Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
// SPDX-License-Identifier: GPL-2.0
/*
* This file is part of STM32 ADC driver
*
* Copyright (C) 2016, STMicroelectronics - All Rights Reserved
* Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
*
* Inspired from: fsl-imx25-tsadc
*
*/
#include <linux/clk.h>
#include <linux/interrupt.h>
#include <linux/irqchip/chained_irq.h>
#include <linux/irqdesc.h>
#include <linux/irqdomain.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include "stm32-adc-core.h"
#define STM32_ADC_CORE_SLEEP_DELAY_MS 2000
/* SYSCFG registers */
#define STM32MP1_SYSCFG_PMCSETR 0x04
#define STM32MP1_SYSCFG_PMCCLRR 0x44
/* SYSCFG bit fields */
#define STM32MP1_SYSCFG_ANASWVDD_MASK BIT(9)
/* SYSCFG capability flags */
#define HAS_VBOOSTER BIT(0)
#define HAS_ANASWVDD BIT(1)
/**
* struct stm32_adc_common_regs - stm32 common registers
* @csr: common status register offset
* @ccr: common control register offset
* @eoc_msk: array of eoc (end of conversion flag) masks in csr for adc1..n
* @ovr_msk: array of ovr (overrun flag) masks in csr for adc1..n
* @ier: interrupt enable register offset for each adc
* @eocie_msk: end of conversion interrupt enable mask in @ier
*/
struct stm32_adc_common_regs {
<------>u32 csr;
<------>u32 ccr;
<------>u32 eoc_msk[STM32_ADC_MAX_ADCS];
<------>u32 ovr_msk[STM32_ADC_MAX_ADCS];
<------>u32 ier;
<------>u32 eocie_msk;
};
struct stm32_adc_priv;
/**
* struct stm32_adc_priv_cfg - stm32 core compatible configuration data
* @regs: common registers for all instances
* @clk_sel: clock selection routine
* @max_clk_rate_hz: maximum analog clock rate (Hz, from datasheet)
* @has_syscfg: SYSCFG capability flags
* @num_irqs: number of interrupt lines
*/
struct stm32_adc_priv_cfg {
<------>const struct stm32_adc_common_regs *regs;
<------>int (*clk_sel)(struct platform_device *, struct stm32_adc_priv *);
<------>u32 max_clk_rate_hz;
<------>unsigned int has_syscfg;
<------>unsigned int num_irqs;
};
/**
* struct stm32_adc_priv - stm32 ADC core private data
* @irq: irq(s) for ADC block
* @domain: irq domain reference
* @aclk: clock reference for the analog circuitry
* @bclk: bus clock common for all ADCs, depends on part used
* @max_clk_rate: desired maximum clock rate
* @booster: booster supply reference
* @vdd: vdd supply reference
* @vdda: vdda analog supply reference
* @vref: regulator reference
* @vdd_uv: vdd supply voltage (microvolts)
* @vdda_uv: vdda supply voltage (microvolts)
* @cfg: compatible configuration data
* @common: common data for all ADC instances
* @ccr_bak: backup CCR in low power mode
* @syscfg: reference to syscon, system control registers
*/
struct stm32_adc_priv {
<------>int irq[STM32_ADC_MAX_ADCS];
<------>struct irq_domain *domain;
<------>struct clk *aclk;
<------>struct clk *bclk;
<------>u32 max_clk_rate;
<------>struct regulator *booster;
<------>struct regulator *vdd;
<------>struct regulator *vdda;
<------>struct regulator *vref;
<------>int vdd_uv;
<------>int vdda_uv;
<------>const struct stm32_adc_priv_cfg *cfg;
<------>struct stm32_adc_common common;
<------>u32 ccr_bak;
<------>struct regmap *syscfg;
};
static struct stm32_adc_priv *to_stm32_adc_priv(struct stm32_adc_common *com)
{
<------>return container_of(com, struct stm32_adc_priv, common);
}
/* STM32F4 ADC internal common clock prescaler division ratios */
static int stm32f4_pclk_div[] = {2, 4, 6, 8};
/**
* stm32f4_adc_clk_sel() - Select stm32f4 ADC common clock prescaler
* @pdev: platform device
* @priv: stm32 ADC core private data
* Select clock prescaler used for analog conversions, before using ADC.
