Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2017 Tony Lindgren <tony@atomide.com>
*
* Rewritten for Linux IIO framework with some code based on
* earlier driver found in the Motorola Linux kernel:
*
* Copyright (C) 2009-2010 Motorola, Inc.
*/
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/platform_device.h>
#include <linux/property.h>
#include <linux/regmap.h>
#include <linux/iio/buffer.h>
#include <linux/iio/driver.h>
#include <linux/iio/iio.h>
#include <linux/iio/kfifo_buf.h>
#include <linux/mfd/motorola-cpcap.h>
/* Register CPCAP_REG_ADCC1 bits */
#define CPCAP_BIT_ADEN_AUTO_CLR BIT(15) /* Currently unused */
#define CPCAP_BIT_CAL_MODE BIT(14) /* Set with BIT_RAND0 */
#define CPCAP_BIT_ADC_CLK_SEL1 BIT(13) /* Currently unused */
#define CPCAP_BIT_ADC_CLK_SEL0 BIT(12) /* Currently unused */
#define CPCAP_BIT_ATOX BIT(11)
#define CPCAP_BIT_ATO3 BIT(10)
#define CPCAP_BIT_ATO2 BIT(9)
#define CPCAP_BIT_ATO1 BIT(8)
#define CPCAP_BIT_ATO0 BIT(7)
#define CPCAP_BIT_ADA2 BIT(6)
#define CPCAP_BIT_ADA1 BIT(5)
#define CPCAP_BIT_ADA0 BIT(4)
#define CPCAP_BIT_AD_SEL1 BIT(3) /* Set for bank1 */
#define CPCAP_BIT_RAND1 BIT(2) /* Set for channel 16 & 17 */
#define CPCAP_BIT_RAND0 BIT(1) /* Set with CAL_MODE */
#define CPCAP_BIT_ADEN BIT(0) /* Currently unused */
#define CPCAP_REG_ADCC1_DEFAULTS (CPCAP_BIT_ADEN_AUTO_CLR | \
<------><------><------><------><------> CPCAP_BIT_ADC_CLK_SEL0 | \
<------><------><------><------><------> CPCAP_BIT_RAND1)
/* Register CPCAP_REG_ADCC2 bits */
#define CPCAP_BIT_CAL_FACTOR_ENABLE BIT(15) /* Currently unused */
#define CPCAP_BIT_BATDETB_EN BIT(14) /* Currently unused */
#define CPCAP_BIT_ADTRIG_ONESHOT BIT(13) /* Set for !TIMING_IMM */
#define CPCAP_BIT_ASC BIT(12) /* Set for TIMING_IMM */
#define CPCAP_BIT_ATOX_PS_FACTOR BIT(11)
#define CPCAP_BIT_ADC_PS_FACTOR1 BIT(10)
#define CPCAP_BIT_ADC_PS_FACTOR0 BIT(9)
#define CPCAP_BIT_AD4_SELECT BIT(8) /* Currently unused */
#define CPCAP_BIT_ADC_BUSY BIT(7) /* Currently unused */
#define CPCAP_BIT_THERMBIAS_EN BIT(6) /* Bias for AD0_BATTDETB */
#define CPCAP_BIT_ADTRIG_DIS BIT(5) /* Disable interrupt */
#define CPCAP_BIT_LIADC BIT(4) /* Currently unused */
#define CPCAP_BIT_TS_REFEN BIT(3) /* Currently unused */
#define CPCAP_BIT_TS_M2 BIT(2) /* Currently unused */
#define CPCAP_BIT_TS_M1 BIT(1) /* Currently unused */
#define CPCAP_BIT_TS_M0 BIT(0) /* Currently unused */
#define CPCAP_REG_ADCC2_DEFAULTS (CPCAP_BIT_AD4_SELECT | \
<------><------><------><------><------> CPCAP_BIT_ADTRIG_DIS | \
<------><------><------><------><------> CPCAP_BIT_LIADC | \
<------><------><------><------><------> CPCAP_BIT_TS_M2 | \
<------><------><------><------><------> CPCAP_BIT_TS_M1)
#define CPCAP_MAX_TEMP_LVL 27
#define CPCAP_FOUR_POINT_TWO_ADC 801
#define ST_ADC_CAL_CHRGI_HIGH_THRESHOLD 530
#define ST_ADC_CAL_CHRGI_LOW_THRESHOLD 494
#define ST_ADC_CAL_BATTI_HIGH_THRESHOLD 530
#define ST_ADC_CAL_BATTI_LOW_THRESHOLD 494
#define ST_ADC_CALIBRATE_DIFF_THRESHOLD 3
#define CPCAP_ADC_MAX_RETRIES 5 /* Calibration */
/*
* struct cpcap_adc_ato - timing settings for cpcap adc
*
* Unfortunately no cpcap documentation available, please document when
* using these.
