Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    1) // SPDX-License-Identifier: GPL-2.0-only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    3)  * bma180.c - IIO driver for Bosch BMA180 triaxial acceleration sensor
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    5)  * Copyright 2013 Oleksandr Kravchenko <x0199363@ti.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    6)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    7)  * Support for BMA250 (c) Peter Meerwald <pmeerw@pmeerw.net>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    8)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    9)  * SPI is not supported by driver
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   10)  * BMA023/BMA150/SMB380: 7-bit I2C slave address 0x38
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   11)  * BMA180: 7-bit I2C slave address 0x40 or 0x41
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   12)  * BMA250: 7-bit I2C slave address 0x18 or 0x19
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   13)  * BMA254: 7-bit I2C slave address 0x18 or 0x19
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   14)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   15) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   16) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   17) #include <linux/i2c.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   18) #include <linux/interrupt.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   19) #include <linux/delay.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   20) #include <linux/of_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   21) #include <linux/of.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   22) #include <linux/bitops.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   23) #include <linux/regulator/consumer.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   24) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   25) #include <linux/string.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   26) #include <linux/iio/iio.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   27) #include <linux/iio/sysfs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   28) #include <linux/iio/buffer.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   29) #include <linux/iio/trigger.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   30) #include <linux/iio/trigger_consumer.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   31) #include <linux/iio/triggered_buffer.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   32) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   33) #define BMA180_DRV_NAME "bma180"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   34) #define BMA180_IRQ_NAME "bma180_event"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   35) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   36) enum chip_ids {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   37) 	BMA023,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   38) 	BMA150,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   39) 	BMA180,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   40) 	BMA250,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   41) 	BMA254,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   42) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   43) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   44) struct bma180_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   45) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   46) struct bma180_part_info {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   47) 	u8 chip_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   48) 	const struct iio_chan_spec *channels;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   49) 	unsigned int num_channels;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   50) 	const int *scale_table;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   51) 	unsigned int num_scales;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   52) 	const int *bw_table;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   53) 	unsigned int num_bw;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   54) 	int temp_offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   55) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   56) 	u8 int_reset_reg, int_reset_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   57) 	u8 sleep_reg, sleep_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   58) 	u8 bw_reg, bw_mask, bw_offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   59) 	u8 scale_reg, scale_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   60) 	u8 power_reg, power_mask, lowpower_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   61) 	u8 int_enable_reg, int_enable_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   62) 	u8 int_map_reg, int_enable_dataready_int1_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   63) 	u8 softreset_reg, softreset_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   64) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   65) 	int (*chip_config)(struct bma180_data *data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   66) 	void (*chip_disable)(struct bma180_data *data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   67) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   68) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   69) /* Register set */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   70) #define BMA023_CTRL_REG0	0x0a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   71) #define BMA023_CTRL_REG1	0x0b
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   72) #define BMA023_CTRL_REG2	0x14
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   73) #define BMA023_CTRL_REG3	0x15
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   74) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   75) #define BMA023_RANGE_MASK	GENMASK(4, 3) /* Range of accel values */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   76) #define BMA023_BW_MASK		GENMASK(2, 0) /* Accel bandwidth */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   77) #define BMA023_SLEEP		BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   78) #define BMA023_INT_RESET_MASK	BIT(6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   79) #define BMA023_NEW_DATA_INT	BIT(5) /* Intr every new accel data is ready */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   80) #define BMA023_RESET_VAL	BIT(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   81) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   82) #define BMA180_CHIP_ID		0x00 /* Need to distinguish BMA180 from other */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   83) #define BMA180_ACC_X_LSB	0x02 /* First of 6 registers of accel data */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   84) #define BMA180_TEMP		0x08
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   85) #define BMA180_CTRL_REG0	0x0d
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   86) #define BMA180_RESET		0x10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   87) #define BMA180_BW_TCS		0x20
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   88) #define BMA180_CTRL_REG3	0x21
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   89) #define BMA180_TCO_Z		0x30
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   90) #define BMA180_OFFSET_LSB1	0x35
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   91) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   92) /* BMA180_CTRL_REG0 bits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   93) #define BMA180_DIS_WAKE_UP	BIT(0) /* Disable wake up mode */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   94) #define BMA180_SLEEP		BIT(1) /* 1 - chip will sleep */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   95) #define BMA180_EE_W		BIT(4) /* Unlock writing to addr from 0x20 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   96) #define BMA180_RESET_INT	BIT(6) /* Reset pending interrupts */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   97) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   98) /* BMA180_CTRL_REG3 bits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   99) #define BMA180_NEW_DATA_INT	BIT(1) /* Intr every new accel data is ready */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  100) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  101) /* BMA180_OFFSET_LSB1 skipping mode bit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  102) #define BMA180_SMP_SKIP		BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  103) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  104) /* Bit masks for registers bit fields */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  105) #define BMA180_RANGE		0x0e /* Range of measured accel values */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  106) #define BMA180_BW		0xf0 /* Accel bandwidth */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  107) #define BMA180_MODE_CONFIG	0x03 /* Config operation modes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  108) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  109) /* We have to write this value in reset register to do soft reset */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  110) #define BMA180_RESET_VAL	0xb6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  111) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  112) #define BMA023_ID_REG_VAL	0x02
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  113) #define BMA180_ID_REG_VAL	0x03
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  114) #define BMA250_ID_REG_VAL	0x03
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  115) #define BMA254_ID_REG_VAL	0xfa /* 250 decimal */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  116) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  117) /* Chip power modes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  118) #define BMA180_LOW_POWER	0x03
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  119) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  120) #define BMA250_RANGE_REG	0x0f
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  121) #define BMA250_BW_REG		0x10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  122) #define BMA250_POWER_REG	0x11
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  123) #define BMA250_RESET_REG	0x14
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  124) #define BMA250_INT_ENABLE_REG	0x17
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  125) #define BMA250_INT_MAP_REG	0x1a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  126) #define BMA250_INT_RESET_REG	0x21
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  127) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  128) #define BMA250_RANGE_MASK	GENMASK(3, 0) /* Range of accel values */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  129) #define BMA250_BW_MASK		GENMASK(4, 0) /* Accel bandwidth */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  130) #define BMA250_BW_OFFSET	8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  131) #define BMA250_SUSPEND_MASK	BIT(7) /* chip will sleep */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  132) #define BMA250_LOWPOWER_MASK	BIT(6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  133) #define BMA250_DATA_INTEN_MASK	BIT(4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  134) #define BMA250_INT1_DATA_MASK	BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  135) #define BMA250_INT_RESET_MASK	BIT(7) /* Reset pending interrupts */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  136) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  137) #define BMA254_RANGE_REG	0x0f