*/
static int stm32f4_adc_clk_sel(struct platform_device *pdev,
<------><------><------> struct stm32_adc_priv *priv)
{
<------>unsigned long rate;
<------>u32 val;
<------>int i;
<------>/* stm32f4 has one clk input for analog (mandatory), enforce it here */
<------>if (!priv->aclk) {
<------><------>dev_err(&pdev->dev, "No 'adc' clock found\n");
<------><------>return -ENOENT;
<------>}
<------>rate = clk_get_rate(priv->aclk);
<------>if (!rate) {
<------><------>dev_err(&pdev->dev, "Invalid clock rate: 0\n");
<------><------>return -EINVAL;
<------>}
<------>for (i = 0; i < ARRAY_SIZE(stm32f4_pclk_div); i++) {
<------><------>if ((rate / stm32f4_pclk_div[i]) <= priv->max_clk_rate)
<------><------><------>break;
<------>}
<------>if (i >= ARRAY_SIZE(stm32f4_pclk_div)) {
<------><------>dev_err(&pdev->dev, "adc clk selection failed\n");
<------><------>return -EINVAL;
<------>}
<------>priv->common.rate = rate / stm32f4_pclk_div[i];
<------>val = readl_relaxed(priv->common.base + STM32F4_ADC_CCR);
<------>val &= ~STM32F4_ADC_ADCPRE_MASK;
<------>val |= i << STM32F4_ADC_ADCPRE_SHIFT;
<------>writel_relaxed(val, priv->common.base + STM32F4_ADC_CCR);
<------>dev_dbg(&pdev->dev, "Using analog clock source at %ld kHz\n",
<------><------>priv->common.rate / 1000);
<------>return 0;
}
/**
* struct stm32h7_adc_ck_spec - specification for stm32h7 adc clock
* @ckmode: ADC clock mode, Async or sync with prescaler.
* @presc: prescaler bitfield for async clock mode
* @div: prescaler division ratio
*/
struct stm32h7_adc_ck_spec {
<------>u32 ckmode;
<------>u32 presc;
<------>int div;
};
static const struct stm32h7_adc_ck_spec stm32h7_adc_ckmodes_spec[] = {
<------>/* 00: CK_ADC[1..3]: Asynchronous clock modes */
<------>{ 0, 0, 1 },
<------>{ 0, 1, 2 },
<------>{ 0, 2, 4 },
<------>{ 0, 3, 6 },
<------>{ 0, 4, 8 },
<------>{ 0, 5, 10 },
<------>{ 0, 6, 12 },
<------>{ 0, 7, 16 },
<------>{ 0, 8, 32 },
<------>{ 0, 9, 64 },
<------>{ 0, 10, 128 },
<------>{ 0, 11, 256 },
<------>/* HCLK used: Synchronous clock modes (1, 2 or 4 prescaler) */
<------>{ 1, 0, 1 },
<------>{ 2, 0, 2 },
<------>{ 3, 0, 4 },
};
static int stm32h7_adc_clk_sel(struct platform_device *pdev,
<------><------><------> struct stm32_adc_priv *priv)
{
<------>u32 ckmode, presc, val;
<------>unsigned long rate;
<------>int i, div;
<------>/* stm32h7 bus clock is common for all ADC instances (mandatory) */
<------>if (!priv->bclk) {
<------><------>dev_err(&pdev->dev, "No 'bus' clock found\n");
<------><------>return -ENOENT;
<------>}
<------>/*
<------> * stm32h7 can use either 'bus' or 'adc' clock for analog circuitry.
<------> * So, choice is to have bus clock mandatory and adc clock optional.
<------> * If optional 'adc' clock has been found, then try to use it first.