*/
struct cpcap_adc_ato {
<------>unsigned short ato_in;
<------>unsigned short atox_in;
<------>unsigned short adc_ps_factor_in;
<------>unsigned short atox_ps_factor_in;
<------>unsigned short ato_out;
<------>unsigned short atox_out;
<------>unsigned short adc_ps_factor_out;
<------>unsigned short atox_ps_factor_out;
};
/**
* struct cpcap-adc - cpcap adc device driver data
* @reg: cpcap regmap
* @dev: struct device
* @vendor: cpcap vendor
* @irq: interrupt
* @lock: mutex
* @ato: request timings
* @wq_data_avail: work queue
* @done: work done
*/
struct cpcap_adc {
<------>struct regmap *reg;
<------>struct device *dev;
<------>u16 vendor;
<------>int irq;
<------>struct mutex lock; /* ADC register access lock */
<------>const struct cpcap_adc_ato *ato;
<------>wait_queue_head_t wq_data_avail;
<------>bool done;
};
/*
* enum cpcap_adc_channel - cpcap adc channels
*/
enum cpcap_adc_channel {
<------>/* Bank0 channels */
<------>CPCAP_ADC_AD0, /* Battery temperature */
<------>CPCAP_ADC_BATTP, /* Battery voltage */
<------>CPCAP_ADC_VBUS, /* USB VBUS voltage */
<------>CPCAP_ADC_AD3, /* Die temperature when charging */
<------>CPCAP_ADC_BPLUS_AD4, /* Another battery or system voltage */
<------>CPCAP_ADC_CHG_ISENSE, /* Calibrated charge current */
<------>CPCAP_ADC_BATTI, /* Calibrated system current */
<------>CPCAP_ADC_USB_ID, /* USB OTG ID, unused on droid 4? */
<------>/* Bank1 channels */
<------>CPCAP_ADC_AD8, /* Seems unused */
<------>CPCAP_ADC_AD9, /* Seems unused */
<------>CPCAP_ADC_LICELL, /* Maybe system voltage? Always 3V */
<------>CPCAP_ADC_HV_BATTP, /* Another battery detection? */
<------>CPCAP_ADC_TSX1_AD12, /* Seems unused, for touchscreen? */
<------>CPCAP_ADC_TSX2_AD13, /* Seems unused, for touchscreen? */
<------>CPCAP_ADC_TSY1_AD14, /* Seems unused, for touchscreen? */
<------>CPCAP_ADC_TSY2_AD15, /* Seems unused, for touchscreen? */
<------>/* Remuxed channels using bank0 entries */
<------>CPCAP_ADC_BATTP_PI16, /* Alternative mux mode for BATTP */
<------>CPCAP_ADC_BATTI_PI17, /* Alternative mux mode for BATTI */
<------>CPCAP_ADC_CHANNEL_NUM,
};
/*
* enum cpcap_adc_timing - cpcap adc timing options
*
* CPCAP_ADC_TIMING_IMM seems to be immediate with no timings.
* Please document when using.
*/
enum cpcap_adc_timing {
<------>CPCAP_ADC_TIMING_IMM,
<------>CPCAP_ADC_TIMING_IN,
<------>CPCAP_ADC_TIMING_OUT,
};
/**
* struct cpcap_adc_phasing_tbl - cpcap phasing table
* @offset: offset in the phasing table
* @multiplier: multiplier in the phasing table
* @divider: divider in the phasing table
* @min: minimum value
* @max: maximum value
*/
struct cpcap_adc_phasing_tbl {
<------>short offset;
<------>unsigned short multiplier;
<------>unsigned short divider;
<------>short min;
<------>short max;
};
/**
* struct cpcap_adc_conversion_tbl - cpcap conversion table
* @conv_type: conversion type
* @align_offset: align offset
* @conv_offset: conversion offset
* @cal_offset: calibration offset
* @multiplier: conversion multiplier
* @divider: conversion divider
*/
struct cpcap_adc_conversion_tbl {
<------>enum iio_chan_info_enum conv_type;
<------>int align_offset;
<------>int conv_offset;
<------>int cal_offset;
<------>int multiplier;
<------>int divider;
};
/**
* struct cpcap_adc_request - cpcap adc request
* @channel: request channel
* @phase_tbl: channel phasing table
* @conv_tbl: channel conversion table
* @bank_index: channel index within the bank
* @timing: timing settings
* @result: result
*/
struct cpcap_adc_request {
<------>int channel;
<------>const struct cpcap_adc_phasing_tbl *phase_tbl;
<------>const struct cpcap_adc_conversion_tbl *conv_tbl;
<------>int bank_index;
<------>enum cpcap_adc_timing timing;
<------>int result;
};
/* Phasing table for channels. Note that channels 16 & 17 use BATTP and BATTI */
static const struct cpcap_adc_phasing_tbl bank_phasing[] = {
<------>/* Bank0 */
<------>[CPCAP_ADC_AD0] = {0, 0x80, 0x80, 0, 1023},
<------>[CPCAP_ADC_BATTP] = {0, 0x80, 0x80, 0, 1023},
<------>[CPCAP_ADC_VBUS] = {0, 0x80, 0x80, 0, 1023},
<------>[CPCAP_ADC_AD3] = {0, 0x80, 0x80, 0, 1023},
<------>[CPCAP_ADC_BPLUS_AD4] = {0, 0x80, 0x80, 0, 1023},
<------>[CPCAP_ADC_CHG_ISENSE] = {0, 0x80, 0x80, -512, 511},
<------>[CPCAP_ADC_BATTI] = {0, 0x80, 0x80, -512, 511},
<------>[CPCAP_ADC_USB_ID] = {0, 0x80, 0x80, 0, 1023},
<------>/* Bank1 */
<------>[CPCAP_ADC_AD8] = {0, 0x80, 0x80, 0, 1023},
<------>[CPCAP_ADC_AD9] = {0, 0x80, 0x80, 0, 1023},
<------>[CPCAP_ADC_LICELL] = {0, 0x80, 0x80, 0, 1023},
<------>[CPCAP_ADC_HV_BATTP] = {0, 0x80, 0x80, 0, 1023},
<------>[CPCAP_ADC_TSX1_AD12] = {0, 0x80, 0x80, 0, 1023},
<------>[CPCAP_ADC_TSX2_AD13] = {0, 0x80, 0x80, 0, 1023},
<------>[CPCAP_ADC_TSY1_AD14] = {0, 0x80, 0x80, 0, 1023},
<------>[CPCAP_ADC_TSY2_AD15] = {0, 0x80, 0x80, 0, 1023},
};
/*
* Conversion table for channels. Updated during init based on calibration.
