^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * Analog Devices AD7292 SPI ADC driver
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) * Copyright 2019 Analog Devices Inc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) #include <linux/bitfield.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) #include <linux/device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) #include <linux/regulator/consumer.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) #include <linux/spi/spi.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) #include <linux/iio/iio.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) #define ADI_VENDOR_ID 0x0018
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) /* AD7292 registers definition */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) #define AD7292_REG_VENDOR_ID 0x00
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) #define AD7292_REG_CONF_BANK 0x05
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) #define AD7292_REG_CONV_COMM 0x0E
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) #define AD7292_REG_ADC_CH(x) (0x10 + (x))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) /* AD7292 configuration bank subregisters definition */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) #define AD7292_BANK_REG_VIN_RNG0 0x10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) #define AD7292_BANK_REG_VIN_RNG1 0x11
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) #define AD7292_BANK_REG_SAMP_MODE 0x12
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) #define AD7292_RD_FLAG_MSK(x) (BIT(7) | ((x) & 0x3F))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) /* AD7292_REG_ADC_CONVERSION */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) #define AD7292_ADC_DATA_MASK GENMASK(15, 6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) #define AD7292_ADC_DATA(x) FIELD_GET(AD7292_ADC_DATA_MASK, x)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) /* AD7292_CHANNEL_SAMPLING_MODE */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) #define AD7292_CH_SAMP_MODE(reg, ch) (((reg) >> 8) & BIT(ch))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) /* AD7292_CHANNEL_VIN_RANGE */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) #define AD7292_CH_VIN_RANGE(reg, ch) ((reg) & BIT(ch))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) #define AD7292_VOLTAGE_CHAN(_chan) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) .type = IIO_VOLTAGE, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) BIT(IIO_CHAN_INFO_SCALE), \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) .indexed = 1, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) .channel = _chan, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) static const struct iio_chan_spec ad7292_channels[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) AD7292_VOLTAGE_CHAN(0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) AD7292_VOLTAGE_CHAN(1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) AD7292_VOLTAGE_CHAN(2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) AD7292_VOLTAGE_CHAN(3),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) AD7292_VOLTAGE_CHAN(4),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) AD7292_VOLTAGE_CHAN(5),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) AD7292_VOLTAGE_CHAN(6),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) AD7292_VOLTAGE_CHAN(7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) static const struct iio_chan_spec ad7292_channels_diff[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) .type = IIO_VOLTAGE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) .indexed = 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) .differential = 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) .channel = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) .channel2 = 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) AD7292_VOLTAGE_CHAN(2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) AD7292_VOLTAGE_CHAN(3),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) AD7292_VOLTAGE_CHAN(4),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) AD7292_VOLTAGE_CHAN(5),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) AD7292_VOLTAGE_CHAN(6),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) AD7292_VOLTAGE_CHAN(7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) struct ad7292_state {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) struct spi_device *spi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) struct regulator *reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) unsigned short vref_mv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) __be16 d16 ____cacheline_aligned;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) u8 d8[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) static int ad7292_spi_reg_read(struct ad7292_state *st, unsigned int addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) st->d8[0] = AD7292_RD_FLAG_MSK(addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) ret = spi_write_then_read(st->spi, st->d8, 1, &st->d16, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) return be16_to_cpu(st->d16);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) static int ad7292_spi_subreg_read(struct ad7292_state *st, unsigned int addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) unsigned int sub_addr, unsigned int len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) unsigned int shift = 16 - (8 * len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) st->d8[0] = AD7292_RD_FLAG_MSK(addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) st->d8[1] = sub_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) ret = spi_write_then_read(st->spi, st->d8, 2, &st->d16, len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) return (be16_to_cpu(st->d16) >> shift);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) static int ad7292_single_conversion(struct ad7292_state *st,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) unsigned int chan_addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) struct spi_transfer t[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) .tx_buf = &st->d8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) .len = 4,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) .delay = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) .value = 6,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) .unit = SPI_DELAY_UNIT_USECS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) }, {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) .rx_buf = &st->d16,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) .len = 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) st->d8[0] = chan_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) st->d8[1] = AD7292_RD_FLAG_MSK(AD7292_REG_CONV_COMM);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) ret = spi_sync_transfer(st->spi, t, ARRAY_SIZE(t));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) return be16_to_cpu(st->d16);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) static int ad7292_vin_range_multiplier(struct ad7292_state *st, int channel)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) int samp_mode, range0, range1, factor = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) * Every AD7292 ADC channel may have its input range adjusted according
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) * to the settings at the ADC sampling mode and VIN range subregisters.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) * For a given channel, the minimum input range is equal to Vref, and it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) * may be increased by a multiplier factor of 2 or 4 according to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) * following rule:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) * If channel is being sampled with respect to AGND:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) * factor = 4 if VIN range0 and VIN range1 equal 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) * factor = 2 if only one of VIN ranges equal 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) * factor = 1 if both VIN range0 and VIN range1 equal 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) * If channel is being sampled with respect to AVDD:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) * factor = 4 if VIN range0 and VIN range1 equal 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) * Behavior is undefined if any of VIN range doesn't equal 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) samp_mode = ad7292_spi_subreg_read(st, AD7292_REG_CONF_BANK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) AD7292_BANK_REG_SAMP_MODE, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) if (samp_mode < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) return samp_mode;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) range0 = ad7292_spi_subreg_read(st, AD7292_REG_CONF_BANK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) AD7292_BANK_REG_VIN_RNG0, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) if (range0 < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) return range0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) range1 = ad7292_spi_subreg_read(st, AD7292_REG_CONF_BANK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) AD7292_BANK_REG_VIN_RNG1, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) if (range1 < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) return range1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) if (AD7292_CH_SAMP_MODE(samp_mode, channel)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) /* Sampling with respect to AGND */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) if (!AD7292_CH_VIN_RANGE(range0, channel))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) factor *= 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) if (!AD7292_CH_VIN_RANGE(range1, channel))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) factor *= 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) /* Sampling with respect to AVDD */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) if (AD7292_CH_VIN_RANGE(range0, channel) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) AD7292_CH_VIN_RANGE(range1, channel))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) return -EPERM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) factor = 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) return factor;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) static int ad7292_read_raw(struct iio_dev *indio_dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) const struct iio_chan_spec *chan,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) int *val, int *val2, long info)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) struct ad7292_state *st = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) unsigned int ch_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) switch (info) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) case IIO_CHAN_INFO_RAW:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) ch_addr = AD7292_REG_ADC_CH(chan->channel);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) ret = ad7292_single_conversion(st, ch_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) *val = AD7292_ADC_DATA(ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) return IIO_VAL_INT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) case IIO_CHAN_INFO_SCALE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) * To convert a raw value to standard units, the IIO defines
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) * this formula: Scaled value = (raw + offset) * scale.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) * For the scale to be a correct multiplier for (raw + offset),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) * it must be calculated as the input range divided by the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) * number of possible distinct input values. Given the ADC data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) * is 10 bit long, it may assume 2^10 distinct values.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) * Hence, scale = range / 2^10. The IIO_VAL_FRACTIONAL_LOG2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) * return type indicates to the IIO API to divide *val by 2 to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) * the power of *val2 when returning from read_raw.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) ret = ad7292_vin_range_multiplier(st, chan->channel);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) *val = st->vref_mv * ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) *val2 = 10;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) return IIO_VAL_FRACTIONAL_LOG2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) static const struct iio_info ad7292_info = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) .read_raw = ad7292_read_raw,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) static void ad7292_regulator_disable(void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) struct ad7292_state *st = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) regulator_disable(st->reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) static int ad7292_probe(struct spi_device *spi)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) struct ad7292_state *st;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) struct iio_dev *indio_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) struct device_node *child;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) bool diff_channels = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) if (!indio_dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) st = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) st->spi = spi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) ret = ad7292_spi_reg_read(st, AD7292_REG_VENDOR_ID);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) if (ret != ADI_VENDOR_ID) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) dev_err(&spi->dev, "Wrong vendor id 0x%x\n", ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) spi_set_drvdata(spi, indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) st->reg = devm_regulator_get_optional(&spi->dev, "vref");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) if (!IS_ERR(st->reg)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) ret = regulator_enable(st->reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) dev_err(&spi->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) "Failed to enable external vref supply\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) ret = devm_add_action_or_reset(&spi->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) ad7292_regulator_disable, st);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) regulator_disable(st->reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) ret = regulator_get_voltage(st->reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) st->vref_mv = ret / 1000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) /* Use the internal voltage reference. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) st->vref_mv = 1250;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) indio_dev->name = spi_get_device_id(spi)->name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) indio_dev->modes = INDIO_DIRECT_MODE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) indio_dev->info = &ad7292_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) for_each_available_child_of_node(spi->dev.of_node, child) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) diff_channels = of_property_read_bool(child, "diff-channels");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) if (diff_channels) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) of_node_put(child);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) if (diff_channels) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) indio_dev->num_channels = ARRAY_SIZE(ad7292_channels_diff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) indio_dev->channels = ad7292_channels_diff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) indio_dev->num_channels = ARRAY_SIZE(ad7292_channels);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) indio_dev->channels = ad7292_channels;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) return devm_iio_device_register(&spi->dev, indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) static const struct spi_device_id ad7292_id_table[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) { "ad7292", 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) {}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) MODULE_DEVICE_TABLE(spi, ad7292_id_table);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) static const struct of_device_id ad7292_of_match[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) { .compatible = "adi,ad7292" },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) { },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) MODULE_DEVICE_TABLE(of, ad7292_of_match);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) static struct spi_driver ad7292_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) .driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) .name = "ad7292",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) .of_match_table = ad7292_of_match,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) .probe = ad7292_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) .id_table = ad7292_id_table,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) module_spi_driver(ad7292_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) MODULE_AUTHOR("Marcelo Schmitt <marcelo.schmitt1@gmail.com>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) MODULE_DESCRIPTION("Analog Devices AD7292 ADC driver");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) MODULE_LICENSE("GPL v2");