<------> */
<------>if (priv->aclk) {
<------><------>/*
<------><------> * Asynchronous clock modes (e.g. ckmode == 0)
<------><------> * From spec: PLL output musn't exceed max rate
<------><------> */
<------><------>rate = clk_get_rate(priv->aclk);
<------><------>if (!rate) {
<------><------><------>dev_err(&pdev->dev, "Invalid adc clock rate: 0\n");
<------><------><------>return -EINVAL;
<------><------>}
<------><------>for (i = 0; i < ARRAY_SIZE(stm32h7_adc_ckmodes_spec); i++) {
<------><------><------>ckmode = stm32h7_adc_ckmodes_spec[i].ckmode;
<------><------><------>presc = stm32h7_adc_ckmodes_spec[i].presc;
<------><------><------>div = stm32h7_adc_ckmodes_spec[i].div;
<------><------><------>if (ckmode)
<------><------><------><------>continue;
<------><------><------>if ((rate / div) <= priv->max_clk_rate)
<------><------><------><------>goto out;
<------><------>}
<------>}
<------>/* Synchronous clock modes (e.g. ckmode is 1, 2 or 3) */
<------>rate = clk_get_rate(priv->bclk);
<------>if (!rate) {
<------><------>dev_err(&pdev->dev, "Invalid bus clock rate: 0\n");
<------><------>return -EINVAL;
<------>}
<------>for (i = 0; i < ARRAY_SIZE(stm32h7_adc_ckmodes_spec); i++) {
<------><------>ckmode = stm32h7_adc_ckmodes_spec[i].ckmode;
<------><------>presc = stm32h7_adc_ckmodes_spec[i].presc;
<------><------>div = stm32h7_adc_ckmodes_spec[i].div;
<------><------>if (!ckmode)
<------><------><------>continue;
<------><------>if ((rate / div) <= priv->max_clk_rate)
<------><------><------>goto out;
<------>}
<------>dev_err(&pdev->dev, "adc clk selection failed\n");
<------>return -EINVAL;
out:
<------>/* rate used later by each ADC instance to control BOOST mode */
<------>priv->common.rate = rate / div;
<------>/* Set common clock mode and prescaler */
<------>val = readl_relaxed(priv->common.base + STM32H7_ADC_CCR);
<------>val &= ~(STM32H7_CKMODE_MASK | STM32H7_PRESC_MASK);
<------>val |= ckmode << STM32H7_CKMODE_SHIFT;
<------>val |= presc << STM32H7_PRESC_SHIFT;
<------>writel_relaxed(val, priv->common.base + STM32H7_ADC_CCR);
<------>dev_dbg(&pdev->dev, "Using %s clock/%d source at %ld kHz\n",
<------><------>ckmode ? "bus" : "adc", div, priv->common.rate / 1000);
<------>return 0;
}
/* STM32F4 common registers definitions */
static const struct stm32_adc_common_regs stm32f4_adc_common_regs = {
<------>.csr = STM32F4_ADC_CSR,
<------>.ccr = STM32F4_ADC_CCR,
<------>.eoc_msk = { STM32F4_EOC1, STM32F4_EOC2, STM32F4_EOC3},
<------>.ovr_msk = { STM32F4_OVR1, STM32F4_OVR2, STM32F4_OVR3},
<------>.ier = STM32F4_ADC_CR1,
<------>.eocie_msk = STM32F4_EOCIE,
};
/* STM32H7 common registers definitions */
static const struct stm32_adc_common_regs stm32h7_adc_common_regs = {
<------>.csr = STM32H7_ADC_CSR,
<------>.ccr = STM32H7_ADC_CCR,
<------>.eoc_msk = { STM32H7_EOC_MST, STM32H7_EOC_SLV},
<------>.ovr_msk = { STM32H7_OVR_MST, STM32H7_OVR_SLV},
<------>.ier = STM32H7_ADC_IER,
<------>.eocie_msk = STM32H7_EOCIE,
};
static const unsigned int stm32_adc_offset[STM32_ADC_MAX_ADCS] = {
<------>0, STM32_ADC_OFFSET, STM32_ADC_OFFSET * 2,
};
static unsigned int stm32_adc_eoc_enabled(struct stm32_adc_priv *priv,
<------><------><------><------><------> unsigned int adc)
{
<------>u32 ier, offset = stm32_adc_offset[adc];
<------>ier = readl_relaxed(priv->common.base + offset + priv->cfg->regs->ier);
<------>return ier & priv->cfg->regs->eocie_msk;
}
/* ADC common interrupt for all instances */
static void stm32_adc_irq_handler(struct irq_desc *desc)
{
<------>struct stm32_adc_priv *priv = irq_desc_get_handler_data(desc);
<------>struct irq_chip *chip = irq_desc_get_chip(desc);
<------>int i;
<------>u32 status;
<------>chained_irq_enter(chip, desc);
<------>status = readl_relaxed(priv->common.base + priv->cfg->regs->csr);
<------>/*
<------> * End of conversion may be handled by using IRQ or DMA. There may be a
<------> * race here when two conversions complete at the same time on several
<------> * ADCs. EOC may be read 'set' for several ADCs, with:
<------> * - an ADC configured to use DMA (EOC triggers the DMA request, and
<------> * is then automatically cleared by DR read in hardware)
<------> * - an ADC configured to use IRQs (EOCIE bit is set. The handler must
<------> * be called in this case)
<------> * So both EOC status bit in CSR and EOCIE control bit must be checked
<------> * before invoking the interrupt handler (e.g. call ISR only for
<------> * IRQ-enabled ADCs).