* Here too channels 16 & 17 use BATTP and BATTI.
*/
static struct cpcap_adc_conversion_tbl bank_conversion[] = {
<------>/* Bank0 */
<------>[CPCAP_ADC_AD0] = {
<------><------>IIO_CHAN_INFO_PROCESSED, 0, 0, 0, 1, 1,
<------>},
<------>[CPCAP_ADC_BATTP] = {
<------><------>IIO_CHAN_INFO_PROCESSED, 0, 2400, 0, 2300, 1023,
<------>},
<------>[CPCAP_ADC_VBUS] = {
<------><------>IIO_CHAN_INFO_PROCESSED, 0, 0, 0, 10000, 1023,
<------>},
<------>[CPCAP_ADC_AD3] = {
<------><------>IIO_CHAN_INFO_PROCESSED, 0, 0, 0, 1, 1,
<------><------>},
<------>[CPCAP_ADC_BPLUS_AD4] = {
<------><------>IIO_CHAN_INFO_PROCESSED, 0, 2400, 0, 2300, 1023,
<------>},
<------>[CPCAP_ADC_CHG_ISENSE] = {
<------><------>IIO_CHAN_INFO_PROCESSED, -512, 2, 0, 5000, 1023,
<------>},
<------>[CPCAP_ADC_BATTI] = {
<------><------>IIO_CHAN_INFO_PROCESSED, -512, 2, 0, 5000, 1023,
<------>},
<------>[CPCAP_ADC_USB_ID] = {
<------><------>IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1,
<------>},
<------>/* Bank1 */
<------>[CPCAP_ADC_AD8] = {
<------><------>IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1,
<------>},
<------>[CPCAP_ADC_AD9] = {
<------><------>IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1,
<------>},
<------>[CPCAP_ADC_LICELL] = {
<------><------>IIO_CHAN_INFO_PROCESSED, 0, 0, 0, 3400, 1023,
<------>},
<------>[CPCAP_ADC_HV_BATTP] = {
<------><------>IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1,
<------>},
<------>[CPCAP_ADC_TSX1_AD12] = {
<------><------>IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1,
<------>},
<------>[CPCAP_ADC_TSX2_AD13] = {
<------><------>IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1,
<------>},
<------>[CPCAP_ADC_TSY1_AD14] = {
<------><------>IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1,
<------>},
<------>[CPCAP_ADC_TSY2_AD15] = {
<------><------>IIO_CHAN_INFO_RAW, 0, 0, 0, 1, 1,
<------>},
};
/*
* Temperature lookup table of register values to milliCelcius.
* REVISIT: Check the duplicate 0x3ff entry in a freezer
*/
static const int temp_map[CPCAP_MAX_TEMP_LVL][2] = {
<------>{ 0x03ff, -40000 },
<------>{ 0x03ff, -35000 },
<------>{ 0x03ef, -30000 },
<------>{ 0x03b2, -25000 },
<------>{ 0x036c, -20000 },
<------>{ 0x0320, -15000 },
<------>{ 0x02d0, -10000 },
<------>{ 0x027f, -5000 },
<------>{ 0x022f, 0 },
<------>{ 0x01e4, 5000 },
<------>{ 0x019f, 10000 },
<------>{ 0x0161, 15000 },
<------>{ 0x012b, 20000 },
<------>{ 0x00fc, 25000 },
<------>{ 0x00d4, 30000 },
<------>{ 0x00b2, 35000 },
<------>{ 0x0095, 40000 },
<------>{ 0x007d, 45000 },
<------>{ 0x0069, 50000 },
<------>{ 0x0059, 55000 },
<------>{ 0x004b, 60000 },
<------>{ 0x003f, 65000 },
<------>{ 0x0036, 70000 },
<------>{ 0x002e, 75000 },
<------>{ 0x0027, 80000 },
<------>{ 0x0022, 85000 },
<------>{ 0x001d, 90000 },
};
#define CPCAP_CHAN(_type, _index, _address, _datasheet_name) { \
<------>.type = (_type), \
<------>.address = (_address), \
<------>.indexed = 1, \
<------>.channel = (_index), \
<------>.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
<------><------><------> BIT(IIO_CHAN_INFO_PROCESSED), \
<------>.scan_index = (_index), \
<------>.scan_type = { \
<------><------>.sign = 'u', \
<------><------>.realbits = 10, \
<------><------>.storagebits = 16, \
<------><------>.endianness = IIO_CPU, \
<------>}, \
<------>.datasheet_name = (_datasheet_name), \
}
/*
* The datasheet names are from Motorola mapphone Linux kernel except
* for the last two which might be uncalibrated charge voltage and
* current.
