Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    1) // SPDX-License-Identifier: GPL-2.0-or-later
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    3)  * w83791d.c - Part of lm_sensors, Linux kernel modules for hardware
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    4)  *	       monitoring
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    5)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    6)  * Copyright (C) 2006-2007 Charles Spirakis <bezaur@gmail.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    7)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    8) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    9) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   10)  * Supports following chips:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   11)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   12)  * Chip		#vin	#fanin	#pwm	#temp	wchipid	vendid	i2c	ISA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   13)  * w83791d	10	5	5	3	0x71	0x5ca3	yes	no
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   14)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   15)  * The w83791d chip appears to be part way between the 83781d and the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   16)  * 83792d. Thus, this file is derived from both the w83792d.c and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   17)  * w83781d.c files.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   18)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   19)  * The w83791g chip is the same as the w83791d but lead-free.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   20)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   21) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   22) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   23) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   24) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   25) #include <linux/i2c.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   26) #include <linux/hwmon.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   27) #include <linux/hwmon-vid.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   28) #include <linux/hwmon-sysfs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   29) #include <linux/err.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   30) #include <linux/mutex.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   31) #include <linux/jiffies.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   32) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   33) #define NUMBER_OF_VIN		10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   34) #define NUMBER_OF_FANIN		5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   35) #define NUMBER_OF_TEMPIN	3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   36) #define NUMBER_OF_PWM		5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   37) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   38) /* Addresses to scan */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   39) static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, 0x2f,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   40) 						I2C_CLIENT_END };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   41) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   42) /* Insmod parameters */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   43) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   44) static unsigned short force_subclients[4];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   45) module_param_array(force_subclients, short, NULL, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   46) MODULE_PARM_DESC(force_subclients,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   47) 		 "List of subclient addresses: {bus, clientaddr, subclientaddr1, subclientaddr2}");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   48) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   49) static bool reset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   50) module_param(reset, bool, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   51) MODULE_PARM_DESC(reset, "Set to one to force a hardware chip reset");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   52) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   53) static bool init;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   54) module_param(init, bool, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   55) MODULE_PARM_DESC(init, "Set to one to force extra software initialization");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   56) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   57) /* The W83791D registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   58) static const u8 W83791D_REG_IN[NUMBER_OF_VIN] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   59) 	0x20,			/* VCOREA in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   60) 	0x21,			/* VINR0 in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   61) 	0x22,			/* +3.3VIN in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   62) 	0x23,			/* VDD5V in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   63) 	0x24,			/* +12VIN in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   64) 	0x25,			/* -12VIN in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   65) 	0x26,			/* -5VIN in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   66) 	0xB0,			/* 5VSB in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   67) 	0xB1,			/* VBAT in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   68) 	0xB2			/* VINR1 in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   69) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   70) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   71) static const u8 W83791D_REG_IN_MAX[NUMBER_OF_VIN] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   72) 	0x2B,			/* VCOREA High Limit in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   73) 	0x2D,			/* VINR0 High Limit in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   74) 	0x2F,			/* +3.3VIN High Limit in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   75) 	0x31,			/* VDD5V High Limit in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   76) 	0x33,			/* +12VIN High Limit in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   77) 	0x35,			/* -12VIN High Limit in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   78) 	0x37,			/* -5VIN High Limit in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   79) 	0xB4,			/* 5VSB High Limit in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   80) 	0xB6,			/* VBAT High Limit in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   81) 	0xB8			/* VINR1 High Limit in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   82) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   83) static const u8 W83791D_REG_IN_MIN[NUMBER_OF_VIN] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   84) 	0x2C,			/* VCOREA Low Limit in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   85) 	0x2E,			/* VINR0 Low Limit in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   86) 	0x30,			/* +3.3VIN Low Limit in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   87) 	0x32,			/* VDD5V Low Limit in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   88) 	0x34,			/* +12VIN Low Limit in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   89) 	0x36,			/* -12VIN Low Limit in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   90) 	0x38,			/* -5VIN Low Limit in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   91) 	0xB5,			/* 5VSB Low Limit in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   92) 	0xB7,			/* VBAT Low Limit in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   93) 	0xB9			/* VINR1 Low Limit in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   94) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   95) static const u8 W83791D_REG_FAN[NUMBER_OF_FANIN] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   96) 	0x28,			/* FAN 1 Count in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   97) 	0x29,			/* FAN 2 Count in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   98) 	0x2A,			/* FAN 3 Count in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   99) 	0xBA,			/* FAN 4 Count in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  100) 	0xBB,			/* FAN 5 Count in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  101) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  102) static const u8 W83791D_REG_FAN_MIN[NUMBER_OF_FANIN] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  103) 	0x3B,			/* FAN 1 Count Low Limit in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  104) 	0x3C,			/* FAN 2 Count Low Limit in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  105) 	0x3D,			/* FAN 3 Count Low Limit in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  106) 	0xBC,			/* FAN 4 Count Low Limit in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  107) 	0xBD,			/* FAN 5 Count Low Limit in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  108) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  109) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  110) static const u8 W83791D_REG_PWM[NUMBER_OF_PWM] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  111) 	0x81,			/* PWM 1 duty cycle register in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  112) 	0x83,			/* PWM 2 duty cycle register in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  113) 	0x94,			/* PWM 3 duty cycle register in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  114) 	0xA0,			/* PWM 4 duty cycle register in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  115) 	0xA1,			/* PWM 5 duty cycle register in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  116) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  117) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  118) static const u8 W83791D_REG_TEMP_TARGET[3] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  119) 	0x85,			/* PWM 1 target temperature for temp 1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  120) 	0x86,			/* PWM 2 target temperature for temp 2 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  121) 	0x96,			/* PWM 3 target temperature for temp 3 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  122) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  123) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  124) static const u8 W83791D_REG_TEMP_TOL[2] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  125) 	0x87,			/* PWM 1/2 temperature tolerance */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  126) 	0x97,			/* PWM 3 temperature tolerance */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  127) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  128) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  129) static const u8 W83791D_REG_FAN_CFG[2] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  130) 	0x84,			/* FAN 1/2 configuration */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  131) 	0x95,			/* FAN 3 configuration */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  132) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  133) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  134) static const u8 W83791D_REG_FAN_DIV[3] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  135) 	0x47,			/* contains FAN1 and FAN2 Divisor */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  136) 	0x4b,			/* contains FAN3 Divisor */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  137) 	0x5C,			/* contains FAN4 and FAN5 Divisor */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  138) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  139) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  140) #define W83791D_REG_BANK		0x4E
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  141) #define W83791D_REG_TEMP2_CONFIG	0xC2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  142) #define W83791D_REG_TEMP3_CONFIG	0xCA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  143) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  144) static const u8 W83791D_REG_TEMP1[3] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  145) 	0x27,			/* TEMP 1 in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  146) 	0x39,			/* TEMP 1 Over in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  147) 	0x3A,			/* TEMP 1 Hyst in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  148) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  149) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  150) static const u8 W83791D_REG_TEMP_ADD[2][6] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  151) 	{0xC0,			/* TEMP 2 in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  152) 	 0xC1,			/* TEMP 2(0.5 deg) in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  153) 	 0xC5,			/* TEMP 2 Over High part in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  154) 	 0xC6,			/* TEMP 2 Over Low part in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  155) 	 0xC3,			/* TEMP 2 Thyst High part in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  156) 	 0xC4},			/* TEMP 2 Thyst Low part in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  157) 	{0xC8,			/* TEMP 3 in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  158) 	 0xC9,			/* TEMP 3(0.5 deg) in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  159) 	 0xCD,			/* TEMP 3 Over High part in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  160) 	 0xCE,			/* TEMP 3 Over Low part in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  161) 	 0xCB,			/* TEMP 3 Thyst High part in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  162) 	 0xCC}			/* TEMP 3 Thyst Low part in DataSheet */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  163) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  164) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  165) #define W83791D_REG_BEEP_CONFIG		0x4D
