Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0-or-later
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  *  Copyright (c) 1999-2001 Vojtech Pavlik
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  *  Copyright (c) 2007-2008 Bartlomiej Zolnierkiewicz
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  * Should you need to contact me, the author, you can do so either by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  * e-mail - mail your message to <vojtech@ucw.cz>, or by paper mail:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  * Vojtech Pavlik, Simunkova 1594, Prague 8, 182 00 Czech Republic
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) #include <linux/ide.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16)  * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17)  * These were taken from ATA/ATAPI-6 standard, rev 0a, except
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18)  * for PIO 5, which is a nonstandard extension and UDMA6, which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19)  * is currently supported only by Maxtor drives.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) static struct ide_timing ide_timing[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) 	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0,   0,  15 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) 	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0,   0,  20 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) 	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0,   0,  30 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) 	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0,   0,  45 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) 	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0,   0,  60 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) 	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0,   0,  80 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) 	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0,   0, 120 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) 	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20,  80,   0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) 	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 100,   0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) 	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 120,   0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) 	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 150,   0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) 	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 480,   0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) 	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 240,   0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) 	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 480,   0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) 	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 960,   0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) 	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20,  80,   0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) 	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 100,   0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 120,   0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) 	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 180,   0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) 	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 240,   0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) 	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 383,   0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) 	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 600,   0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) 	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960,   0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) 	{ 0xff }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) struct ide_timing *ide_timing_find_mode(u8 speed)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 	struct ide_timing *t;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) 	for (t = ide_timing; t->mode != speed; t++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) 		if (t->mode == 0xff)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) 			return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 	return t;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) EXPORT_SYMBOL_GPL(ide_timing_find_mode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) u16 ide_pio_cycle_time(ide_drive_t *drive, u8 pio)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) 	u16 *id = drive->id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 	struct ide_timing *t = ide_timing_find_mode(XFER_PIO_0 + pio);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) 	u16 cycle = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 	if (id[ATA_ID_FIELD_VALID] & 2) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 		if (ata_id_has_iordy(drive->id))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 			cycle = id[ATA_ID_EIDE_PIO_IORDY];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 			cycle = id[ATA_ID_EIDE_PIO];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 		/* conservative "downgrade" for all pre-ATA2 drives */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 		if (pio < 3 && cycle < t->cycle)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 			cycle = 0; /* use standard timing */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 		/* Use the standard timing for the CF specific modes too */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 		if (pio > 4 && ata_id_is_cfa(id))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 			cycle = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 	return cycle ? cycle : t->cycle;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) EXPORT_SYMBOL_GPL(ide_pio_cycle_time);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) #define ENOUGH(v, unit)		(((v) - 1) / (unit) + 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) #define EZ(v, unit)		((v) ? ENOUGH((v) * 1000, unit) : 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) static void ide_timing_quantize(struct ide_timing *t, struct ide_timing *q,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 				int T, int UT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 	q->setup   = EZ(t->setup,   T);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 	q->act8b   = EZ(t->act8b,   T);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 	q->rec8b   = EZ(t->rec8b,   T);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 	q->cyc8b   = EZ(t->cyc8b,   T);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 	q->active  = EZ(t->active,  T);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 	q->recover = EZ(t->recover, T);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 	q->cycle   = EZ(t->cycle,   T);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 	q->udma    = EZ(t->udma,    UT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) void ide_timing_merge(struct ide_timing *a, struct ide_timing *b,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 		      struct ide_timing *m, unsigned int what)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 	if (what & IDE_TIMING_SETUP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 		m->setup   = max(a->setup,   b->setup);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 	if (what & IDE_TIMING_ACT8B)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 		m->act8b   = max(a->act8b,   b->act8b);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 	if (what & IDE_TIMING_REC8B)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 		m->rec8b   = max(a->rec8b,   b->rec8b);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 	if (what & IDE_TIMING_CYC8B)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 		m->cyc8b   = max(a->cyc8b,   b->cyc8b);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 	if (what & IDE_TIMING_ACTIVE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 		m->active  = max(a->active,  b->active);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 	if (what & IDE_TIMING_RECOVER)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 		m->recover = max(a->recover, b->recover);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 	if (what & IDE_TIMING_CYCLE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 		m->cycle   = max(a->cycle,   b->cycle);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 	if (what & IDE_TIMING_UDMA)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 		m->udma    = max(a->udma,    b->udma);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) EXPORT_SYMBOL_GPL(ide_timing_merge);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) int ide_timing_compute(ide_drive_t *drive, u8 speed,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 		       struct ide_timing *t, int T, int UT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 	u16 *id = drive->id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 	struct ide_timing *s, p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 	 * Find the mode.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 	s = ide_timing_find_mode(speed);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 	if (s == NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 	 * Copy the timing from the table.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 	*t = *s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 	 * If the drive is an EIDE drive, it can tell us it needs extended
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 	 * PIO/MWDMA cycle timing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 	if (id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 		memset(&p, 0, sizeof(p));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 		if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 			if (speed <= XFER_PIO_2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 			else if ((speed <= XFER_PIO_4) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 				 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 		} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 			p.cycle = id[ATA_ID_EIDE_DMA_MIN];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 		ide_timing_merge(&p, t, t, IDE_TIMING_CYCLE | IDE_TIMING_CYC8B);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 	 * Convert the timing to bus clock counts.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 	ide_timing_quantize(t, t, T, UT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 	 * S.M.A.R.T and some other commands. We have to ensure that the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 	 * DMA cycle timing is slower/equal than the current PIO timing.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 	if (speed >= XFER_SW_DMA_0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 		ide_timing_compute(drive, drive->pio_mode, &p, T, UT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 		ide_timing_merge(&p, t, t, IDE_TIMING_ALL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 	 * Lengthen active & recovery time so that cycle time is correct.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 	if (t->act8b + t->rec8b < t->cyc8b) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 		t->rec8b = t->cyc8b - t->act8b;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 	if (t->active + t->recover < t->cycle) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 		t->active += (t->cycle - (t->active + t->recover)) / 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 		t->recover = t->cycle - t->active;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) EXPORT_SYMBOL_GPL(ide_timing_compute);