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  138) #define BMA254_BW_REG		0x10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  139) #define BMA254_POWER_REG	0x11
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  140) #define BMA254_RESET_REG	0x14
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  141) #define BMA254_INT_ENABLE_REG	0x17
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  142) #define BMA254_INT_MAP_REG	0x1a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  143) #define BMA254_INT_RESET_REG	0x21
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  144) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  145) #define BMA254_RANGE_MASK	GENMASK(3, 0) /* Range of accel values */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  146) #define BMA254_BW_MASK		GENMASK(4, 0) /* Accel bandwidth */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  147) #define BMA254_BW_OFFSET	8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  148) #define BMA254_SUSPEND_MASK	BIT(7) /* chip will sleep */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  149) #define BMA254_LOWPOWER_MASK	BIT(6)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  150) #define BMA254_DATA_INTEN_MASK	BIT(4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  151) #define BMA254_INT2_DATA_MASK	BIT(7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  152) #define BMA254_INT1_DATA_MASK	BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  153) #define BMA254_INT_RESET_MASK	BIT(7) /* Reset pending interrupts */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  154) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  155) struct bma180_data {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  156) 	struct regulator *vdd_supply;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  157) 	struct regulator *vddio_supply;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  158) 	struct i2c_client *client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  159) 	struct iio_trigger *trig;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  160) 	const struct bma180_part_info *part_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  161) 	struct iio_mount_matrix orientation;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  162) 	struct mutex mutex;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  163) 	bool sleep_state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  164) 	int scale;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  165) 	int bw;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  166) 	bool pmode;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  167) 	/* Ensure timestamp is naturally aligned */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  168) 	struct {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  169) 		s16 chan[4];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  170) 		s64 timestamp __aligned(8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  171) 	} scan;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  172) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  173) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  174) enum bma180_chan {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  175) 	AXIS_X,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  176) 	AXIS_Y,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  177) 	AXIS_Z,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  178) 	TEMP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  179) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  180) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  181) static int bma023_bw_table[] = { 25, 50, 100, 190, 375, 750, 1500 }; /* Hz */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  182) static int bma023_scale_table[] = { 2452, 4903, 9709, };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  183) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  184) static int bma180_bw_table[] = { 10, 20, 40, 75, 150, 300 }; /* Hz */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  185) static int bma180_scale_table[] = { 1275, 1863, 2452, 3727, 4903, 9709, 19417 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  186) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  187) static int bma25x_bw_table[] = { 8, 16, 31, 63, 125, 250 }; /* Hz */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  188) static int bma25x_scale_table[] = { 0, 0, 0, 38344, 0, 76590, 0, 0, 153180, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  189) 	0, 0, 306458 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  190) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  191) static int bma180_get_data_reg(struct bma180_data *data, enum bma180_chan chan)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  192) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  193) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  194) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  195) 	if (data->sleep_state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  196) 		return -EBUSY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  197) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  198) 	switch (chan) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  199) 	case TEMP:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  200) 		ret = i2c_smbus_read_byte_data(data->client, BMA180_TEMP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  201) 		if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  202) 			dev_err(&data->client->dev, "failed to read temp register\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  203) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  204) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  205) 		ret = i2c_smbus_read_word_data(data->client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  206) 			BMA180_ACC_X_LSB + chan * 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  207) 		if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  208) 			dev_err(&data->client->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  209) 				"failed to read accel_%c register\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  210) 				'x' + chan);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  211) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  212) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  213) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  214) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  215) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  216) static int bma180_set_bits(struct bma180_data *data, u8 reg, u8 mask, u8 val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  217) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  218) 	int ret = i2c_smbus_read_byte_data(data->client, reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  219) 	u8 reg_val = (ret & ~mask) | (val << (ffs(mask) - 1));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  220) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  221) 	if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  222) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  223) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  224) 	return i2c_smbus_write_byte_data(data->client, reg, reg_val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  225) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  226) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  227) static int bma180_reset_intr(struct bma180_data *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  228) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  229) 	int ret = bma180_set_bits(data, data->part_info->int_reset_reg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  230) 		data->part_info->int_reset_mask, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  231) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  232) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  233) 		dev_err(&data->client->dev, "failed to reset interrupt\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  234) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  235) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  236) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  237) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  238) static int bma180_set_new_data_intr_state(struct bma180_data *data, bool state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  239) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  240) 	int ret = bma180_set_bits(data, data->part_info->int_enable_reg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  241) 			data->part_info->int_enable_mask, state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  242) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  243) 		goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  244) 	ret = bma180_reset_intr(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  245) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  246) 		goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  247) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  248) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  249) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  250) err:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  251) 	dev_err(&data->client->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  252) 		"failed to set new data interrupt state %d\n", state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  253) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  254) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  255) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  256) static int bma180_set_sleep_state(struct bma180_data *data, bool state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  257) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  258) 	int ret = bma180_set_bits(data, data->part_info->sleep_reg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  259) 		data->part_info->sleep_mask, state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  260) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  261) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  262) 		dev_err(&data->client->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  263) 			"failed to set sleep state %d\n", state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  264) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  265) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  266) 	data->sleep_state = state;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  267) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  268) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  269) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  270) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  271) static int bma180_set_ee_writing_state(struct bma180_data *data, bool state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  272) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  273) 	int ret = bma180_set_bits(data, BMA180_CTRL_REG0, BMA180_EE_W, state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  274) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  275) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  276) 		dev_err(&data->client->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  277) 			"failed to set ee writing state %d\n", state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  278) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  279) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  280) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  281) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  282) static int bma180_set_bw(struct bma180_data *data, int val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  283) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  284) 	int