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  166) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  167) static const u8 W83791D_REG_BEEP_CTRL[3] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  168) 	0x56,			/* BEEP Control Register 1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  169) 	0x57,			/* BEEP Control Register 2 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  170) 	0xA3,			/* BEEP Control Register 3 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  171) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  172) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  173) #define W83791D_REG_GPIO		0x15
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  174) #define W83791D_REG_CONFIG		0x40
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  175) #define W83791D_REG_VID_FANDIV		0x47
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  176) #define W83791D_REG_DID_VID4		0x49
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  177) #define W83791D_REG_WCHIPID		0x58
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  178) #define W83791D_REG_CHIPMAN		0x4F
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  179) #define W83791D_REG_PIN			0x4B
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  180) #define W83791D_REG_I2C_SUBADDR		0x4A
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  181) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  182) #define W83791D_REG_ALARM1 0xA9	/* realtime status register1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  183) #define W83791D_REG_ALARM2 0xAA	/* realtime status register2 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  184) #define W83791D_REG_ALARM3 0xAB	/* realtime status register3 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  185) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  186) #define W83791D_REG_VBAT		0x5D
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  187) #define W83791D_REG_I2C_ADDR		0x48
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  188) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  189) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  190)  * The SMBus locks itself. The Winbond W83791D has a bank select register
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  191)  * (index 0x4e), but the driver only accesses registers in bank 0. Since
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  192)  * we don't switch banks, we don't need any special code to handle
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  193)  * locking access between bank switches
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  194)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  195) static inline int w83791d_read(struct i2c_client *client, u8 reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  196) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  197) 	return i2c_smbus_read_byte_data(client, reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  198) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  199) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  200) static inline int w83791d_write(struct i2c_client *client, u8 reg, u8 value)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  201) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  202) 	return i2c_smbus_write_byte_data(client, reg, value);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  203) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  204) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  205) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  206)  * The analog voltage inputs have 16mV LSB. Since the sysfs output is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  207)  * in mV as would be measured on the chip input pin, need to just
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  208)  * multiply/divide by 16 to translate from/to register values.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  209)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  210) #define IN_TO_REG(val)		(clamp_val((((val) + 8) / 16), 0, 255))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  211) #define IN_FROM_REG(val)	((val) * 16)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  212) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  213) static u8 fan_to_reg(long rpm, int div)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  214) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  215) 	if (rpm == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  216) 		return 255;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  217) 	rpm = clamp_val(rpm, 1, 1000000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  218) 	return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  219) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  220) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  221) #define FAN_FROM_REG(val, div)	((val) == 0 ? -1 : \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  222) 				((val) == 255 ? 0 : \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  223) 					1350000 / ((val) * (div))))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  224) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  225) /* for temp1 which is 8-bit resolution, LSB = 1 degree Celsius */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  226) #define TEMP1_FROM_REG(val)	((val) * 1000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  227) #define TEMP1_TO_REG(val)	((val) <= -128000 ? -128 : \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  228) 				 (val) >= 127000 ? 127 : \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  229) 				 (val) < 0 ? ((val) - 500) / 1000 : \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  230) 				 ((val) + 500) / 1000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  231) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  232) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  233)  * for temp2 and temp3 which are 9-bit resolution, LSB = 0.5 degree Celsius
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  234)  * Assumes the top 8 bits are the integral amount and the bottom 8 bits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  235)  * are the fractional amount. Since we only have 0.5 degree resolution,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  236)  * the bottom 7 bits will always be zero
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  237)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  238) #define TEMP23_FROM_REG(val)	((val) / 128 * 500)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  239) #define TEMP23_TO_REG(val)	(DIV_ROUND_CLOSEST(clamp_val((val), -128000, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  240) 						   127500), 500) * 128)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  241) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  242) /* for thermal cruise target temp, 7-bits, LSB = 1 degree Celsius */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  243) #define TARGET_TEMP_TO_REG(val)	DIV_ROUND_CLOSEST(clamp_val((val), 0, 127000), \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  244) 						  1000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  245) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  246) /* for thermal cruise temp tolerance, 4-bits, LSB = 1 degree Celsius */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  247) #define TOL_TEMP_TO_REG(val)	DIV_ROUND_CLOSEST(clamp_val((val), 0, 15000), \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  248) 						  1000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  249) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  250) #define BEEP_MASK_TO_REG(val)		((val) & 0xffffff)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  251) #define BEEP_MASK_FROM_REG(val)		((val) & 0xffffff)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  252) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  253) #define DIV_FROM_REG(val)		(1 << (val))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  254) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  255) static u8 div_to_reg(int nr, long val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  256) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  257) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  258) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  259) 	/* fan divisors max out at 128 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  260) 	val = clamp_val(val, 1, 128) >> 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  261) 	for (i = 0; i < 7; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  262) 		if (val == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  263) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  264) 		val >>= 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  265) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  266) 	return (u8) i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  267) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  268) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  269) struct w83791d_data {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  270) 	struct device *hwmon_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  271) 	struct mutex update_lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  272) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  273) 	char valid;			/* !=0 if following fields are valid */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  274) 	unsigned long last_updated;	/* In jiffies */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  275) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  276) 	/* volts */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  277) 	u8 in[NUMBER_OF_VIN];		/* Register value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  278) 	u8 in_max[NUMBER_OF_VIN];	/* Register value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  279) 	u8 in_min[NUMBER_OF_VIN];	/* Register value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  280) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  281) 	/* fans */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  282) 	u8 fan[NUMBER_OF_FANIN];	/* Register value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  283) 	u8 fan_min[NUMBER_OF_FANIN];	/* Register value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  284) 	u8 fan_div[NUMBER_OF_FANIN];	/* Register encoding, shifted right */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  285) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  286) 	/* Temperature sensors */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  287) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  288) 	s8 temp1[3];		/* current, over, thyst */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  289) 	s16 temp_add[2][3];	/* fixed point value. Top 8 bits are the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  290) 				 * integral part, bottom 8 bits are the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  291) 				 * fractional part. We only use the top
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  292) 				 * 9 bits as the resolution is only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  293) 				 * to the 0.5 degree C...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  294) 				 * two sensors with three values