*/
static const struct iio_chan_spec cpcap_adc_channels[] = {
<------>/* Bank0 */
<------>CPCAP_CHAN(IIO_TEMP, 0, CPCAP_REG_ADCD0, "battdetb"),
<------>CPCAP_CHAN(IIO_VOLTAGE, 1, CPCAP_REG_ADCD1, "battp"),
<------>CPCAP_CHAN(IIO_VOLTAGE, 2, CPCAP_REG_ADCD2, "vbus"),
<------>CPCAP_CHAN(IIO_TEMP, 3, CPCAP_REG_ADCD3, "ad3"),
<------>CPCAP_CHAN(IIO_VOLTAGE, 4, CPCAP_REG_ADCD4, "ad4"),
<------>CPCAP_CHAN(IIO_CURRENT, 5, CPCAP_REG_ADCD5, "chg_isense"),
<------>CPCAP_CHAN(IIO_CURRENT, 6, CPCAP_REG_ADCD6, "batti"),
<------>CPCAP_CHAN(IIO_VOLTAGE, 7, CPCAP_REG_ADCD7, "usb_id"),
<------>/* Bank1 */
<------>CPCAP_CHAN(IIO_CURRENT, 8, CPCAP_REG_ADCD0, "ad8"),
<------>CPCAP_CHAN(IIO_VOLTAGE, 9, CPCAP_REG_ADCD1, "ad9"),
<------>CPCAP_CHAN(IIO_VOLTAGE, 10, CPCAP_REG_ADCD2, "licell"),
<------>CPCAP_CHAN(IIO_VOLTAGE, 11, CPCAP_REG_ADCD3, "hv_battp"),
<------>CPCAP_CHAN(IIO_VOLTAGE, 12, CPCAP_REG_ADCD4, "tsx1_ad12"),
<------>CPCAP_CHAN(IIO_VOLTAGE, 13, CPCAP_REG_ADCD5, "tsx2_ad13"),
<------>CPCAP_CHAN(IIO_VOLTAGE, 14, CPCAP_REG_ADCD6, "tsy1_ad14"),
<------>CPCAP_CHAN(IIO_VOLTAGE, 15, CPCAP_REG_ADCD7, "tsy2_ad15"),
<------>/* There are two registers with multiplexed functionality */
<------>CPCAP_CHAN(IIO_VOLTAGE, 16, CPCAP_REG_ADCD0, "chg_vsense"),
<------>CPCAP_CHAN(IIO_CURRENT, 17, CPCAP_REG_ADCD1, "batti2"),
};
static irqreturn_t cpcap_adc_irq_thread(int irq, void *data)
{
<------>struct iio_dev *indio_dev = data;
<------>struct cpcap_adc *ddata = iio_priv(indio_dev);
<------>int error;
<------>error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
<------><------><------><------> CPCAP_BIT_ADTRIG_DIS,
<------><------><------><------> CPCAP_BIT_ADTRIG_DIS);
<------>if (error)
<------><------>return IRQ_NONE;
<------>ddata->done = true;
<------>wake_up_interruptible(&ddata->wq_data_avail);
<------>return IRQ_HANDLED;
}
/* ADC calibration functions */
static void cpcap_adc_setup_calibrate(struct cpcap_adc *ddata,
<------><------><------><------> enum cpcap_adc_channel chan)
{
<------>unsigned int value = 0;
<------>unsigned long timeout = jiffies + msecs_to_jiffies(3000);
<------>int error;
<------>if ((chan != CPCAP_ADC_CHG_ISENSE) &&
<------> (chan != CPCAP_ADC_BATTI))
<------><------>return;
<------>value |= CPCAP_BIT_CAL_MODE | CPCAP_BIT_RAND0;
<------>value |= ((chan << 4) &
<------><------> (CPCAP_BIT_ADA2 | CPCAP_BIT_ADA1 | CPCAP_BIT_ADA0));
<------>error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1,
<------><------><------><------> CPCAP_BIT_CAL_MODE | CPCAP_BIT_ATOX |
<------><------><------><------> CPCAP_BIT_ATO3 | CPCAP_BIT_ATO2 |
<------><------><------><------> CPCAP_BIT_ATO1 | CPCAP_BIT_ATO0 |
<------><------><------><------> CPCAP_BIT_ADA2 | CPCAP_BIT_ADA1 |
<------><------><------><------> CPCAP_BIT_ADA0 | CPCAP_BIT_AD_SEL1 |
<------><------><------><------> CPCAP_BIT_RAND1 | CPCAP_BIT_RAND0,
<------><------><------><------> value);
<------>if (error)
<------><------>return;
<------>error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
<------><------><------><------> CPCAP_BIT_ATOX_PS_FACTOR |
<------><------><------><------> CPCAP_BIT_ADC_PS_FACTOR1 |
<------><------><------><------> CPCAP_BIT_ADC_PS_FACTOR0,
<------><------><------><------> 0);
<------>if (error)
<------><------>return;
<------>error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
<------><------><------><------> CPCAP_BIT_ADTRIG_DIS,
<------><------><------><------> CPCAP_BIT_ADTRIG_DIS);
<------>if (error)
<------><------>return;
<------>error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
<------><------><------><------> CPCAP_BIT_ASC,
<------><------><------><------> CPCAP_BIT_ASC);
<------>if (error)
<------><------>return;
<------>do {
<------><------>schedule_timeout_uninterruptible(1);
<------><------>error = regmap_read(ddata->reg, CPCAP_REG_ADCC2, &value);
<------><------>if (error)
<------><------><------>return;
<------>} while ((value & CPCAP_BIT_ASC) && time_before(jiffies, timeout));
<------>if (value & CPCAP_BIT_ASC)
<------><------>dev_err(ddata->dev,
<------><------><------>"Timeout waiting for calibration to complete\n");
<------>error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1,
<------><------><------><------> CPCAP_BIT_CAL_MODE, 0);
<------>if (error)
<------><------>return;
}
static int cpcap_adc_calibrate_one(struct cpcap_adc *ddata,
<------><------><------><------> int channel,
<------><------><------><------> u16 calibration_register,
<------><------><------><------> int lower_threshold,
<------><------><------><------> int upper_threshold)
{
<------>unsigned int calibration_data[2];
<------>unsigned short cal_data_diff;
<------>int i, error;
<------>for (i = 0; i < CPCAP_ADC_MAX_RETRIES; i++) {
<------><------>calibration_data[0] = 0;