ret, i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  285) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  286) 	if (data->sleep_state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  287) 		return -EBUSY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  288) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  289) 	for (i = 0; i < data->part_info->num_bw; ++i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  290) 		if (data->part_info->bw_table[i] == val) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  291) 			ret = bma180_set_bits(data, data->part_info->bw_reg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  292) 				data->part_info->bw_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  293) 				i + data->part_info->bw_offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  294) 			if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  295) 				dev_err(&data->client->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  296) 					"failed to set bandwidth\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  297) 				return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  298) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  299) 			data->bw = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  300) 			return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  301) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  302) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  303) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  304) 	return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  305) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  306) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  307) static int bma180_set_scale(struct bma180_data *data, int val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  308) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  309) 	int ret, i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  310) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  311) 	if (data->sleep_state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  312) 		return -EBUSY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  313) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  314) 	for (i = 0; i < data->part_info->num_scales; ++i)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  315) 		if (data->part_info->scale_table[i] == val) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  316) 			ret = bma180_set_bits(data, data->part_info->scale_reg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  317) 				data->part_info->scale_mask, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  318) 			if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  319) 				dev_err(&data->client->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  320) 					"failed to set scale\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  321) 				return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  322) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  323) 			data->scale = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  324) 			return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  325) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  326) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  327) 	return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  328) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  329) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  330) static int bma180_set_pmode(struct bma180_data *data, bool mode)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  331) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  332) 	u8 reg_val = mode ? data->part_info->lowpower_val : 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  333) 	int ret = bma180_set_bits(data, data->part_info->power_reg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  334) 		data->part_info->power_mask, reg_val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  335) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  336) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  337) 		dev_err(&data->client->dev, "failed to set power mode\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  338) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  339) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  340) 	data->pmode = mode;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  341) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  342) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  343) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  344) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  345) static int bma180_soft_reset(struct bma180_data *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  346) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  347) 	int ret = i2c_smbus_write_byte_data(data->client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  348) 		data->part_info->softreset_reg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  349) 		data->part_info->softreset_val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  350) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  351) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  352) 		dev_err(&data->client->dev, "failed to reset the chip\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  353) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  354) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  355) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  356) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  357) static int bma180_chip_init(struct bma180_data *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  358) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  359) 	/* Try to read chip_id register. It must return 0x03. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  360) 	int ret = i2c_smbus_read_byte_data(data->client, BMA180_CHIP_ID);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  361) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  362) 	if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  363) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  364) 	if (ret != data->part_info->chip_id) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  365) 		dev_err(&data->client->dev, "wrong chip ID %d expected %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  366) 			ret, data->part_info->chip_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  367) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  368) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  369) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  370) 	ret = bma180_soft_reset(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  371) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  372) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  373) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  374) 	 * No serial transaction should occur within minimum 10 us
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  375) 	 * after soft_reset command
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  376) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  377) 	msleep(20);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  378) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  379) 	return bma180_set_new_data_intr_state(data, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  380) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  381) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  382) static int bma023_chip_config(struct bma180_data *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  383) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  384) 	int ret = bma180_chip_init(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  385) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  386) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  387) 		goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  388) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  389) 	ret = bma180_set_bw(data, 50); /* 50 Hz */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  390) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  391) 		goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  392) 	ret = bma180_set_scale(data, 2452); /* 2 G */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  393) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  394) 		goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  395) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  396) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  397) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  398) err:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  399) 	dev_err(&data->client->dev, "failed to config the chip\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  400) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  401) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  402) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  403) static int bma180_chip_config(struct bma180_data *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  404) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  405) 	int ret = bma180_chip_init(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  406) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  407) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  408) 		goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  409) 	ret = bma180_set_pmode(data, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  410) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  411) 		goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  412) 	ret = bma180_set_bits(data, BMA180_CTRL_REG0, BMA180_DIS_WAKE_UP, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  413) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  414) 		goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  415) 	ret = bma180_set_ee_writing_state(data, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  416) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  417) 		goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  418) 	ret = bma180_set_bits(data, BMA180_OFFSET_LSB1, BMA180_SMP_SKIP, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  419) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  420) 		goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  421) 	ret = bma180_set_bw(data, 20); /* 20 Hz */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  422) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  423) 		goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  424) 	ret = bma180_set_scale(data, 2452); /* 2 G */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  425) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  426) 		goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  427) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  428) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  429) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  430) err:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  431) 	dev_err(&data->client->dev, "failed to config the chip\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  432) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  433) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  434) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  435) static int bma25x_chip_config(struct bma180_data *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  436) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  437) 	int ret = bma180_chip_init(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  438) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  439) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  440) 		goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  441) 	ret = bma180_set_pmode(data, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  442) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  443) 		goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  444) 	ret = bma180_set_bw(data, 16); /* 16 Hz */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  445) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  446) 		goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  447) 	ret = bma180_set_scale(data, 38344); /* 2 G */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  448) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  449) 		goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  450) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  451) 	 * This enables dataready interrupt on the INT1 pin