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  295) 				 * (cur, over, hyst)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  296) 				 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  297) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  298) 	/* PWMs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  299) 	u8 pwm[5];		/* pwm duty cycle */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  300) 	u8 pwm_enable[3];	/* pwm enable status for fan 1-3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  301) 				 * (fan 4-5 only support manual mode)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  302) 				 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  303) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  304) 	u8 temp_target[3];	/* pwm 1-3 target temperature */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  305) 	u8 temp_tolerance[3];	/* pwm 1-3 temperature tolerance */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  306) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  307) 	/* Misc */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  308) 	u32 alarms;		/* realtime status register encoding,combined */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  309) 	u8 beep_enable;		/* Global beep enable */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  310) 	u32 beep_mask;		/* Mask off specific beeps */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  311) 	u8 vid;			/* Register encoding, combined */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  312) 	u8 vrm;			/* hwmon-vid */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  313) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  314) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  315) static int w83791d_probe(struct i2c_client *client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  316) static int w83791d_detect(struct i2c_client *client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  317) 			  struct i2c_board_info *info);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  318) static int w83791d_remove(struct i2c_client *client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  319) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  320) static int w83791d_read(struct i2c_client *client, u8 reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  321) static int w83791d_write(struct i2c_client *client, u8 reg, u8 value);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  322) static struct w83791d_data *w83791d_update_device(struct device *dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  323) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  324) #ifdef DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  325) static void w83791d_print_debug(struct w83791d_data *data, struct device *dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  326) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  327) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  328) static void w83791d_init_client(struct i2c_client *client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  329) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  330) static const struct i2c_device_id w83791d_id[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  331) 	{ "w83791d", 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  332) 	{ }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  333) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  334) MODULE_DEVICE_TABLE(i2c, w83791d_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  335) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  336) static struct i2c_driver w83791d_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  337) 	.class		= I2C_CLASS_HWMON,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  338) 	.driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  339) 		.name = "w83791d",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  340) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  341) 	.probe_new	= w83791d_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  342) 	.remove		= w83791d_remove,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  343) 	.id_table	= w83791d_id,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  344) 	.detect		= w83791d_detect,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  345) 	.address_list	= normal_i2c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  346) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  347) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  348) /* following are the sysfs callback functions */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  349) #define show_in_reg(reg) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  350) static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  351) 			char *buf) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  352) { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  353) 	struct sensor_device_attribute *sensor_attr = \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  354) 						to_sensor_dev_attr(attr); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  355) 	struct w83791d_data *data = w83791d_update_device(dev); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  356) 	int nr = sensor_attr->index; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  357) 	return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  358) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  359) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  360) show_in_reg(in);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  361) show_in_reg(in_min);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  362) show_in_reg(in_max);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  363) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  364) #define store_in_reg(REG, reg) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  365) static ssize_t store_in_##reg(struct device *dev, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  366) 				struct device_attribute *attr, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  367) 				const char *buf, size_t count) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  368) { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  369) 	struct sensor_device_attribute *sensor_attr = \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  370) 						to_sensor_dev_attr(attr); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  371) 	struct i2c_client *client = to_i2c_client(dev); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  372) 	struct w83791d_data *data = i2c_get_clientdata(client); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  373) 	int nr = sensor_attr->index; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  374) 	unsigned long val; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  375) 	int err = kstrtoul(buf, 10, &val); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  376) 	if (err) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  377) 		return err; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  378) 	mutex_lock(&data->update_lock); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  379) 	data->in_##reg[nr] = IN_TO_REG(val); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  380) 	w83791d_write(client, W83791D_REG_IN_##REG[nr], data->in_##reg[nr]); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  381) 	mutex_unlock(&data->update_lock); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  382) 	 \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  383) 	return count; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  384) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  385) store_in_reg(MIN, min);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  386) store_in_reg(MAX, max);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  387) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  388) static struct sensor_device_attribute sda_in_input[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  389) 	SENSOR_ATTR(in0_input, S_IRUGO, show_in, NULL, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  390) 	SENSOR_ATTR(in1_input, S_IRUGO, show_in, NULL, 1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  391) 	SENSOR_ATTR(in2_input, S_IRUGO, show_in, NULL, 2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  392) 	SENSOR_ATTR(in3_input, S_IRUGO, show_in, NULL, 3),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  393) 	SENSOR_ATTR(in4_input, S_IRUGO, show_in, NULL, 4),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  394) 	SENSOR_ATTR(in5_input, S_IRUGO, show_in, NULL, 5),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  395) 	SENSOR_ATTR(in6_input, S_IRUGO, show_in, NULL, 6),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  396) 	SENSOR_ATTR(in7_input, S_IRUGO, show_in, NULL, 7),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  397) 	SENSOR_ATTR(in8_input, S_IRUGO, show_in, NULL, 8),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  398) 	SENSOR_ATTR(in9_input, S_IRUGO, show_in, NULL, 9),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  399) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  400) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  401) static struct sensor_device_attribute sda_in_min[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  402) 	SENSOR_ATTR(in0_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  403) 	SENSOR_ATTR(in1_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  404) 	SENSOR_ATTR(in2_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  405) 	SENSOR_ATTR(in3_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 3),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  406) 	SENSOR_ATTR(in4_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 4),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  407) 	SENSOR_ATTR(in5_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 5),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  408) 	SENSOR_ATTR(in6_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 6),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  409) 	SENSOR_ATTR(in7_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 7),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  410) 	SENSOR_ATTR(in8_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 8),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  411) 	SENSOR_ATTR(in9_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 9),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  412) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  413) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  414) static struct sensor_device_attribute sda_in_max[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  415) 	SENSOR_ATTR(in0_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  416) 	SENSOR_ATTR(in1_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  417) 	SENSOR_ATTR(in2_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  418) 	SENSOR_ATTR(in3_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 3),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  419) 	SENSOR_ATTR(in4_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 4),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  420) 	SENSOR_ATTR(in5_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 5),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  421) 	SENSOR_ATTR(in6_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 6),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  422) 	SENSOR_ATTR(in7_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 7),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  423) 	SENSOR_ATTR(in8_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 8),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  424) 	SENSOR_ATTR(in9_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 9),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  425) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  426) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  427) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  428) static ssize_t show_beep(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  429) 			char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  430) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  431) 	struct sensor_device_attribute *sensor_attr =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  432) 						to_sensor_dev_attr(attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  433) 	struct w83791d_data *data = w83791d_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  434) 	int bitnr = sensor_attr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  435) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  436) 	return sprintf(buf, "%d\n", (data->beep_mask >> bitnr) & 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  437) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  438) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  439) static ssize_t store_beep(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  440) 			const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  441) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  442) 	struct sensor_device_attribute *sensor_attr =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  443) 						to_sensor_dev_attr(attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  444) 	struct i2c_client *client = to_i2c_client(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  445) 	struct w83791d_data *data = i2c_get_clientdata(client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  446) 	int bitnr = sensor_attr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  447) 	int bytenr = bitnr / 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  448) 	unsigned long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  449) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  450) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  451) 	err = kstrtoul(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  452) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  453) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  454) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  455) 	val = val ? 1 : 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  456) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  457) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  458) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  459) 	data->beep_mask &= ~(0xff << (bytenr * 8));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  460) 	data->beep_mask |= w83791d_read(client, W83791D_REG_BEEP_CTRL[bytenr])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  461) 		<< (bytenr * 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  462) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  463) 	data->beep_mask &= ~(1 << bitnr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  464) 	data->beep_mask |= val << bitnr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  465) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  466) 	w83791d_write(client, W83791D_REG_BEEP_CTRL[bytenr],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  467) 		(data->beep_mask >> (bytenr * 8)) & 0xff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  468) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  469) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  470) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  471) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  472) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  473) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  474) static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  475) 			char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  476) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  477) 	struct sensor_device_attribute *sensor_attr =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  478) 						to_sensor_dev_attr(attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  479) 	struct w83791d_data *data = w83791d_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  480) 	int bitnr = sensor_attr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  481) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  482) 	return sprintf(buf, "%d\n", (data->alarms >> bitnr) & 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  483) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  484) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  485) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  486)  * Note: The bitmask for the beep enable/disable is different than