<------> */
<------>for (i = 0; i < priv->cfg->num_irqs; i++) {
<------><------>if ((status & priv->cfg->regs->eoc_msk[i] &&
<------><------> stm32_adc_eoc_enabled(priv, i)) ||
<------><------> (status & priv->cfg->regs->ovr_msk[i]))
<------><------><------>generic_handle_irq(irq_find_mapping(priv->domain, i));
<------>}
<------>chained_irq_exit(chip, desc);
};
static int stm32_adc_domain_map(struct irq_domain *d, unsigned int irq,
<------><------><------><------>irq_hw_number_t hwirq)
{
<------>irq_set_chip_data(irq, d->host_data);
<------>irq_set_chip_and_handler(irq, &dummy_irq_chip, handle_level_irq);
<------>return 0;
}
static void stm32_adc_domain_unmap(struct irq_domain *d, unsigned int irq)
{
<------>irq_set_chip_and_handler(irq, NULL, NULL);
<------>irq_set_chip_data(irq, NULL);
}
static const struct irq_domain_ops stm32_adc_domain_ops = {
<------>.map = stm32_adc_domain_map,
<------>.unmap = stm32_adc_domain_unmap,
<------>.xlate = irq_domain_xlate_onecell,
};
static int stm32_adc_irq_probe(struct platform_device *pdev,
<------><------><------> struct stm32_adc_priv *priv)
{
<------>struct device_node *np = pdev->dev.of_node;
<------>unsigned int i;
<------>/*
<------> * Interrupt(s) must be provided, depending on the compatible:
<------> * - stm32f4/h7 shares a common interrupt line.
<------> * - stm32mp1, has one line per ADC
<------> */
<------>for (i = 0; i < priv->cfg->num_irqs; i++) {
<------><------>priv->irq[i] = platform_get_irq(pdev, i);
<------><------>if (priv->irq[i] < 0)
<------><------><------>return priv->irq[i];
<------>}
<------>priv->domain = irq_domain_add_simple(np, STM32_ADC_MAX_ADCS, 0,
<------><------><------><------><------> &stm32_adc_domain_ops,
<------><------><------><------><------> priv);
<------>if (!priv->domain) {
<------><------>dev_err(&pdev->dev, "Failed to add irq domain\n");
<------><------>return -ENOMEM;
<------>}
<------>for (i = 0; i < priv->cfg->num_irqs; i++) {
<------><------>irq_set_chained_handler(priv->irq[i], stm32_adc_irq_handler);
<------><------>irq_set_handler_data(priv->irq[i], priv);
<------>}
<------>return 0;
}
static void stm32_adc_irq_remove(struct platform_device *pdev,
<------><------><------><------> struct stm32_adc_priv *priv)
{
<------>int hwirq;
<------>unsigned int i;
<------>for (hwirq = 0; hwirq < STM32_ADC_MAX_ADCS; hwirq++)
<------><------>irq_dispose_mapping(irq_find_mapping(priv->domain, hwirq));
<------>irq_domain_remove(priv->domain);
<------>for (i = 0; i < priv->cfg->num_irqs; i++)
<------><------>irq_set_chained_handler(priv->irq[i], NULL);
}
static int stm32_adc_core_switches_supply_en(struct stm32_adc_priv *priv,
<------><------><------><------><------> struct device *dev)
{
<------>int ret;
<------>/*
<------> * On STM32H7 and STM32MP1, the ADC inputs are multiplexed with analog
<------> * switches (via PCSEL) which have reduced performances when their
<------> * supply is below 2.7V (vdda by default):
<------> * - Voltage booster can be used, to get full ADC performances
<------> * (increases power consumption).