<------><------>calibration_data[1] = 0;
<------><------>cal_data_diff = 0;
<------><------>cpcap_adc_setup_calibrate(ddata, channel);
<------><------>error = regmap_read(ddata->reg, calibration_register,
<------><------><------><------> &calibration_data[0]);
<------><------>if (error)
<------><------><------>return error;
<------><------>cpcap_adc_setup_calibrate(ddata, channel);
<------><------>error = regmap_read(ddata->reg, calibration_register,
<------><------><------><------> &calibration_data[1]);
<------><------>if (error)
<------><------><------>return error;
<------><------>if (calibration_data[0] > calibration_data[1])
<------><------><------>cal_data_diff =
<------><------><------><------>calibration_data[0] - calibration_data[1];
<------><------>else
<------><------><------>cal_data_diff =
<------><------><------><------>calibration_data[1] - calibration_data[0];
<------><------>if (((calibration_data[1] >= lower_threshold) &&
<------><------> (calibration_data[1] <= upper_threshold) &&
<------><------> (cal_data_diff <= ST_ADC_CALIBRATE_DIFF_THRESHOLD)) ||
<------><------> (ddata->vendor == CPCAP_VENDOR_TI)) {
<------><------><------>bank_conversion[channel].cal_offset =
<------><------><------><------>((short)calibration_data[1] * -1) + 512;
<------><------><------>dev_dbg(ddata->dev, "ch%i calibration complete: %i\n",
<------><------><------><------>channel, bank_conversion[channel].cal_offset);
<------><------><------>break;
<------><------>}
<------><------>usleep_range(5000, 10000);
<------>}
<------>return 0;
}
static int cpcap_adc_calibrate(struct cpcap_adc *ddata)
{
<------>int error;
<------>error = cpcap_adc_calibrate_one(ddata, CPCAP_ADC_CHG_ISENSE,
<------><------><------><------><------>CPCAP_REG_ADCAL1,
<------><------><------><------><------>ST_ADC_CAL_CHRGI_LOW_THRESHOLD,
<------><------><------><------><------>ST_ADC_CAL_CHRGI_HIGH_THRESHOLD);
<------>if (error)
<------><------>return error;
<------>error = cpcap_adc_calibrate_one(ddata, CPCAP_ADC_BATTI,
<------><------><------><------><------>CPCAP_REG_ADCAL2,
<------><------><------><------><------>ST_ADC_CAL_BATTI_LOW_THRESHOLD,
<------><------><------><------><------>ST_ADC_CAL_BATTI_HIGH_THRESHOLD);
<------>if (error)
<------><------>return error;
<------>return 0;
}
/* ADC setup, read and scale functions */
static void cpcap_adc_setup_bank(struct cpcap_adc *ddata,
<------><------><------><------> struct cpcap_adc_request *req)
{
<------>const struct cpcap_adc_ato *ato = ddata->ato;
<------>unsigned short value1 = 0;
<------>unsigned short value2 = 0;
<------>int error;
<------>if (!ato)
<------><------>return;
<------>switch (req->channel) {
<------>case CPCAP_ADC_AD0:
<------><------>value2 |= CPCAP_BIT_THERMBIAS_EN;
<------><------>error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
<------><------><------><------><------> CPCAP_BIT_THERMBIAS_EN,
<------><------><------><------><------> value2);
<------><------>if (error)
<------><------><------>return;
<------><------>usleep_range(800, 1000);
<------><------>break;
<------>case CPCAP_ADC_AD8 ... CPCAP_ADC_TSY2_AD15:
<------><------>value1 |= CPCAP_BIT_AD_SEL1;
<------><------>break;
<------>case CPCAP_ADC_BATTP_PI16 ... CPCAP_ADC_BATTI_PI17:
<------><------>value1 |= CPCAP_BIT_RAND1;
<------>default:
<------><------>break;
<------>}
<------>switch (req->timing) {
<------>case CPCAP_ADC_TIMING_IN:
<------><------>value1 |= ato->ato_in;
<------><------>value1 |= ato->atox_in;
<------><------>value2 |= ato->adc_ps_factor_in;
<------><------>value2 |= ato->atox_ps_factor_in;
<------><------>break;
<------>case CPCAP_ADC_TIMING_OUT:
<------><------>value1 |= ato->ato_out;
<------><------>value1 |= ato->atox_out;
<------><------>value2 |= ato->adc_ps_factor_out;
<------><------>value2 |= ato->atox_ps_factor_out;
<------><------>break;
<------>case CPCAP_ADC_TIMING_IMM:
<------>default:
<------><------>break;
<------>}
<------>error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1,
<------><------><------><------> CPCAP_BIT_CAL_MODE | CPCAP_BIT_ATOX |
<------><------><------><------> CPCAP_BIT_ATO3 | CPCAP_BIT_ATO2 |
<------><------><------><------> CPCAP_BIT_ATO1 | CPCAP_BIT_ATO0 |
<------><------><------><------> CPCAP_BIT_ADA2 | CPCAP_BIT_ADA1 |
<------><------><------><------> CPCAP_BIT_ADA0 | CPCAP_BIT_AD_SEL1 |
<------><------><------><------> CPCAP_BIT_RAND1 | CPCAP_BIT_RAND0,
<------><------><------><------> value1);
<------>if (error)
<------><------>return;
<------>error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
<------><------><------><------> CPCAP_BIT_ATOX_PS_FACTOR |
<------><------><------><------> CPCAP_BIT_ADC_PS_FACTOR1 |
<------><------><------><------> CPCAP_BIT_ADC_PS_FACTOR0 |
<------><------><------><------> CPCAP_BIT_THERMBIAS_EN,