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  487)  * the bitmask for the alarm.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  488)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  489) static struct sensor_device_attribute sda_in_beep[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  490) 	SENSOR_ATTR(in0_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  491) 	SENSOR_ATTR(in1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 13),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  492) 	SENSOR_ATTR(in2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  493) 	SENSOR_ATTR(in3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 3),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  494) 	SENSOR_ATTR(in4_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 8),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  495) 	SENSOR_ATTR(in5_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 9),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  496) 	SENSOR_ATTR(in6_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 10),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  497) 	SENSOR_ATTR(in7_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 16),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  498) 	SENSOR_ATTR(in8_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 17),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  499) 	SENSOR_ATTR(in9_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 14),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  500) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  501) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  502) static struct sensor_device_attribute sda_in_alarm[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  503) 	SENSOR_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  504) 	SENSOR_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  505) 	SENSOR_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  506) 	SENSOR_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  507) 	SENSOR_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  508) 	SENSOR_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 9),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  509) 	SENSOR_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 10),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  510) 	SENSOR_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 19),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  511) 	SENSOR_ATTR(in8_alarm, S_IRUGO, show_alarm, NULL, 20),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  512) 	SENSOR_ATTR(in9_alarm, S_IRUGO, show_alarm, NULL, 14),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  513) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  514) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  515) #define show_fan_reg(reg) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  516) static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  517) 				char *buf) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  518) { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  519) 	struct sensor_device_attribute *sensor_attr = \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  520) 						to_sensor_dev_attr(attr); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  521) 	struct w83791d_data *data = w83791d_update_device(dev); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  522) 	int nr = sensor_attr->index; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  523) 	return sprintf(buf, "%d\n", \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  524) 		FAN_FROM_REG(data->reg[nr], DIV_FROM_REG(data->fan_div[nr]))); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  525) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  526) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  527) show_fan_reg(fan);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  528) show_fan_reg(fan_min);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  529) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  530) static ssize_t store_fan_min(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  531) 				const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  532) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  533) 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  534) 	struct i2c_client *client = to_i2c_client(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  535) 	struct w83791d_data *data = i2c_get_clientdata(client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  536) 	int nr = sensor_attr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  537) 	unsigned long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  538) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  539) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  540) 	err = kstrtoul(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  541) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  542) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  543) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  544) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  545) 	data->fan_min[nr] = fan_to_reg(val, DIV_FROM_REG(data->fan_div[nr]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  546) 	w83791d_write(client, W83791D_REG_FAN_MIN[nr], data->fan_min[nr]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  547) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  548) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  549) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  550) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  551) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  552) static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  553) 				char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  554) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  555) 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  556) 	int nr = sensor_attr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  557) 	struct w83791d_data *data = w83791d_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  558) 	return sprintf(buf, "%u\n", DIV_FROM_REG(data->fan_div[nr]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  559) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  560) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  561) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  562)  * Note: we save and restore the fan minimum here, because its value is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  563)  * determined in part by the fan divisor.  This follows the principle of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  564)  * least surprise; the user doesn't expect the fan minimum to change just
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  565)  * because the divisor changed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  566)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  567) static ssize_t store_fan_div(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  568) 				const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  569) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  570) 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  571) 	struct i2c_client *client = to_i2c_client(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  572) 	struct w83791d_data *data = i2c_get_clientdata(client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  573) 	int nr = sensor_attr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  574) 	unsigned long min;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  575) 	u8 tmp_fan_div;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  576) 	u8 fan_div_reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  577) 	u8 vbat_reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  578) 	int indx = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  579) 	u8 keep_mask = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  580) 	u8 new_shift = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  581) 	unsigned long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  582) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  583) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  584) 	err = kstrtoul(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  585) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  586) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  587) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  588) 	/* Save fan_min */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  589) 	min = FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  590) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  591) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  592) 	data->fan_div[nr] = div_to_reg(nr, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  593) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  594) 	switch (nr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  595) 	case 0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  596) 		indx = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  597) 		keep_mask = 0xcf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  598) 		new_shift = 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  599) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  600) 	case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  601) 		indx = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  602) 		keep_mask = 0x3f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  603) 		new_shift = 6;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  604) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  605) 	case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  606) 		indx = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  607) 		keep_mask = 0x3f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  608) 		new_shift = 6;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  609) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  610) 	case 3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  611) 		indx = 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  612) 		keep_mask = 0xf8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  613) 		new_shift = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  614) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  615) 	case 4:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  616) 		indx = 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  617) 		keep_mask = 0x8f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  618) 		new_shift = 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  619) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  620) #ifdef DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  621) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  622) 		dev_warn(dev, "store_fan_div: Unexpected nr seen: %d\n", nr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  623) 		count = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  624) 		goto err_exit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  625) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  626) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  627) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  628) 	fan_div_reg = w83791d_read(client, W83791D_REG_FAN_DIV[indx])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  629) 			& keep_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  630) 	tmp_fan_div = (data->fan_div[nr] << new_shift) & ~keep_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  631) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  632) 	w83791d_write(client, W83791D_REG_FAN_DIV[indx],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  633) 				fan_div_reg | tmp_fan_div);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  634) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  635) 	/* Bit 2 of fans 0-2 is stored in the vbat register (bits 5-7) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  636) 	if (nr < 3) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  637) 		keep_mask = ~(1 << (nr + 5));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  638) 		vbat_reg = w83791d_read(client, W83791D_REG_VBAT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  639) 				& keep_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  640) 		tmp_fan_div = (data->fan_div[nr] << (3 + nr)) & ~keep_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  641) 		w83791d_write(client, W83791D_REG_VBAT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  642) 				vbat_reg | tmp_fan_div);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  643) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  644) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  645) 	/* Restore fan_min */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  646) 	data->fan_min[nr] = fan_to_reg(min, DIV_FROM_REG(data->fan_div[nr]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  647) 	w83791d_write(client, W83791D_REG_FAN_MIN[nr], data->fan_min[nr]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  648) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  649) #ifdef DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  650) err_exit:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  651) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  652) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  653) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  654) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  655) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  656) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  657) static struct sensor_device_attribute sda_fan_input[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  658) 	SENSOR_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  659) 	SENSOR_ATTR(fan2_input, S_IRUGO, show_fan, NULL, 1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  660) 	SENSOR_ATTR(fan3_input, S_IRUGO, show_fan, NULL, 2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  661) 	SENSOR_ATTR(fan4_input, S_IRUGO, show_fan, NULL, 3),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  662) 	SENSOR_ATTR(fan5_input, S_IRUGO, show_fan, NULL, 4),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  663) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  664) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  665) static struct sensor_device_attribute sda_fan_min[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  666) 	SENSOR_ATTR(fan1_min, S_IWUSR | S_IRUGO,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  667) 			show_fan_min, store_fan_min, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  668) 	SENSOR_ATTR(fan2_min, S_IWUSR | S_IRUGO,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  669) 			show_fan_min, store_fan_min, 1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  670) 	SENSOR_ATTR(fan3_min, S_IWUSR | S_IRUGO,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  671) 			show_fan_min, store_fan_min, 2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  672) 	SENSOR_ATTR(fan4_min, S_IWUSR | S_IRUGO,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  673) 			show_fan_min, store_fan_min, 3),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  674) 	SENSOR_ATTR(fan5_min, S_IWUSR | S_IRUGO,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  675) 			show_fan_min, store_fan_min, 4),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  676) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  677) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  678) static struct sensor_device_attribute sda_fan_div[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  679) 	SENSOR_ATTR(fan1_div, S_IWUSR | S_IRUGO,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  680) 			show_fan_div, store_fan_div, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  681) 	SENSOR_ATTR(fan2_div, S_IWUSR | S_IRUGO,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  682) 			show_fan_div, store_fan_div, 1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  683) 	SENSOR_ATTR(fan3_div, S_IWUSR | S_IRUGO,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  684) 			show_fan_div, store_fan_div, 2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  685) 	SENSOR_ATTR(fan4_div, S_IWUSR | S_IRUGO,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  686) 			show_fan_div, store_fan_div, 3),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  687) 	SENSOR_ATTR(fan5_div, S_IWUSR | S_IRUGO,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  688) 			show_fan_div, store_fan_div, 4),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  689) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  690) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  691) static struct sensor_device_attribute sda_fan_beep[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  692) 	SENSOR_ATTR(fan1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 6),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  693) 	SENSOR_ATTR(fan2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 7),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  694) 	SENSOR_ATTR(fan3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 11),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  695) 	SENSOR_ATTR(fan4_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 21),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  696) 	SENSOR_ATTR(fan5_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 22),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  697) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  698) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  699) static struct sensor_device_attribute sda_fan_alarm[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  700) 	SENSOR_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  701) 	SENSOR_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  702) 	SENSOR_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  703) 	SENSOR_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 21),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  704) 	SENSOR_ATTR(fan5_alarm, S_IRUGO, show_alarm, NULL, 22),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  705) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  706) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  707) /* read/write PWMs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  708) static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  709) 				char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  710) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  711) 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  712) 	int nr = sensor_attr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  713) 	struct w83791d_data *data = w83791d_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  714) 	return sprintf(buf, "%u\n", data->pwm[nr]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  715) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  716) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  717) static ssize_t store_pwm(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  718) 		const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  719) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  720) 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  721) 	struct i2c_client *client = to_i2c_client(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  722) 	struct w83791d_data *data = i2c_get_clientdata(client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  723) 	int nr = sensor_attr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  724) 	unsigned long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  725) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  726) 	if (kstrtoul(buf, 10, &val))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  727) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  728) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  729) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  730) 	data->pwm[nr] = clamp_val(val, 0, 255);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  731) 	w83791d_write(client, W83791D_REG_PWM[nr], data->pwm[nr]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  732) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  733) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  734) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  735) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  736) static struct sensor_device_attribute sda_pwm[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  737) 	SENSOR_ATTR(pwm1, S_IWUSR | S_IRUGO,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  738) 			show_pwm, store_pwm, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  739) 	SENSOR_ATTR(pwm2, S_IWUSR | S_IRUGO,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  740) 			show_pwm, store_pwm, 1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  741) 	SENSOR_ATTR(pwm3, S_IWUSR | S_IRUGO,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  742) 			show_pwm, store_pwm, 2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  743) 	SENSOR_ATTR(pwm4, S_IWUSR | S_IRUGO,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  744) 			show_pwm, store_pwm, 3),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  745) 	SENSOR_ATTR(pwm5, S_IWUSR | S_IRUGO,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  746) 			show_pwm, store_pwm, 4),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  747) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  748) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  749) static ssize_t show_pwmenable(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  750) 				char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  751) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  752) 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  753) 	int nr = sensor_attr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  754) 	struct w83791d_data *data = w83791d_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  755) 	return sprintf(buf, "%u\n", data->pwm_enable[nr] + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  756) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  757) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  758) static ssize_t store_pwmenable(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  759) 		struct device_attribute *attr, const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  760) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  761) 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  762) 	struct i2c_client *client = to_i2c_client(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  763) 	struct w83791d_data *data = i2c_get_clientdata(client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  764) 	int nr = sensor_attr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  765) 	unsigned long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  766) 	u8 reg_cfg_tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  767) 	u8 reg_idx = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  768) 	u8 val_shift = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  769) 	u8 keep_mask = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  770) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  771) 	int ret = kstrtoul(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  772) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  773) 	if (ret || val < 1 || val > 3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  774) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  775) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  776) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  777) 	data->pwm_enable[nr] = val - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  778) 	switch (nr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  779) 	case 0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  780) 		reg_idx = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  781) 		val_shift = 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  782) 		keep_mask = 0xf3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  783) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  784) 	case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  785) 		reg_idx = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  786) 		val_shift = 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  787) 		keep_mask = 0xcf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  788) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  789) 	case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  790) 		reg_idx = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  791) 		val_shift = 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  792) 		keep_mask = 0xf3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  793) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  794) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  795) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  796) 	reg_cfg_tmp = w83791d_read(client, W83791D_REG_FAN_CFG[reg_idx]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  797) 	reg_cfg_tmp = (reg_cfg_tmp & keep_mask) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  798) 					data->pwm_enable[nr] << val_shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  799) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  800) 	w83791d_write(client, W83791D_REG_FAN_CFG[reg_idx], reg_cfg_tmp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  801) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  802) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  803) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  804) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  805) static struct sensor_device_attribute sda_pwmenable[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  806) 	SENSOR_ATTR(pwm1_enable, S_IWUSR | S_IRUGO,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  807) 			show_pwmenable, store_pwmenable, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  808) 	SENSOR_ATTR(pwm2_enable, S_IWUSR | S_IRUGO,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  809) 			show_pwmenable, store_pwmenable, 1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  810) 	SENSOR_ATTR(pwm3_enable, S_IWUSR | S_IRUGO,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  811) 			show_pwmenable, store_pwmenable, 2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  812) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  813) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  814) /* For Smart Fan I / Thermal Cruise */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  815) static ssize_t show_temp_target(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  816) 			struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  817) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  818) 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  819) 	struct w83791d_data *data = w83791d_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  820) 	int nr = sensor_attr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  821) 	return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp_target[nr]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  822) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  823) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  824) static ssize_t store_temp_target(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  825) 		struct device_attribute *attr, const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  826) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  827) 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  828) 	struct i2c_client *client = to_i2c_client(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  829) 	struct w83791d_data *data = i2c_get_clientdata(client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  830) 	int nr = sensor_attr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  831) 	long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  832) 	u8 target_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  833) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  834) 	if (kstrtol(buf, 10, &val))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  835) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  836) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  837) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  838) 	data->temp_target[nr] = TARGET_TEMP_TO_REG(val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  839) 	target_mask = w83791d_read(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  840) 				W83791D_REG_TEMP_TARGET[nr]) & 0x80;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  841) 	w83791d_write(client, W83791D_REG_TEMP_TARGET[nr],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  842) 				data->temp_target[nr] | target_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  843) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  844) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  845) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  846) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  847) static struct sensor_device_attribute sda_temp_target[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  848) 	SENSOR_ATTR(temp1_target, S_IWUSR | S_IRUGO,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  849) 			show_temp_target, store_temp_target, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  850) 	SENSOR_ATTR(temp2_target, S_IWUSR | S_IRUGO,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  851) 			show_temp_target, store_temp_target, 1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  852) 	SENSOR_ATTR(temp3_target, S_IWUSR | S_IRUGO,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  853) 			show_temp_target, store_temp_target, 2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  854) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  855) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  856) static ssize_t show_temp_tolerance(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  857) 			struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  858) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  859) 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  860) 	struct w83791d_data *data = w83791d_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  861) 	int nr = sensor_attr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  862) 	return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp_tolerance[nr]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  863) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  864) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  865) static ssize_t store_temp_tolerance(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  866) 		struct device_attribute *attr, const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  867) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  868) 	struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  869) 	struct i2c_client *client = to_i2c_client(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  870) 	struct w83791d_data *data = i2c_get_clientdata(client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  871) 	int nr = sensor_attr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  872) 	unsigned long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  873) 	u8 target_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  874) 	u8 reg_idx = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  875) 	u8 val_shift = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  876) 	u8 keep_mask = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  877) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  878) 	if (kstrtoul(buf, 10, &val))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  879) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  880) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  881) 	switch (nr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  882) 	case 0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  883) 		reg_idx = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  884) 		val_shift = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  885) 		keep_mask = 0xf0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  886) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  887) 	case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  888) 		reg_idx = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  889) 		val_shift = 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  890) 		keep_mask = 0x0f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  891) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  892) 	case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  893) 		reg_idx = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  894) 		val_shift = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  895) 		keep_mask = 0xf0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  896) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  897) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  898) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  899) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  900) 	data->temp_tolerance[nr] = TOL_TEMP_TO_REG(val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  901) 	target_mask = w83791d_read(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  902) 			W83791D_REG_TEMP_TOL[reg_idx]) & keep_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  903) 	w83791d_write(client, W83791D_REG_TEMP_TOL[reg_idx],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  904) 			(data->temp_tolerance[nr] << val_shift) | target_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  905) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  906) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  907) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  908) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  909) static struct sensor_device_attribute sda_temp_tolerance[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  910) 	SENSOR_ATTR(temp1_tolerance, S_IWUSR | S_IRUGO,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  911) 			show_temp_tolerance, store_temp_tolerance, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  912) 	SENSOR_ATTR(temp2_tolerance, S_IWUSR | S_IRUGO,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  913) 			show_temp_tolerance, store_temp_tolerance, 1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  914) 	SENSOR_ATTR(temp3_tolerance, S_IWUSR | S_IRUGO,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  915) 			show_temp_tolerance, store_temp_tolerance, 2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  916) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  917) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  918) /* read/write the temperature1, includes measured value and limits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  919) static ssize_t show_temp1(struct device *dev, struct device_attribute *devattr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  920) 				char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  921) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  922) 	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  923) 	struct w83791d_data *data = w83791d_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  924) 	return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp1[attr->index]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  925) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  926) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  927) static ssize_t store_temp1(struct device *dev, struct device_attribute *devattr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  928) 				const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  929) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  930) 	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  931) 	struct i2c_client *client = to_i2c_client(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  932) 	struct w83791d_data *data = i2c_get_clientdata(client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  933) 	int nr = attr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  934) 	long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  935) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  936) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  937) 	err = kstrtol(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  938) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  939) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  940) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  941) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  942) 	data->temp1[nr] = TEMP1_TO_REG(val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  943) 	w83791d_write(client, W83791D_REG_TEMP1[nr], data->temp1[nr]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  944) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  945) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  946) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  947) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  948) /* read/write temperature2-3, includes measured value and limits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  949) static ssize_t show_temp23(struct device *dev, struct device_attribute *devattr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  950) 				char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  951) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  952) 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  953) 	struct w83791d_data *data = w83791d_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  954) 	int nr = attr->nr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  955) 	int index = attr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  956) 	return sprintf(buf, "%d\n", TEMP23_FROM_REG(data->temp_add[nr][index]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  957) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  958) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  959) static ssize_t store_temp23(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  960) 				struct device_attribute *devattr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  961) 				const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  962) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  963) 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  964) 	struct i2c_client *client = to_i2c_client(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  965) 	struct w83791d_data *data = i2c_get_clientdata(client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  966) 	long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  967) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  968) 	int nr = attr->nr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  969) 	int index = attr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  970) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  971) 	err = kstrtol(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  972) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  973) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  974) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  975) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  976) 	data->temp_add[nr][index] = TEMP23_TO_REG(val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  977) 	w83791d_write(client, W83791D_REG_TEMP_ADD[nr][index * 2],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  978) 				data->temp_add[nr][index] >> 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  979) 	w83791d_write(client, W83791D_REG_TEMP_ADD[nr][index * 2 + 1],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  980) 				data->temp_add[nr][index] & 0x80);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  981) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  982) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  983) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  984) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  985) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  986) static struct sensor_device_attribute_2 sda_temp_input[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  987) 	SENSOR_ATTR_2(temp1_input, S_IRUGO, show_temp1, NULL, 0, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  988) 	SENSOR_ATTR_2(temp2_input, S_IRUGO, show_temp23, NULL, 0, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  989) 	SENSOR_ATTR_2(temp3_input, S_IRUGO, show_temp23, NULL, 1, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  990) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  991) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  992) static struct sensor_device_attribute_2 sda_temp_max[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  993) 	SENSOR_ATTR_2(temp1_max, S_IRUGO | S_IWUSR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  994) 			show_temp1, store_temp1, 0, 1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  995) 	SENSOR_ATTR_2(temp2_max, S_IRUGO | S_IWUSR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  996) 			show_temp23, store_temp23, 0, 1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  997) 	SENSOR_ATTR_2(temp3_max, S_IRUGO | S_IWUSR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  998) 			show_temp23, store_temp23, 1, 1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  999) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) static struct sensor_device_attribute_2 sda_temp_max_hyst[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) 	SENSOR_ATTR_2(temp1_max_hyst, S_IRUGO | S_IWUSR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) 			show_temp1, store_temp1, 0, 2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) 	SENSOR_ATTR_2(temp2_max_hyst, S_IRUGO | S_IWUSR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005) 			show_temp23, store_temp23, 0, 2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) 	SENSOR_ATTR_2(temp3_max_hyst, S_IRUGO | S_IWUSR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) 			show_temp23, store_temp23, 1, 2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011)  * Note: The bitmask for the beep enable/disable is different than
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012)  * the bitmask for the alarm.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014) static struct sensor_device_attribute sda_temp_beep[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) 	SENSOR_ATTR(temp1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 4),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016) 	SENSOR_ATTR(temp2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 5),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017) 	SENSOR_ATTR(temp3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020) static struct sensor_device_attribute sda_temp_alarm[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021) 	SENSOR_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022) 	SENSOR_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) 	SENSOR_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) /* get realtime status of all sensors items: voltage, temp, fan */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027) static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) 			   char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030) 	struct w83791d_data *data = w83791d_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031) 	return sprintf(buf, "%u\n", data->alarms);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) static DEVICE_ATTR_RO(alarms);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036) /* Beep control */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038) #define GLOBAL_BEEP_ENABLE_SHIFT	15
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039) #define GLOBAL_BEEP_ENABLE_MASK		(1 << GLOBAL_BEEP_ENABLE_SHIFT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041) static ssize_t show_beep_enable(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042) 				struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044) 	struct w83791d_data *data = w83791d_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045) 	return sprintf(buf, "%d\n", data->beep_enable);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048) static ssize_t show_beep_mask(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049) 				struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051) 	struct w83791d_data *data = w83791d_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052) 	return sprintf(buf, "%d\n", BEEP_MASK_FROM_REG(data->beep_mask));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056) static ssize_t store_beep_mask(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057) 				struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058) 				const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060) 	struct i2c_client *client = to_i2c_client(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) 	struct w83791d_data *data = i2c_get_clientdata(client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) 	long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) 	err = kstrtol(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) 	 * The beep_enable state overrides any enabling request from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) 	 * the masks
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) 	data->beep_mask = BEEP_MASK_TO_REG(val) & ~GLOBAL_BEEP_ENABLE_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) 	data->beep_mask |= (data->beep_enable << GLOBAL_BEEP_ENABLE_SHIFT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) 	val = data->beep_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) 	for (i = 0; i < 3; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) 		w83791d_write(client, W83791D_REG_BEEP_CTRL[i], (val & 0xff));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) 		val >>= 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) static ssize_t store_beep_enable(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) 				struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) 				const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) 	struct i2c_client *client = to_i2c_client(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096) 	struct w83791d_data *data = i2c_get_clientdata(client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097) 	long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100) 	err = kstrtol(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106) 	data->beep_enable = val ? 1 : 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108) 	/* Keep the full mask value in sync with the current enable */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109) 	data->beep_mask &= ~GLOBAL_BEEP_ENABLE_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110) 	data->beep_mask |= (data->beep_enable << GLOBAL_BEEP_ENABLE_SHIFT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) 	 * The global control is in the second beep control register
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114) 	 * so only need to update that register
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116) 	val = (data->beep_mask >> 8) & 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118) 	w83791d_write(client, W83791D_REG_BEEP_CTRL[1], val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125) static struct sensor_device_attribute sda_beep_ctrl[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126) 	SENSOR_ATTR(beep_enable, S_IRUGO | S_IWUSR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127) 			show_beep_enable, store_beep_enable, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128) 	SENSOR_ATTR(beep_mask, S_IRUGO | S_IWUSR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129) 			show_beep_mask, store_beep_mask, 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132) /* cpu voltage regulation information */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133) static ssize_t cpu0_vid_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134) 			     struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136) 	struct w83791d_data *data = w83791d_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137) 	return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140) static DEVICE_ATTR_RO(cpu0_vid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142) static ssize_t vrm_show(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143) 			char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145) 	struct w83791d_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146) 	return sprintf(buf, "%d\n", data->vrm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149) static ssize_t vrm_store(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150) 			 const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152) 	struct w83791d_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153) 	unsigned long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157) 	 * No lock needed as vrm is internal to the driver
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158) 	 * (not read from a chip register) and so is not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159) 	 * updated in w83791d_update_device()
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1162) 	err = kstrtoul(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1163) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1164) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1165) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1166) 	if (val > 255)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1167) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1168) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1169) 	data->vrm = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1170) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1171) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1172) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1173) static DEVICE_ATTR_RW(vrm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1174) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1175) #define IN_UNIT_ATTRS(X) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1176) 	&sda_in_input[X].dev_attr.attr,	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1177) 	&sda_in_min[X].dev_attr.attr,	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1178) 	&sda_in_max[X].dev_attr.attr,	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1179) 	&sda_in_beep[X].dev_attr.attr,	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1180) 	&sda_in_alarm[X].dev_attr.attr
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1181) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1182) #define FAN_UNIT_ATTRS(X) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1183) 	&sda_fan_input[X].dev_attr.attr,	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1184) 	&sda_fan_min[X].dev_attr.attr,		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1185) 	&sda_fan_div[X].dev_attr.attr,		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1186) 	&sda_fan_beep[X].dev_attr.attr,		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1187) 	&sda_fan_alarm[X].dev_attr.attr
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1188) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1189) #define TEMP_UNIT_ATTRS(X) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1190) 	&sda_temp_input[X].dev_attr.attr,	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1191) 	&sda_temp_max[X].dev_attr.attr,		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1192) 	&sda_temp_max_hyst[X].dev_attr.attr,	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1193) 	&sda_temp_beep[X].dev_attr.attr,	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1194) 	&sda_temp_alarm[X].dev_attr.attr