<------> * - Vdd can be used to supply them, if above 2.7V (STM32MP1 only).
<------> *
<------> * Recommended settings for ANASWVDD and EN_BOOSTER:
<------> * - vdda < 2.7V but vdd > 2.7V: ANASWVDD = 1, EN_BOOSTER = 0 (stm32mp1)
<------> * - vdda < 2.7V and vdd < 2.7V: ANASWVDD = 0, EN_BOOSTER = 1
<------> * - vdda >= 2.7V: ANASWVDD = 0, EN_BOOSTER = 0 (default)
<------> */
<------>if (priv->vdda_uv < 2700000) {
<------><------>if (priv->syscfg && priv->vdd_uv > 2700000) {
<------><------><------>ret = regulator_enable(priv->vdd);
<------><------><------>if (ret < 0) {
<------><------><------><------>dev_err(dev, "vdd enable failed %d\n", ret);
<------><------><------><------>return ret;
<------><------><------>}
<------><------><------>ret = regmap_write(priv->syscfg,
<------><------><------><------><------> STM32MP1_SYSCFG_PMCSETR,
<------><------><------><------><------> STM32MP1_SYSCFG_ANASWVDD_MASK);
<------><------><------>if (ret < 0) {
<------><------><------><------>regulator_disable(priv->vdd);
<------><------><------><------>dev_err(dev, "vdd select failed, %d\n", ret);
<------><------><------><------>return ret;
<------><------><------>}
<------><------><------>dev_dbg(dev, "analog switches supplied by vdd\n");
<------><------><------>return 0;
<------><------>}
<------><------>if (priv->booster) {
<------><------><------>/*
<------><------><------> * This is optional, as this is a trade-off between
<------><------><------> * analog performance and power consumption.
<------><------><------> */
<------><------><------>ret = regulator_enable(priv->booster);
<------><------><------>if (ret < 0) {
<------><------><------><------>dev_err(dev, "booster enable failed %d\n", ret);
<------><------><------><------>return ret;
<------><------><------>}
<------><------><------>dev_dbg(dev, "analog switches supplied by booster\n");
<------><------><------>return 0;
<------><------>}
<------>}
<------>/* Fallback using vdda (default), nothing to do */
<------>dev_dbg(dev, "analog switches supplied by vdda (%d uV)\n",
<------><------>priv->vdda_uv);
<------>return 0;
}
static void stm32_adc_core_switches_supply_dis(struct stm32_adc_priv *priv)
{
<------>if (priv->vdda_uv < 2700000) {
<------><------>if (priv->syscfg && priv->vdd_uv > 2700000) {
<------><------><------>regmap_write(priv->syscfg, STM32MP1_SYSCFG_PMCCLRR,
<------><------><------><------> STM32MP1_SYSCFG_ANASWVDD_MASK);
<------><------><------>regulator_disable(priv->vdd);
<------><------><------>return;
<------><------>}
<------><------>if (priv->booster)
<------><------><------>regulator_disable(priv->booster);
<------>}
}
static int stm32_adc_core_hw_start(struct device *dev)
{
<------>struct stm32_adc_common *common = dev_get_drvdata(dev);
<------>struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
<------>int ret;
<------>ret = regulator_enable(priv->vdda);
<------>if (ret < 0) {
<------><------>dev_err(dev, "vdda enable failed %d\n", ret);
<------><------>return ret;
<------>}
<------>ret = regulator_get_voltage(priv->vdda);
<------>if (ret < 0) {
<------><------>dev_err(dev, "vdda get voltage failed, %d\n", ret);
<------><------>goto err_vdda_disable;
<------>}
<------>priv->vdda_uv = ret;
<------>ret = stm32_adc_core_switches_supply_en(priv, dev);
<------>if (ret < 0)
<------><------>goto err_vdda_disable;
<------>ret = regulator_enable(priv->vref);
<------>if (ret < 0) {
<------><------>dev_err(dev, "vref enable failed\n");