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  452) 	 * FIXME: support using the INT2 pin
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  453) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  454) 	ret = bma180_set_bits(data, data->part_info->int_map_reg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  455) 		data->part_info->int_enable_dataready_int1_mask, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  456) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  457) 		goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  458) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  459) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  460) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  461) err:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  462) 	dev_err(&data->client->dev, "failed to config the chip\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  463) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  464) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  465) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  466) static void bma023_chip_disable(struct bma180_data *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  467) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  468) 	if (bma180_set_sleep_state(data, true))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  469) 		goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  470) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  471) 	return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  472) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  473) err:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  474) 	dev_err(&data->client->dev, "failed to disable the chip\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  475) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  476) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  477) static void bma180_chip_disable(struct bma180_data *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  478) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  479) 	if (bma180_set_new_data_intr_state(data, false))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  480) 		goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  481) 	if (bma180_set_ee_writing_state(data, false))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  482) 		goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  483) 	if (bma180_set_sleep_state(data, true))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  484) 		goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  485) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  486) 	return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  487) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  488) err:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  489) 	dev_err(&data->client->dev, "failed to disable the chip\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  490) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  491) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  492) static void bma25x_chip_disable(struct bma180_data *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  493) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  494) 	if (bma180_set_new_data_intr_state(data, false))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  495) 		goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  496) 	if (bma180_set_sleep_state(data, true))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  497) 		goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  498) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  499) 	return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  500) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  501) err:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  502) 	dev_err(&data->client->dev, "failed to disable the chip\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  503) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  504) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  505) static ssize_t bma180_show_avail(char *buf, const int *vals, unsigned int n,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  506) 				 bool micros)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  507) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  508) 	size_t len = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  509) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  510) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  511) 	for (i = 0; i < n; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  512) 		if (!vals[i])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  513) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  514) 		len += scnprintf(buf + len, PAGE_SIZE - len,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  515) 			micros ? "0.%06d " : "%d ", vals[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  516) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  517) 	buf[len - 1] = '\n';
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  518) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  519) 	return len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  520) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  521) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  522) static ssize_t bma180_show_filter_freq_avail(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  523) 				struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  524) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  525) 	struct bma180_data *data = iio_priv(dev_to_iio_dev(dev));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  526) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  527) 	return bma180_show_avail(buf, data->part_info->bw_table,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  528) 		data->part_info->num_bw, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  529) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  530) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  531) static ssize_t bma180_show_scale_avail(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  532) 				struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  533) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  534) 	struct bma180_data *data = iio_priv(dev_to_iio_dev(dev));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  535) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  536) 	return bma180_show_avail(buf, data->part_info->scale_table,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  537) 		data->part_info->num_scales, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  538) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  539) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  540) static IIO_DEVICE_ATTR(in_accel_filter_low_pass_3db_frequency_available,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  541) 	S_IRUGO, bma180_show_filter_freq_avail, NULL, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  542) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  543) static IIO_DEVICE_ATTR(in_accel_scale_available,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  544) 	S_IRUGO, bma180_show_scale_avail, NULL, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  545) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  546) static struct attribute *bma180_attributes[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  547) 	&iio_dev_attr_in_accel_filter_low_pass_3db_frequency_available.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  548) 		dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  549) 	&iio_dev_attr_in_accel_scale_available.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  550) 	NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  551) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  552) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  553) static const struct attribute_group bma180_attrs_group = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  554) 	.attrs = bma180_attributes,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  555) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  556) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  557) static int bma180_read_raw(struct iio_dev *indio_dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  558) 		struct iio_chan_spec const *chan, int *val, int *val2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  559) 		long mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  560) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  561) 	struct bma180_data *data = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  562) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  563) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  564) 	switch (mask) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  565) 	case IIO_CHAN_INFO_RAW:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  566) 		ret = iio_device_claim_direct_mode(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  567) 		if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  568) 			return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  569) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  570) 		mutex_lock(&data->mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  571) 		ret = bma180_get_data_reg(data, chan->scan_index);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  572) 		mutex_unlock(&data->mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  573) 		iio_device_release_direct_mode(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  574) 		if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  575) 			return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  576) 		if (chan->scan_type.sign == 's') {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  577) 			*val = sign_extend32(ret >> chan->scan_type.shift,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  578) 				chan->scan_type.realbits - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  579) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  580) 			*val = ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  581) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  582) 		return IIO_VAL_INT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  583) 	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  584) 		*val = data->bw;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  585) 		return IIO_VAL_INT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  586) 	case IIO_CHAN_INFO_SCALE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  587) 		switch (chan->type) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  588) 		case IIO_ACCEL:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  589) 			*val = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  590) 			*val2 = data->scale;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  591) 			return IIO_VAL_INT_PLUS_MICRO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  592) 		case IIO_TEMP:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  593) 			*val = 500;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  594) 			return