<------><------><------><------> value2);
<------>if (error)
<------><------>return;
<------>if (req->timing == CPCAP_ADC_TIMING_IMM) {
<------><------>error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
<------><------><------><------><------> CPCAP_BIT_ADTRIG_DIS,
<------><------><------><------><------> CPCAP_BIT_ADTRIG_DIS);
<------><------>if (error)
<------><------><------>return;
<------><------>error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
<------><------><------><------><------> CPCAP_BIT_ASC,
<------><------><------><------><------> CPCAP_BIT_ASC);
<------><------>if (error)
<------><------><------>return;
<------>} else {
<------><------>error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
<------><------><------><------><------> CPCAP_BIT_ADTRIG_ONESHOT,
<------><------><------><------><------> CPCAP_BIT_ADTRIG_ONESHOT);
<------><------>if (error)
<------><------><------>return;
<------><------>error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
<------><------><------><------><------> CPCAP_BIT_ADTRIG_DIS, 0);
<------><------>if (error)
<------><------><------>return;
<------>}
}
static int cpcap_adc_start_bank(struct cpcap_adc *ddata,
<------><------><------><------>struct cpcap_adc_request *req)
{
<------>int i, error;
<------>req->timing = CPCAP_ADC_TIMING_IMM;
<------>ddata->done = false;
<------>for (i = 0; i < CPCAP_ADC_MAX_RETRIES; i++) {
<------><------>cpcap_adc_setup_bank(ddata, req);
<------><------>error = wait_event_interruptible_timeout(ddata->wq_data_avail,
<------><------><------><------><------><------><------> ddata->done,
<------><------><------><------><------><------><------> msecs_to_jiffies(50));
<------><------>if (error > 0)
<------><------><------>return 0;
<------><------>if (error == 0) {
<------><------><------>error = -ETIMEDOUT;
<------><------><------>continue;
<------><------>}
<------><------>if (error < 0)
<------><------><------>return error;
<------>}
<------>return error;
}
static int cpcap_adc_stop_bank(struct cpcap_adc *ddata)
{
<------>int error;
<------>error = regmap_update_bits(ddata->reg, CPCAP_REG_ADCC1,
<------><------><------><------> 0xffff,
<------><------><------><------> CPCAP_REG_ADCC1_DEFAULTS);
<------>if (error)
<------><------>return error;
<------>return regmap_update_bits(ddata->reg, CPCAP_REG_ADCC2,
<------><------><------><------> 0xffff,
<------><------><------><------> CPCAP_REG_ADCC2_DEFAULTS);
}
static void cpcap_adc_phase(struct cpcap_adc_request *req)
{
<------>const struct cpcap_adc_conversion_tbl *conv_tbl = req->conv_tbl;
<------>const struct cpcap_adc_phasing_tbl *phase_tbl = req->phase_tbl;
<------>int index = req->channel;
<------>/* Remuxed channels 16 and 17 use BATTP and BATTI entries */
<------>switch (req->channel) {
<------>case CPCAP_ADC_BATTP:
<------>case CPCAP_ADC_BATTP_PI16:
<------><------>index = req->bank_index;
<------><------>req->result -= phase_tbl[index].offset;
<------><------>req->result -= CPCAP_FOUR_POINT_TWO_ADC;
<------><------>req->result *= phase_tbl[index].multiplier;
<------><------>if (phase_tbl[index].divider == 0)
<------><------><------>return;
<------><------>req->result /= phase_tbl[index].divider;
<------><------>req->result += CPCAP_FOUR_POINT_TWO_ADC;
<------><------>break;
<------>case CPCAP_ADC_BATTI_PI17:
<------><------>index = req->bank_index;
<------><------>fallthrough;
<------>default:
<------><------>req->result += conv_tbl[index].cal_offset;
<------><------>req->result += conv_tbl[index].align_offset;
<------><------>req->result *= phase_tbl[index].multiplier;
<------><------>if (phase_tbl[index].divider == 0)
<------><------><------>return;
<------><------>req->result /= phase_tbl[index].divider;
<------><------>req->result += phase_tbl[index].offset;
<------><------>break;
<------>}
<------>if (req->result < phase_tbl[index].min)
<------><------>req->result = phase_tbl[index].min;
<------>else if (req->result > phase_tbl[index].max)
<------><------>req->result = phase_tbl[index].max;
}
/* Looks up temperatures in a table and calculates averages if needed */
static int cpcap_adc_table_to_millicelcius(unsigned short value)
{
<------>int i, result = 0, alpha;
<------>if (value <= temp_map[CPCAP_MAX_TEMP_LVL - 1][0])
<------><------>return temp_map[CPCAP_MAX_TEMP_LVL - 1][1];
<------>if (value >= temp_map[0][0])
<------><------>return temp_map[0][1];
<------>for (i = 0; i < CPCAP_MAX_TEMP_LVL - 1; i++) {
<------><------>if ((value <= temp_map[i][0]) &&
<------><------> (value >= temp_map[i + 1][0])) {
<------><------><------>if (value == temp_map[i][0]) {
<------><------><------><------>result = temp_map[i][1];
<------><------><------>} else if (value == temp_map[i + 1][0]) {