<------><------>goto err_switches_dis;
<------>}
<------>if (priv->bclk) {
<------><------>ret = clk_prepare_enable(priv->bclk);
<------><------>if (ret < 0) {
<------><------><------>dev_err(dev, "bus clk enable failed\n");
<------><------><------>goto err_regulator_disable;
<------><------>}
<------>}
<------>if (priv->aclk) {
<------><------>ret = clk_prepare_enable(priv->aclk);
<------><------>if (ret < 0) {
<------><------><------>dev_err(dev, "adc clk enable failed\n");
<------><------><------>goto err_bclk_disable;
<------><------>}
<------>}
<------>writel_relaxed(priv->ccr_bak, priv->common.base + priv->cfg->regs->ccr);
<------>return 0;
err_bclk_disable:
<------>if (priv->bclk)
<------><------>clk_disable_unprepare(priv->bclk);
err_regulator_disable:
<------>regulator_disable(priv->vref);
err_switches_dis:
<------>stm32_adc_core_switches_supply_dis(priv);
err_vdda_disable:
<------>regulator_disable(priv->vdda);
<------>return ret;
}
static void stm32_adc_core_hw_stop(struct device *dev)
{
<------>struct stm32_adc_common *common = dev_get_drvdata(dev);
<------>struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
<------>/* Backup CCR that may be lost (depends on power state to achieve) */
<------>priv->ccr_bak = readl_relaxed(priv->common.base + priv->cfg->regs->ccr);
<------>if (priv->aclk)
<------><------>clk_disable_unprepare(priv->aclk);
<------>if (priv->bclk)
<------><------>clk_disable_unprepare(priv->bclk);
<------>regulator_disable(priv->vref);
<------>stm32_adc_core_switches_supply_dis(priv);
<------>regulator_disable(priv->vdda);
}
static int stm32_adc_core_switches_probe(struct device *dev,
<------><------><------><------><------> struct stm32_adc_priv *priv)
{
<------>struct device_node *np = dev->of_node;
<------>int ret;
<------>/* Analog switches supply can be controlled by syscfg (optional) */
<------>priv->syscfg = syscon_regmap_lookup_by_phandle(np, "st,syscfg");
<------>if (IS_ERR(priv->syscfg)) {
<------><------>ret = PTR_ERR(priv->syscfg);
<------><------>if (ret != -ENODEV)
<------><------><------>return dev_err_probe(dev, ret, "Can't probe syscfg\n");
<------><------>priv->syscfg = NULL;
<------>}
<------>/* Booster can be used to supply analog switches (optional) */
<------>if (priv->cfg->has_syscfg & HAS_VBOOSTER &&
<------> of_property_read_bool(np, "booster-supply")) {
<------><------>priv->booster = devm_regulator_get_optional(dev, "booster");
<------><------>if (IS_ERR(priv->booster)) {
<------><------><------>ret = PTR_ERR(priv->booster);
<------><------><------>if (ret != -ENODEV)
<------><------><------><------>return dev_err_probe(dev, ret, "can't get booster\n");
<------><------><------>priv->booster = NULL;
<------><------>}
<------>}
<------>/* Vdd can be used to supply analog switches (optional) */
<------>if (priv->cfg->has_syscfg & HAS_ANASWVDD &&
<------> of_property_read_bool(np, "vdd-supply")) {
<------><------>priv->vdd = devm_regulator_get_optional(dev, "vdd");
<------><------>if (IS_ERR(priv->vdd)) {
<------><------><------>ret = PTR_ERR(priv->vdd);
<------><------><------>if (ret != -ENODEV)
<------><------><------><------>return dev_err_probe(dev, ret, "can't get vdd\n");
<------><------><------>priv->vdd = NULL;
<------><------>}
<------>}
<------>if (priv->vdd) {
<------><------>ret = regulator_enable(priv->vdd);
<------><------>if (ret < 0) {
<------><------><------>dev_err(dev, "vdd enable failed %d\n", ret);
<------><------><------>return ret;