IIO_VAL_INT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  595) 		default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  596) 			return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  597) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  598) 	case IIO_CHAN_INFO_OFFSET:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  599) 		*val = data->part_info->temp_offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  600) 		return IIO_VAL_INT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  601) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  602) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  603) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  604) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  605) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  606) static int bma180_write_raw(struct iio_dev *indio_dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  607) 		struct iio_chan_spec const *chan, int val, int val2, long mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  608) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  609) 	struct bma180_data *data = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  610) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  611) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  612) 	switch (mask) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  613) 	case IIO_CHAN_INFO_SCALE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  614) 		if (val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  615) 			return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  616) 		mutex_lock(&data->mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  617) 		ret = bma180_set_scale(data, val2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  618) 		mutex_unlock(&data->mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  619) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  620) 	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  621) 		if (val2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  622) 			return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  623) 		mutex_lock(&data->mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  624) 		ret = bma180_set_bw(data, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  625) 		mutex_unlock(&data->mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  626) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  627) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  628) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  629) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  630) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  631) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  632) static const struct iio_info bma180_info = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  633) 	.attrs			= &bma180_attrs_group,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  634) 	.read_raw		= bma180_read_raw,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  635) 	.write_raw		= bma180_write_raw,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  636) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  637) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  638) static const char * const bma180_power_modes[] = { "low_noise", "low_power" };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  639) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  640) static int bma180_get_power_mode(struct iio_dev *indio_dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  641) 		const struct iio_chan_spec *chan)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  642) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  643) 	struct bma180_data *data = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  644) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  645) 	return data->pmode;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  646) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  647) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  648) static int bma180_set_power_mode(struct iio_dev *indio_dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  649) 		const struct iio_chan_spec *chan, unsigned int mode)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  650) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  651) 	struct bma180_data *data = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  652) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  653) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  654) 	mutex_lock(&data->mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  655) 	ret = bma180_set_pmode(data, mode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  656) 	mutex_unlock(&data->mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  657) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  658) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  659) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  660) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  661) static const struct iio_mount_matrix *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  662) bma180_accel_get_mount_matrix(const struct iio_dev *indio_dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  663) 				const struct iio_chan_spec *chan)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  664) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  665) 	struct bma180_data *data = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  666) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  667) 	return &data->orientation;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  668) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  669) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  670) static const struct iio_enum bma180_power_mode_enum = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  671) 	.items = bma180_power_modes,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  672) 	.num_items = ARRAY_SIZE(bma180_power_modes),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  673) 	.get = bma180_get_power_mode,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  674) 	.set = bma180_set_power_mode,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  675) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  676) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  677) static const struct iio_chan_spec_ext_info bma023_ext_info[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  678) 	IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bma180_accel_get_mount_matrix),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  679) 	{ }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  680) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  681) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  682) static const struct iio_chan_spec_ext_info bma180_ext_info[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  683) 	IIO_ENUM("power_mode", IIO_SHARED_BY_TYPE, &bma180_power_mode_enum),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  684) 	IIO_ENUM_AVAILABLE("power_mode", &bma180_power_mode_enum),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  685) 	IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bma180_accel_get_mount_matrix),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  686) 	{ }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  687) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  688) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  689) #define BMA023_ACC_CHANNEL(_axis, _bits) {				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  690) 	.type = IIO_ACCEL,						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  691) 	.modified = 1,							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  692) 	.channel2 = IIO_MOD_##_axis,					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  693) 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  694) 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  695) 		BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  696) 	.scan_index = AXIS_##_axis,					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  697) 	.scan_type = {							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  698) 		.sign = 's',						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  699) 		.realbits = _bits,					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  700) 		.storagebits = 16,					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  701) 		.shift = 16 - _bits,					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  702) 	},								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  703) 	.ext_info = bma023_ext_info,					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  704) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  705) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  706) #define BMA150_TEMP_CHANNEL {						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  707) 	.type = IIO_TEMP,						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  708) 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  709) 		BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_OFFSET),	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  710) 	.scan_index = TEMP,						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  711) 	.scan_type = {							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  712) 		.sign = 'u',						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  713) 		.realbits = 8,						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  714) 		.storagebits = 16,					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  715) 	},								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  716) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  717) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  718) #define BMA180_ACC_CHANNEL(_axis, _bits) {				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  719) 	.type = IIO_ACCEL,						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  720) 	.modified = 1,							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  721) 	.channel2 = IIO_MOD_##_axis,					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  722) 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  723) 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  724) 		BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  725) 	.scan_index = AXIS_##_axis,					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  726) 	.scan_type = {							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  727) 		.sign = 's',						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  728) 		.realbits = _bits,					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  729) 		.storagebits = 16,					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  730) 		.shift = 16 - _bits,					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  731) 	},								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  732) 	.ext_info = bma180_ext_info,					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  733) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  734) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  735) #define BMA180_TEMP_CHANNEL {						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  736) 	.type = IIO_TEMP,						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  737) 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  738) 		BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_OFFSET),	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  739) 	.scan_index = TEMP,						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  740) 	.scan_type = {							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  741) 		.sign = 's',						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  742) 		.realbits = 8,						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  743) 		.storagebits = 16,					