->dev,
<------><------><------><------> STM32_DMA_BUFFER_SIZE,
<------><------><------><------> adc->rx_buf, adc->rx_dma_buf);
<------><------>dma_release_channel(adc->dma_chan);
<------>}
<------>return 0;
}
#if defined(CONFIG_PM_SLEEP)
static int stm32_adc_suspend(struct device *dev)
{
<------>struct iio_dev *indio_dev = dev_get_drvdata(dev);
<------>if (iio_buffer_enabled(indio_dev))
<------><------>stm32_adc_buffer_predisable(indio_dev);
<------>return pm_runtime_force_suspend(dev);
}
static int stm32_adc_resume(struct device *dev)
{
<------>struct iio_dev *indio_dev = dev_get_drvdata(dev);
<------>int ret;
<------>ret = pm_runtime_force_resume(dev);
<------>if (ret < 0)
<------><------>return ret;
<------>if (!iio_buffer_enabled(indio_dev))
<------><------>return 0;
<------>ret = stm32_adc_update_scan_mode(indio_dev,
<------><------><------><------><------> indio_dev->active_scan_mask);
<------>if (ret < 0)
<------><------>return ret;
<------>return stm32_adc_buffer_postenable(indio_dev);
}
#endif
#if defined(CONFIG_PM)
static int stm32_adc_runtime_suspend(struct device *dev)
{
<------>return stm32_adc_hw_stop(dev);
}
static int stm32_adc_runtime_resume(struct device *dev)
{
<------>return stm32_adc_hw_start(dev);
}
#endif
static const struct dev_pm_ops stm32_adc_pm_ops = {
<------>SET_SYSTEM_SLEEP_PM_OPS(stm32_adc_suspend, stm32_adc_resume)
<------>SET_RUNTIME_PM_OPS(stm32_adc_runtime_suspend, stm32_adc_runtime_resume,
<------><------><------> NULL)
};
static const struct stm32_adc_cfg stm32f4_adc_cfg = {
<------>.regs = &stm32f4_adc_regspec,
<------>.adc_info = &stm32f4_adc_info,
<------>.trigs = stm32f4_adc_trigs,
<------>.clk_required = true,
<------>.start_conv = stm32f4_adc_start_conv,
<------>.stop_conv = stm32f4_adc_stop_conv,
<------>.smp_cycles = stm32f4_adc_smp_cycles,
<------>.irq_clear = stm32f4_adc_irq_clear,
};
static const struct stm32_adc_cfg stm32h7_adc_cfg = {
<------>.regs = &stm32h7_adc_regspec,
<------>.adc_info = &stm32h7_adc_info,
<------>.trigs = stm32h7_adc_trigs,
<------>.start_conv = stm32h7_adc_start_conv,
<------>.stop_conv = stm32h7_adc_stop_conv,
<------>.prepare = stm32h7_adc_prepare,
<------>.unprepare = stm32h7_adc_unprepare,
<------>.smp_cycles = stm32h7_adc_smp_cycles,
<------>.irq_clear = stm32h7_adc_irq_clear,
};
static const struct stm32_adc_cfg stm32mp1_adc_cfg = {
<------>.regs = &stm32h7_adc_regspec,
<------>.adc_info = &stm32h7_adc_info,
<------>.trigs = stm32h7_adc_trigs,
<------>.has_vregready = true,
<------>.start_conv = stm32h7_adc_start_conv,
<------>.stop_conv = stm32h7_adc_stop_conv,
<------>.prepare = stm32h7_adc_prepare,
<------>.unprepare = stm32h7_adc_unprepare,
<------>.smp_cycles = stm32h7_adc_smp_cycles,
<------>.irq_clear = stm32h7_adc_irq_clear,
};
static const struct of_device_id stm32_adc_of_match[] = {
<------>{ .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
<------>{ .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg },
<------>{ .compatible = "st,stm32mp1-adc", .data = (void *)&stm32mp1_adc_cfg },
<------>{},
};
MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
static struct platform_driver stm32_adc_driver = {
<------>.probe = stm32_adc_probe,
<------>.remove = stm32_adc_remove,
<------>.driver = {
<------><------>.name = "stm32-adc",
<------><------>.of_match_table = stm32_adc_of_match,
<------><------>.pm = &stm32_adc_pm_ops,
<------>},
};
module_platform_driver(stm32_adc_driver);
MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:stm32-adc");