<------><------><------><------>result = temp_map[i + 1][1];
<------><------><------>} else {
<------><------><------><------>alpha = ((value - temp_map[i][0]) * 1000) /
<------><------><------><------><------>(temp_map[i + 1][0] - temp_map[i][0]);
<------><------><------><------>result = temp_map[i][1] +
<------><------><------><------><------>((alpha * (temp_map[i + 1][1] -
<------><------><------><------><------><------> temp_map[i][1])) / 1000);
<------><------><------>}
<------><------><------>break;
<------><------>}
<------>}
<------>return result;
}
static void cpcap_adc_convert(struct cpcap_adc_request *req)
{
<------>const struct cpcap_adc_conversion_tbl *conv_tbl = req->conv_tbl;
<------>int index = req->channel;
<------>/* Remuxed channels 16 and 17 use BATTP and BATTI entries */
<------>switch (req->channel) {
<------>case CPCAP_ADC_BATTP_PI16:
<------><------>index = CPCAP_ADC_BATTP;
<------><------>break;
<------>case CPCAP_ADC_BATTI_PI17:
<------><------>index = CPCAP_ADC_BATTI;
<------><------>break;
<------>default:
<------><------>break;
<------>}
<------>/* No conversion for raw channels */
<------>if (conv_tbl[index].conv_type == IIO_CHAN_INFO_RAW)
<------><------>return;
<------>/* Temperatures use a lookup table instead of conversion table */
<------>if ((req->channel == CPCAP_ADC_AD0) ||
<------> (req->channel == CPCAP_ADC_AD3)) {
<------><------>req->result =
<------><------><------>cpcap_adc_table_to_millicelcius(req->result);
<------><------>return;
<------>}
<------>/* All processed channels use a conversion table */
<------>req->result *= conv_tbl[index].multiplier;
<------>if (conv_tbl[index].divider == 0)
<------><------>return;
<------>req->result /= conv_tbl[index].divider;
<------>req->result += conv_tbl[index].conv_offset;
}
/*
* REVISIT: Check if timed sampling can use multiple channels at the
* same time. If not, replace channel_mask with just channel.
*/
static int cpcap_adc_read_bank_scaled(struct cpcap_adc *ddata,
<------><------><------><------> struct cpcap_adc_request *req)
{
<------>int calibration_data, error, addr;
<------>if (ddata->vendor == CPCAP_VENDOR_TI) {
<------><------>error = regmap_read(ddata->reg, CPCAP_REG_ADCAL1,
<------><------><------><------> &calibration_data);
<------><------>if (error)
<------><------><------>return error;
<------><------>bank_conversion[CPCAP_ADC_CHG_ISENSE].cal_offset =
<------><------><------>((short)calibration_data * -1) + 512;
<------><------>error = regmap_read(ddata->reg, CPCAP_REG_ADCAL2,
<------><------><------><------> &calibration_data);
<------><------>if (error)
<------><------><------>return error;
<------><------>bank_conversion[CPCAP_ADC_BATTI].cal_offset =
<------><------><------>((short)calibration_data * -1) + 512;
<------>}
<------>addr = CPCAP_REG_ADCD0 + req->bank_index * 4;
<------>error = regmap_read(ddata->reg, addr, &req->result);
<------>if (error)
<------><------>return error;
<------>req->result &= 0x3ff;
<------>cpcap_adc_phase(req);
<------>cpcap_adc_convert(req);
<------>return 0;
}
static int cpcap_adc_init_request(struct cpcap_adc_request *req,
<------><------><------><------> int channel)
{
<------>req->channel = channel;
<------>req->phase_tbl = bank_phasing;
<------>req->conv_tbl = bank_conversion;
<------>switch (channel) {
<------>case CPCAP_ADC_AD0 ... CPCAP_ADC_USB_ID:
<------><------>req->bank_index = channel;
<------><------>break;
<------>case CPCAP_ADC_AD8 ... CPCAP_ADC_TSY2_AD15:
<------><------>req->bank_index = channel - 8;
<------><------>break;
<------>case CPCAP_ADC_BATTP_PI16:
<------><------>req->bank_index = CPCAP_ADC_BATTP;
<------><------>break;
<------>case CPCAP_ADC_BATTI_PI17:
<------><------>req->bank_index = CPCAP_ADC_BATTI;
<------><------>break;
<------>default:
<------><------>return -EINVAL;
<------>}
<------>return 0;
}
static int cpcap_adc_read_st_die_temp(struct cpcap_adc *ddata,
<------><------><------><------> int addr, int *val)
{
<------>int error;
<------>error = regmap_read(ddata->reg, addr, val);
<------>if (error)
<------><------>return error;
<------>*val -= 282;
<------>*val *= 114;
<------>*val += 25000;
<------>return 0;
}
static int cpcap_adc_read(struct iio_dev *indio_dev,
<------><------><------> struct iio_chan_spec const *chan,
<------><------><------> int *val, int *val2, long mask)
{
<------>struct cpcap_adc *ddata = iio_priv(indio_dev);
<------>struct cpcap_adc_request req;
<------>int error;
<------>error = cpcap_adc_init_request(&req, chan->channel);
<------>if (error)
<------><------>return error;
<------>switch (mask) {
<------>case IIO_CHAN_INFO_RAW:
<------><------>mutex_lock(&ddata->lock);
<------><------>error = cpcap_adc_start_bank(ddata, &req);
<------><------>if (error)
<------><------><------>goto err_unlock;