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  744) 	},								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  745) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  746) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  747) static const struct iio_chan_spec bma023_channels[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  748) 	BMA023_ACC_CHANNEL(X, 10),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  749) 	BMA023_ACC_CHANNEL(Y, 10),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  750) 	BMA023_ACC_CHANNEL(Z, 10),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  751) 	IIO_CHAN_SOFT_TIMESTAMP(4),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  752) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  753) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  754) static const struct iio_chan_spec bma150_channels[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  755) 	BMA023_ACC_CHANNEL(X, 10),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  756) 	BMA023_ACC_CHANNEL(Y, 10),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  757) 	BMA023_ACC_CHANNEL(Z, 10),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  758) 	BMA150_TEMP_CHANNEL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  759) 	IIO_CHAN_SOFT_TIMESTAMP(4),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  760) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  761) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  762) static const struct iio_chan_spec bma180_channels[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  763) 	BMA180_ACC_CHANNEL(X, 14),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  764) 	BMA180_ACC_CHANNEL(Y, 14),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  765) 	BMA180_ACC_CHANNEL(Z, 14),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  766) 	BMA180_TEMP_CHANNEL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  767) 	IIO_CHAN_SOFT_TIMESTAMP(4),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  768) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  769) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  770) static const struct iio_chan_spec bma250_channels[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  771) 	BMA180_ACC_CHANNEL(X, 10),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  772) 	BMA180_ACC_CHANNEL(Y, 10),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  773) 	BMA180_ACC_CHANNEL(Z, 10),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  774) 	BMA180_TEMP_CHANNEL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  775) 	IIO_CHAN_SOFT_TIMESTAMP(4),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  776) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  777) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  778) static const struct iio_chan_spec bma254_channels[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  779) 	BMA180_ACC_CHANNEL(X, 12),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  780) 	BMA180_ACC_CHANNEL(Y, 12),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  781) 	BMA180_ACC_CHANNEL(Z, 12),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  782) 	BMA180_TEMP_CHANNEL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  783) 	IIO_CHAN_SOFT_TIMESTAMP(4),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  784) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  785) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  786) static const struct bma180_part_info bma180_part_info[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  787) 	[BMA023] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  788) 		.chip_id = BMA023_ID_REG_VAL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  789) 		.channels = bma023_channels,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  790) 		.num_channels = ARRAY_SIZE(bma023_channels),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  791) 		.scale_table = bma023_scale_table,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  792) 		.num_scales = ARRAY_SIZE(bma023_scale_table),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  793) 		.bw_table = bma023_bw_table,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  794) 		.num_bw = ARRAY_SIZE(bma023_bw_table),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  795) 		/* No temperature channel */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  796) 		.temp_offset = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  797) 		.int_reset_reg = BMA023_CTRL_REG0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  798) 		.int_reset_mask = BMA023_INT_RESET_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  799) 		.sleep_reg = BMA023_CTRL_REG0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  800) 		.sleep_mask = BMA023_SLEEP,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  801) 		.bw_reg = BMA023_CTRL_REG2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  802) 		.bw_mask = BMA023_BW_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  803) 		.scale_reg = BMA023_CTRL_REG2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  804) 		.scale_mask = BMA023_RANGE_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  805) 		/* No power mode on bma023 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  806) 		.power_reg = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  807) 		.power_mask = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  808) 		.lowpower_val = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  809) 		.int_enable_reg = BMA023_CTRL_REG3,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  810) 		.int_enable_mask = BMA023_NEW_DATA_INT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  811) 		.softreset_reg = BMA023_CTRL_REG0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  812) 		.softreset_val = BMA023_RESET_VAL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  813) 		.chip_config = bma023_chip_config,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  814) 		.chip_disable = bma023_chip_disable,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  815) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  816) 	[BMA150] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  817) 		.chip_id = BMA023_ID_REG_VAL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  818) 		.channels = bma150_channels,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  819) 		.num_channels = ARRAY_SIZE(bma150_channels),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  820) 		.scale_table = bma023_scale_table,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  821) 		.num_scales = ARRAY_SIZE(bma023_scale_table),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  822) 		.bw_table = bma023_bw_table,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  823) 		.num_bw = ARRAY_SIZE(bma023_bw_table),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  824) 		.temp_offset = -60, /* 0 LSB @ -30 degree C */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  825) 		.int_reset_reg = BMA023_CTRL_REG0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  826) 		.int_reset_mask = BMA023_INT_RESET_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  827) 		.sleep_reg = BMA023_CTRL_REG0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  828) 		.sleep_mask = BMA023_SLEEP,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  829) 		.bw_reg = BMA023_CTRL_REG2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  830) 		.bw_mask = BMA023_BW_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  831) 		.scale_reg = BMA023_CTRL_REG2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  832) 		.scale_mask = BMA023_RANGE_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  833) 		/* No power mode on bma150 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  834) 		.power_reg = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  835) 		.power_mask = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  836) 		.lowpower_val = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  837) 		.int_enable_reg = BMA023_CTRL_REG3,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  838) 		.int_enable_mask = BMA023_NEW_DATA_INT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  839) 		.softreset_reg = BMA023_CTRL_REG0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  840) 		.softreset_val = BMA023_RESET_VAL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  841) 		.chip_config = bma023_chip_config,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  842) 		.chip_disable = bma023_chip_disable,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  843) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  844) 	[BMA180] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  845) 		.chip_id = BMA180_ID_REG_VAL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  846) 		.channels = bma180_channels,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  847) 		.num_channels = ARRAY_SIZE(bma180_channels),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  848) 		.scale_table = bma180_scale_table,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  849) 		.num_scales = ARRAY_SIZE(bma180_scale_table),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  850) 		.bw_table = bma180_bw_table,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  851) 		.num_bw = ARRAY_SIZE(bma180_bw_table),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  852) 		.temp_offset = 48, /* 0 LSB @ 24 degree C */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  853) 		.int_reset_reg = BMA180_CTRL_REG0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  854) 		.int_reset_mask = BMA180_RESET_INT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  855) 		.sleep_reg = BMA180_CTRL_REG0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  856) 		.sleep_mask = BMA180_SLEEP,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  857) 		.bw_reg = BMA180_BW_TCS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  858) 		.bw_mask = BMA180_BW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  859) 		.scale_reg = BMA180_OFFSET_LSB1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  860) 		.scale_mask = BMA180_RANGE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  861) 		.power_reg = BMA180_TCO_Z,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  862) 		.power_mask = BMA180_MODE_CONFIG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  863) 		.lowpower_val = BMA180_LOW_POWER,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  864) 		.int_enable_reg = BMA180_CTRL_REG3,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  865) 		.int_enable_mask = BMA180_NEW_DATA_INT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  866) 		.softreset_reg = BMA180_RESET,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  867) 		.softreset_val = BMA180_RESET_VAL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  868) 		.chip_config = bma180_chip_config,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  869) 		.chip_disable = bma180_chip_disable,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  870) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  871) 	[BMA250] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  872) 		.chip_id = BMA250_ID_REG_VAL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  873) 		.channels = bma250_channels,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  874) 		.num_channels = ARRAY_SIZE(bma250_channels),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  875) 		.scale_table = bma25x_scale_table,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  876) 		.num_scales = ARRAY_SIZE(bma25x_scale_table),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  877) 		.bw_table = bma25x_bw_table,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  878) 		.num_bw = ARRAY_SIZE(bma25x_bw_table),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  