<------><------>}
<------><------>ret = regulator_get_voltage(priv->vdd);
<------><------>if (ret < 0) {
<------><------><------>dev_err(dev, "vdd get voltage failed %d\n", ret);
<------><------><------>regulator_disable(priv->vdd);
<------><------><------>return ret;
<------><------>}
<------><------>priv->vdd_uv = ret;
<------><------>regulator_disable(priv->vdd);
<------>}
<------>return 0;
}
static int stm32_adc_probe(struct platform_device *pdev)
{
<------>struct stm32_adc_priv *priv;
<------>struct device *dev = &pdev->dev;
<------>struct device_node *np = pdev->dev.of_node;
<------>struct resource *res;
<------>u32 max_rate;
<------>int ret;
<------>if (!pdev->dev.of_node)
<------><------>return -ENODEV;
<------>priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
<------>if (!priv)
<------><------>return -ENOMEM;
<------>platform_set_drvdata(pdev, &priv->common);
<------>priv->cfg = (const struct stm32_adc_priv_cfg *)
<------><------>of_match_device(dev->driver->of_match_table, dev)->data;
<------>res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
<------>priv->common.base = devm_ioremap_resource(&pdev->dev, res);
<------>if (IS_ERR(priv->common.base))
<------><------>return PTR_ERR(priv->common.base);
<------>priv->common.phys_base = res->start;
<------>priv->vdda = devm_regulator_get(&pdev->dev, "vdda");
<------>if (IS_ERR(priv->vdda))
<------><------>return dev_err_probe(&pdev->dev, PTR_ERR(priv->vdda),
<------><------><------><------> "vdda get failed\n");
<------>priv->vref = devm_regulator_get(&pdev->dev, "vref");
<------>if (IS_ERR(priv->vref))
<------><------>return dev_err_probe(&pdev->dev, PTR_ERR(priv->vref),
<------><------><------><------> "vref get failed\n");
<------>priv->aclk = devm_clk_get_optional(&pdev->dev, "adc");
<------>if (IS_ERR(priv->aclk))
<------><------>return dev_err_probe(&pdev->dev, PTR_ERR(priv->aclk),
<------><------><------><------> "Can't get 'adc' clock\n");
<------>priv->bclk = devm_clk_get_optional(&pdev->dev, "bus");
<------>if (IS_ERR(priv->bclk))
<------><------>return dev_err_probe(&pdev->dev, PTR_ERR(priv->bclk),
<------><------><------><------> "Can't get 'bus' clock\n");
<------>ret = stm32_adc_core_switches_probe(dev, priv);
<------>if (ret)
<------><------>return ret;
<------>pm_runtime_get_noresume(dev);
<------>pm_runtime_set_active(dev);
<------>pm_runtime_set_autosuspend_delay(dev, STM32_ADC_CORE_SLEEP_DELAY_MS);
<------>pm_runtime_use_autosuspend(dev);
<------>pm_runtime_enable(dev);
<------>ret = stm32_adc_core_hw_start(dev);
<------>if (ret)
<------><------>goto err_pm_stop;
<------>ret = regulator_get_voltage(priv->vref);
<------>if (ret < 0) {
<------><------>dev_err(&pdev->dev, "vref get voltage failed, %d\n", ret);
<------><------>goto err_hw_stop;
<------>}
<------>priv->common.vref_mv = ret / 1000;
<------>dev_dbg(&pdev->dev, "vref+=%dmV\n", priv->common.vref_mv);
<------>ret = of_property_read_u32(pdev->dev.of_node, "st,max-clk-rate-hz",
<------><------><------><------> &max_rate);
<------>if (!ret)
<------><------>priv->max_clk_rate = min(max_rate, priv->cfg->max_clk_rate_hz);
<------>else
<------><------>priv->max_clk_rate = priv->cfg->max_clk_rate_hz;
<------>ret = priv->cfg->clk_sel(pdev, priv);
<------>if (ret < 0)
<------><------>goto err_hw_stop;
<------>ret = stm32_adc_irq_probe(pdev, priv);
<------>if (ret < 0)
<------><------>goto err_hw_stop;
<------>ret = of_platform_populate(np, NULL, NULL, &pdev->dev);