<------><------>error = regmap_read(ddata->reg, chan->address, val);
<------><------>if (error)
<------><------><------>goto err_unlock;
<------><------>error = cpcap_adc_stop_bank(ddata);
<------><------>if (error)
<------><------><------>goto err_unlock;
<------><------>mutex_unlock(&ddata->lock);
<------><------>break;
<------>case IIO_CHAN_INFO_PROCESSED:
<------><------>mutex_lock(&ddata->lock);
<------><------>error = cpcap_adc_start_bank(ddata, &req);
<------><------>if (error)
<------><------><------>goto err_unlock;
<------><------>if ((ddata->vendor == CPCAP_VENDOR_ST) &&
<------><------> (chan->channel == CPCAP_ADC_AD3)) {
<------><------><------>error = cpcap_adc_read_st_die_temp(ddata,
<------><------><------><------><------><------><------> chan->address,
<------><------><------><------><------><------><------> &req.result);
<------><------><------>if (error)
<------><------><------><------>goto err_unlock;
<------><------>} else {
<------><------><------>error = cpcap_adc_read_bank_scaled(ddata, &req);
<------><------><------>if (error)
<------><------><------><------>goto err_unlock;
<------><------>}
<------><------>error = cpcap_adc_stop_bank(ddata);
<------><------>if (error)
<------><------><------>goto err_unlock;
<------><------>mutex_unlock(&ddata->lock);
<------><------>*val = req.result;
<------><------>break;
<------>default:
<------><------>return -EINVAL;
<------>}
<------>return IIO_VAL_INT;
err_unlock:
<------>mutex_unlock(&ddata->lock);
<------>dev_err(ddata->dev, "error reading ADC: %i\n", error);
<------>return error;
}
static const struct iio_info cpcap_adc_info = {
<------>.read_raw = &cpcap_adc_read,
};
/*
* Configuration for Motorola mapphone series such as droid 4.
* Copied from the Motorola mapphone kernel tree.
*/
static const struct cpcap_adc_ato mapphone_adc = {
<------>.ato_in = 0x0480,
<------>.atox_in = 0,
<------>.adc_ps_factor_in = 0x0200,
<------>.atox_ps_factor_in = 0,
<------>.ato_out = 0,
<------>.atox_out = 0,
<------>.adc_ps_factor_out = 0,
<------>.atox_ps_factor_out = 0,
};
static const struct of_device_id cpcap_adc_id_table[] = {
<------>{
<------><------>.compatible = "motorola,cpcap-adc",
<------>},
<------>{
<------><------>.compatible = "motorola,mapphone-cpcap-adc",
<------><------>.data = &mapphone_adc,
<------>},
<------>{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, cpcap_adc_id_table);
static int cpcap_adc_probe(struct platform_device *pdev)
{
<------>struct cpcap_adc *ddata;
<------>struct iio_dev *indio_dev;
<------>int error;
<------>indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*ddata));
<------>if (!indio_dev) {
<------><------>dev_err(&pdev->dev, "failed to allocate iio device\n");
<------><------>return -ENOMEM;
<------>}
<------>ddata = iio_priv(indio_dev);
<------>ddata->ato = device_get_match_data(&pdev->dev);
<------>if (!ddata->ato)
<------><------>return -ENODEV;
<------>ddata->dev = &pdev->dev;
<------>mutex_init(&ddata->lock);
<------>init_waitqueue_head(&ddata->wq_data_avail);
<------>indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE;
<------>indio_dev->channels = cpcap_adc_channels;
<------>indio_dev->num_channels = ARRAY_SIZE(cpcap_adc_channels);
<------>indio_dev->name = dev_name(&pdev->dev);
<------>indio_dev->info = &cpcap_adc_info;
<------>ddata->reg = dev_get_regmap(pdev->dev.parent, NULL);
<------>if (!ddata->reg)
<------><------>return -ENODEV;
<------>error = cpcap_get_vendor(ddata->dev, ddata->reg, &ddata->vendor);
<------>if (error)
<------><------>return error;
<------>platform_set_drvdata(pdev, indio_dev);
<------>ddata->irq = platform_get_irq_byname(pdev, "adcdone");
<------>if (ddata->irq < 0)
<------><------>return -ENODEV;
<------>error = devm_request_threaded_irq(&pdev->dev, ddata->irq, NULL,
<------><------><------><------><------> cpcap_adc_irq_thread,
<------><------><------><------><------> IRQF_TRIGGER_NONE | IRQF_ONESHOT,
<------><------><------><------><------> "cpcap-adc", indio_dev);
<------>if (error) {
<------><------>dev_err(&pdev->dev, "could not get irq: %i\n",
<------><------><------>error);
<------><------>return error;
<------>}
<------>error = cpcap_adc_calibrate(ddata);
<------>if (error)
<------><------>return error;
<------>dev_info(&pdev->dev, "CPCAP ADC device probed\n");
<------>return devm_iio_device_register(&pdev->dev, indio_dev);
}
static struct platform_driver cpcap_adc_driver = {
<------>.driver = {
<------><------>.name = "cpcap_adc",
<------><------>.of_match_table = cpcap_adc_id_table,
<------>},
<------>.probe = cpcap_adc_probe,
};
module_platform_driver(cpcap_adc_driver);
MODULE_ALIAS("platform:cpcap_adc");
MODULE_DESCRIPTION("CPCAP ADC driver");
MODULE_AUTHOR("Tony Lindgren <tony@atomide.com");
MODULE_LICENSE("GPL v2");