879) 		.temp_offset = 48, /* 0 LSB @ 24 degree C */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  880) 		.int_reset_reg = BMA250_INT_RESET_REG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  881) 		.int_reset_mask = BMA250_INT_RESET_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  882) 		.sleep_reg = BMA250_POWER_REG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  883) 		.sleep_mask = BMA250_SUSPEND_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  884) 		.bw_reg = BMA250_BW_REG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  885) 		.bw_mask = BMA250_BW_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  886) 		.bw_offset = BMA250_BW_OFFSET,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  887) 		.scale_reg = BMA250_RANGE_REG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  888) 		.scale_mask = BMA250_RANGE_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  889) 		.power_reg = BMA250_POWER_REG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  890) 		.power_mask = BMA250_LOWPOWER_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  891) 		.lowpower_val = 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  892) 		.int_enable_reg = BMA250_INT_ENABLE_REG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  893) 		.int_enable_mask = BMA250_DATA_INTEN_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  894) 		.int_map_reg = BMA250_INT_MAP_REG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  895) 		.int_enable_dataready_int1_mask = BMA250_INT1_DATA_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  896) 		.softreset_reg = BMA250_RESET_REG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  897) 		.softreset_val = BMA180_RESET_VAL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  898) 		.chip_config = bma25x_chip_config,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  899) 		.chip_disable = bma25x_chip_disable,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  900) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  901) 	[BMA254] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  902) 		.chip_id = BMA254_ID_REG_VAL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  903) 		.channels = bma254_channels,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  904) 		.num_channels = ARRAY_SIZE(bma254_channels),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  905) 		.scale_table = bma25x_scale_table,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  906) 		.num_scales = ARRAY_SIZE(bma25x_scale_table),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  907) 		.bw_table = bma25x_bw_table,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  908) 		.num_bw = ARRAY_SIZE(bma25x_bw_table),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  909) 		.temp_offset = 46, /* 0 LSB @ 23 degree C */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  910) 		.int_reset_reg = BMA254_INT_RESET_REG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  911) 		.int_reset_mask = BMA254_INT_RESET_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  912) 		.sleep_reg = BMA254_POWER_REG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  913) 		.sleep_mask = BMA254_SUSPEND_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  914) 		.bw_reg = BMA254_BW_REG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  915) 		.bw_mask = BMA254_BW_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  916) 		.bw_offset = BMA254_BW_OFFSET,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  917) 		.scale_reg = BMA254_RANGE_REG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  918) 		.scale_mask = BMA254_RANGE_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  919) 		.power_reg = BMA254_POWER_REG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  920) 		.power_mask = BMA254_LOWPOWER_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  921) 		.lowpower_val = 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  922) 		.int_enable_reg = BMA254_INT_ENABLE_REG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  923) 		.int_enable_mask = BMA254_DATA_INTEN_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  924) 		.int_map_reg = BMA254_INT_MAP_REG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  925) 		.int_enable_dataready_int1_mask = BMA254_INT1_DATA_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  926) 		.softreset_reg = BMA254_RESET_REG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  927) 		.softreset_val = BMA180_RESET_VAL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  928) 		.chip_config = bma25x_chip_config,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  929) 		.chip_disable = bma25x_chip_disable,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  930) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  931) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  932) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  933) static irqreturn_t bma180_trigger_handler(int irq, void *p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  934) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  935) 	struct iio_poll_func *pf = p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  936) 	struct iio_dev *indio_dev = pf->indio_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  937) 	struct bma180_data *data = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  938) 	s64 time_ns = iio_get_time_ns(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  939) 	int bit, ret, i = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  940) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  941) 	mutex_lock(&data->mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  942) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  943) 	for_each_set_bit(bit, indio_dev->active_scan_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  944) 			 indio_dev->masklength) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  945) 		ret = bma180_get_data_reg(data, bit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  946) 		if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  947) 			mutex_unlock(&data->mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  948) 			goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  949) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  950) 		data->scan.chan[i++] = ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  951) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  952) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  953) 	mutex_unlock(&data->mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  954) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  955) 	iio_push_to_buffers_with_timestamp(indio_dev, &data->scan, time_ns);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  956) err:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  957) 	iio_trigger_notify_done(indio_dev->trig);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  958) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  959) 	return IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  960) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  961) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  962) static int bma180_data_rdy_trigger_set_state(struct iio_trigger *trig,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  963) 		bool state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  964) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  965) 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  966) 	struct bma180_data *data = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  967) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  968) 	return bma180_set_new_data_intr_state(data, state);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  969) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  970) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  971) static int bma180_trig_try_reen(struct iio_trigger *trig)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  972) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  973) 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  974) 	struct bma180_data *data = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  975) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  976) 	return bma180_reset_intr(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  977) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  978) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  979) static const struct iio_trigger_ops bma180_trigger_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  980) 	.set_trigger_state = bma180_data_rdy_trigger_set_state,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  981) 	.try_reenable = bma180_trig_try_reen,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  982) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  983) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  984) static int bma180_probe(struct i2c_client *client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  985) 		const struct i2c_device_id *id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  986) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  987) 	struct device *dev = &client->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  988) 	struct bma180_data *data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  989) 	struct iio_dev *indio_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  990) 	enum chip_ids chip;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  991) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  992) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  993) 	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  994) 	if (!indio_dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  995) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  996) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  997) 	data = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  998) 	i2c_set_clientdata(client, indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  999) 	data->client = client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) 	if (client->dev.of_node)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) 		chip = (enum chip_ids)of_device_get_match_data(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) 		chip = id->driver_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) 	data->part_info = &bma180_part_info[chip];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) 	ret = iio_read_mount_matrix(dev, "mount-matrix",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) 				&data->orientation);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011) 	data->vdd_supply = devm_regulator_get(dev, "vdd");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012) 	if (IS_ERR(data->vdd_supply))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) 		return dev_err_probe(dev, PTR_ERR(data->vdd_supply),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014) 				     "Failed to get vdd regulator\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016) 	data->vddio_supply = devm_regulator_get(dev, "vddio");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017) 	if (IS_ERR(data->vddio_supply))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018) 		return dev_err_probe(dev, PTR_ERR(data->vddio_supply),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019) 				     "Failed to get vddio regulator\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021) 	/* Typical voltage 2.4V these are min and max */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022) 	ret = regulator_set_voltage(data->vdd_supply, 1620000, 3600000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) 	ret = regulator_set_voltage(data->vddio_supply, 1200000, 3600000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) 	ret = regulator_enable(data->vdd_supply);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030) 		