<------>if (ret < 0) {
<------><------>dev_err(&pdev->dev, "failed to populate DT children\n");
<------><------>goto err_irq_remove;
<------>}
<------>pm_runtime_mark_last_busy(dev);
<------>pm_runtime_put_autosuspend(dev);
<------>return 0;
err_irq_remove:
<------>stm32_adc_irq_remove(pdev, priv);
err_hw_stop:
<------>stm32_adc_core_hw_stop(dev);
err_pm_stop:
<------>pm_runtime_disable(dev);
<------>pm_runtime_set_suspended(dev);
<------>pm_runtime_put_noidle(dev);
<------>return ret;
}
static int stm32_adc_remove(struct platform_device *pdev)
{
<------>struct stm32_adc_common *common = platform_get_drvdata(pdev);
<------>struct stm32_adc_priv *priv = to_stm32_adc_priv(common);
<------>pm_runtime_get_sync(&pdev->dev);
<------>of_platform_depopulate(&pdev->dev);
<------>stm32_adc_irq_remove(pdev, priv);
<------>stm32_adc_core_hw_stop(&pdev->dev);
<------>pm_runtime_disable(&pdev->dev);
<------>pm_runtime_set_suspended(&pdev->dev);
<------>pm_runtime_put_noidle(&pdev->dev);
<------>return 0;
}
#if defined(CONFIG_PM)
static int stm32_adc_core_runtime_suspend(struct device *dev)
{
<------>stm32_adc_core_hw_stop(dev);
<------>return 0;
}
static int stm32_adc_core_runtime_resume(struct device *dev)
{
<------>return stm32_adc_core_hw_start(dev);
}
static int stm32_adc_core_runtime_idle(struct device *dev)
{
<------>pm_runtime_mark_last_busy(dev);
<------>return 0;
}
#endif
static const struct dev_pm_ops stm32_adc_core_pm_ops = {
<------>SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
<------><------><------><------>pm_runtime_force_resume)
<------>SET_RUNTIME_PM_OPS(stm32_adc_core_runtime_suspend,
<------><------><------> stm32_adc_core_runtime_resume,
<------><------><------> stm32_adc_core_runtime_idle)
};
static const struct stm32_adc_priv_cfg stm32f4_adc_priv_cfg = {
<------>.regs = &stm32f4_adc_common_regs,
<------>.clk_sel = stm32f4_adc_clk_sel,
<------>.max_clk_rate_hz = 36000000,
<------>.num_irqs = 1,
};
static const struct stm32_adc_priv_cfg stm32h7_adc_priv_cfg = {
<------>.regs = &stm32h7_adc_common_regs,
<------>.clk_sel = stm32h7_adc_clk_sel,
<------>.max_clk_rate_hz = 36000000,
<------>.has_syscfg = HAS_VBOOSTER,
<------>.num_irqs = 1,
};
static const struct stm32_adc_priv_cfg stm32mp1_adc_priv_cfg = {
<------>.regs = &stm32h7_adc_common_regs,
<------>.clk_sel = stm32h7_adc_clk_sel,
<------>.max_clk_rate_hz = 40000000,
<------>.has_syscfg = HAS_VBOOSTER | HAS_ANASWVDD,
<------>.num_irqs = 2,
};
static const struct of_device_id stm32_adc_of_match[] = {
<------>{
<------><------>.compatible = "st,stm32f4-adc-core",
<------><------>.data = (void *)&stm32f4_adc_priv_cfg
<------>}, {
<------><------>.compatible = "st,stm32h7-adc-core",
<------><------>.data = (void *)&stm32h7_adc_priv_cfg
<------>}, {
<------><------>.compatible = "st,stm32mp1-adc-core",
<------><------>.data = (void *)&stm32mp1_adc_priv_cfg
<------>}, {
<------>},
};
MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
static struct platform_driver stm32_adc_driver = {
<------>.probe = stm32_adc_probe,
<------>.remove = stm32_adc_remove,
<------>.driver = {
<------><------>.name = "stm32-adc-core",
<------><------>.of_match_table = stm32_adc_of_match,
<------><------>.pm = &stm32_adc_core_pm_ops,
<------>},
};
module_platform_driver(stm32_adc_driver);
MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
MODULE_DESCRIPTION("STMicroelectronics STM32 ADC core driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:stm32-adc-core");