dev_err(dev, "Failed to enable vdd regulator: %d\n", ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033) 	ret = regulator_enable(data->vddio_supply);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) 	if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035) 		dev_err(dev, "Failed to enable vddio regulator: %d\n", ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036) 		goto err_disable_vdd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038) 	/* Wait to make sure we started up properly (3 ms at least) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039) 	usleep_range(3000, 5000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041) 	ret = data->part_info->chip_config(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042) 	if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043) 		goto err_chip_disable;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045) 	mutex_init(&data->mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046) 	indio_dev->channels = data->part_info->channels;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047) 	indio_dev->num_channels = data->part_info->num_channels;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048) 	indio_dev->name = id->name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049) 	indio_dev->modes = INDIO_DIRECT_MODE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050) 	indio_dev->info = &bma180_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052) 	if (client->irq > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053) 		data->trig = iio_trigger_alloc("%s-dev%d", indio_dev->name,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054) 			indio_dev->id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055) 		if (!data->trig) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056) 			ret = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057) 			goto err_chip_disable;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060) 		ret = devm_request_irq(dev, client->irq,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) 			iio_trigger_generic_data_rdy_poll, IRQF_TRIGGER_RISING,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) 			"bma180_event", data->trig);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) 		if (ret) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) 			dev_err(dev, "unable to request IRQ\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) 			goto err_trigger_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) 		data->trig->dev.parent = dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) 		data->trig->ops = &bma180_trigger_ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) 		iio_trigger_set_drvdata(data->trig, indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) 		indio_dev->trig = iio_trigger_get(data->trig);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) 		ret = iio_trigger_register(data->trig);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) 		if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) 			goto err_trigger_free;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078) 	ret = iio_triggered_buffer_setup(indio_dev, NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) 			bma180_trigger_handler, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) 	if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) 		dev_err(dev, "unable to setup iio triggered buffer\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) 		goto err_trigger_unregister;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) 	ret = iio_device_register(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086) 	if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) 		dev_err(dev, "unable to register iio device\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088) 		goto err_buffer_cleanup;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) err_buffer_cleanup:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) 	iio_triggered_buffer_cleanup(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) err_trigger_unregister:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096) 	if (data->trig)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097) 		iio_trigger_unregister(data->trig);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098) err_trigger_free:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099) 	iio_trigger_free(data->trig);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100) err_chip_disable:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101) 	data->part_info->chip_disable(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102) 	regulator_disable(data->vddio_supply);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103) err_disable_vdd:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104) 	regulator_disable(data->vdd_supply);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109) static int bma180_remove(struct i2c_client *client)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111) 	struct iio_dev *indio_dev = i2c_get_clientdata(client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112) 	struct bma180_data *data = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114) 	iio_device_unregister(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115) 	iio_triggered_buffer_cleanup(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116) 	if (data->trig) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) 		iio_trigger_unregister(data->trig);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118) 		iio_trigger_free(data->trig);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) 	mutex_lock(&data->mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122) 	data->part_info->chip_disable(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123) 	mutex_unlock(&data->mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124) 	regulator_disable(data->vddio_supply);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125) 	regulator_disable(data->vdd_supply);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130) #ifdef CONFIG_PM_SLEEP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131) static int bma180_suspend(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133) 	struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134) 	struct bma180_data *data = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137) 	mutex_lock(&data->mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138) 	ret = bma180_set_sleep_state(data, true);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139) 	mutex_unlock(&data->mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144) static int bma180_resume(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146) 	struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147) 	struct bma180_data *data = iio_priv(indio_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150) 	mutex_lock(&data->mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151) 	ret = bma180_set_sleep_state(data, false);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152) 	mutex_unlock(&data->mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157) static SIMPLE_DEV_PM_OPS(bma180_pm_ops, bma180_suspend, bma180_resume);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158) #define BMA180_PM_OPS (&bma180_pm_ops)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160) #define BMA180_PM_OPS NULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1162) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1163) static const struct i2c_device_id bma180_ids[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1164) 	{ "bma023", BMA023 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1165) 	{ "bma150", BMA150 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1166) 	{ "bma180", BMA180 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1167) 	{ "bma250", BMA250 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1168) 	{ "bma254", BMA254 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1169) 	{ "smb380", BMA150 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1170) 	{ }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1171) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1172) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1173) MODULE_DEVICE_TABLE(i2c, bma180_ids);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1174) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1175) static const struct of_device_id bma180_of_match[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1176) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1177) 		.compatible = "bosch,bma023",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1178) 		.data = (void *)BMA023
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1179) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1180) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1181) 		.compatible = "bosch,bma150",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1182) 		.data = (void *)BMA150
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1183) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1184) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1185) 		.compatible = "bosch,bma180",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1186) 		.data = (void *)BMA180
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1187) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1188) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1189) 		.compatible = "bosch,bma250",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1190) 		.data = (void *)BMA250
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1191) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1192) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1193) 		.compatible = "bosch,bma254",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1194) 		.data = (void *)BMA254
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1195) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1196) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1197) 		.compatible = "bosch,smb380",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1198) 		.data = (void *)BMA150
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1199) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1200) 	{ }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1201) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1202) MODULE_DEVICE_TABLE(of, bma180_of_match);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1203) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1204) static struct i2c_driver bma180_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1205) 	.driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1206) 		.name	= "bma180",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1207) 		.pm	= BMA180_PM_OPS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1208) 		.of_match_table = bma180_of_match,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1209) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1210) 	.probe		= bma180_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1211) 	.remove		= bma180_remove,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1212) 	.id_table	= bma180_ids,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1213) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1214) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1215) module_i2c_driver(bma180_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1216) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1217) MODULE_AUTHOR("Kravchenko Oleksandr <x0199363@ti.com>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1218) MODULE_AUTHOR("Texas Instruments, Inc.");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1219) MODULE_DESCRIPTION("Bosch BMA023/BMA1x0/BMA25x triaxial acceleration sensor");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1220) MODULE_LICENSE("GPL");