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1195) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1196) static struct attribute *w83791d_attributes[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1197) 	IN_UNIT_ATTRS(0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1198) 	IN_UNIT_ATTRS(1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1199) 	IN_UNIT_ATTRS(2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1200) 	IN_UNIT_ATTRS(3),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1201) 	IN_UNIT_ATTRS(4),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1202) 	IN_UNIT_ATTRS(5),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1203) 	IN_UNIT_ATTRS(6),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1204) 	IN_UNIT_ATTRS(7),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1205) 	IN_UNIT_ATTRS(8),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1206) 	IN_UNIT_ATTRS(9),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1207) 	FAN_UNIT_ATTRS(0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1208) 	FAN_UNIT_ATTRS(1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1209) 	FAN_UNIT_ATTRS(2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1210) 	TEMP_UNIT_ATTRS(0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1211) 	TEMP_UNIT_ATTRS(1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1212) 	TEMP_UNIT_ATTRS(2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1213) 	&dev_attr_alarms.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1214) 	&sda_beep_ctrl[0].dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1215) 	&sda_beep_ctrl[1].dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1216) 	&dev_attr_cpu0_vid.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1217) 	&dev_attr_vrm.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1218) 	&sda_pwm[0].dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1219) 	&sda_pwm[1].dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1220) 	&sda_pwm[2].dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1221) 	&sda_pwmenable[0].dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1222) 	&sda_pwmenable[1].dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1223) 	&sda_pwmenable[2].dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1224) 	&sda_temp_target[0].dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1225) 	&sda_temp_target[1].dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1226) 	&sda_temp_target[2].dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1227) 	&sda_temp_tolerance[0].dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1228) 	&sda_temp_tolerance[1].dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1229) 	&sda_temp_tolerance[2].dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1230) 	NULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1231) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1232) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1233) static const struct attribute_group w83791d_group = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1234) 	.attrs = w83791d_attributes,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1235) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1236) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1237) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1238)  * Separate group of attributes for fan/pwm 4-5. Their pins can also be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1239)  * in use for GPIO in which case their sysfs-interface should not be made
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1240)  * available
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1241)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1242) static struct attribute *w83791d_attributes_fanpwm45[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1243) 	FAN_UNIT_ATTRS(3),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1244) 	FAN_UNIT_ATTRS(4),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1245) 	&sda_pwm[3].dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1246) 	&sda_pwm[4].dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1247) 	NULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1248) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1249) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1250) static const struct attribute_group w83791d_group_fanpwm45 = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1251) 	.attrs = w83791d_attributes_fanpwm45,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1252) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1253) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1254) static int w83791d_detect_subclients(struct i2c_client *client)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1255) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1256) 	struct i2c_adapter *adapter = client->adapter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1257) 	int address = client->addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1258) 	int i, id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1259) 	u8 val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1260) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1261) 	id = i2c_adapter_id(adapter);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1262) 	if (force_subclients[0] == id && force_subclients[1] == address) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1263) 		for (i = 2; i <= 3; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1264) 			if (force_subclients[i] < 0x48 ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1265) 			    force_subclients[i] > 0x4f) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1266) 				dev_err(&client->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1267) 					"invalid subclient "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1268) 					"address %d; must be 0x48-0x4f\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1269) 					force_subclients[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1270) 				return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1271) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1272) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1273) 		w83791d_write(client, W83791D_REG_I2C_SUBADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1274) 					(force_subclients[2] & 0x07) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1275) 					((force_subclients[3] & 0x07) << 4));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1276) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1277) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1278) 	val = w83791d_read(client, W83791D_REG_I2C_SUBADDR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1279) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1280) 	if (!(val & 0x88) && (val & 0x7) == ((val >> 4) & 0x7)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1281) 		dev_err(&client->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1282) 			"duplicate addresses 0x%x, use force_subclient\n", 0x48 + (val & 0x7));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1283) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1284) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1285) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1286) 	if (!(val & 0x08))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1287) 		devm_i2c_new_dummy_device(&client->dev, adapter, 0x48 + (val & 0x7));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1288) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1289) 	if (!(val & 0x80))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1290) 		devm_i2c_new_dummy_device(&client->dev, adapter, 0x48 + ((val >> 4) & 0x7));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1291) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1292) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1293) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1294) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1295) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1296) /* Return 0 if detection is successful, -ENODEV otherwise */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1297) static int w83791d_detect(struct i2c_client *client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1298) 			  struct i2c_board_info *info)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1299) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1300) 	struct i2c_adapter *adapter = client->adapter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1301) 	int val1, val2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1302) 	unsigned short address = client->addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1303) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1304) 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1305) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1306) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1307) 	if (w83791d_read(client, W83791D_REG_CONFIG) & 0x80)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1308) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1309) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1310) 	val1 = w83791d_read(client, W83791D_REG_BANK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1311) 	val2 = w83791d_read(client, W83791D_REG_CHIPMAN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1312) 	/* Check for Winbond ID if in bank 0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1313) 	if (!(val1 & 0x07)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1314) 		if ((!(val1 & 0x80) && val2 != 0xa3) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1315) 		    ((val1 & 0x80) && val2 != 0x5c)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1316) 			return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1317) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1318) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1319) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1320) 	 * If Winbond chip, address of chip and W83791D_REG_I2C_ADDR
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1321) 	 * should match
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1322) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1323) 	if (w83791d_read(client, W83791D_REG_I2C_ADDR) != address)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1324) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1325) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1326) 	/* We want bank 0 and Vendor ID high byte */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1327) 	val1 = w83791d_read(client, W83791D_REG_BANK) & 0x78;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1328) 	w83791d_write(client, W83791D_REG_BANK, val1 | 0x80);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1329) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1330) 	/* Verify it is a Winbond w83791d */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1331) 	val1 = w83791d_read(client, W83791D_REG_WCHIPID);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1332) 	val2 = w83791d_read(client, W83791D_REG_CHIPMAN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1333) 	if (val1 != 0x71 || val2 != 0x5c)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1334) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1335) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1336) 	strlcpy(info->type, "w83791d", I2C_NAME_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1337) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1338) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1339) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1340) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1341) static int w83791d_probe(struct i2c_client *client)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1342) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1343) 	struct w83791d_data *data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1344) 	struct device *dev = &client->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1345) 	int i, err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1346) 	u8 has_fanpwm45;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1347) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1348) #ifdef DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1349) 	int val1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1350) 	val1 = w83791d_read(client, W83791D_REG_DID_VID4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1351) 	dev_dbg(dev, "Device ID version: %d.%d (0x%02x)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1352) 			(val1 >> 5) & 0x07, (val1 >> 1) & 0x0f, val1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1353) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1354) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1355) 	data = devm_kzalloc(&client->dev, sizeof(struct w83791d_data),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1356) 			    GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1357) 	if (!data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1358) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1359) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1360) 	i2c_set_clientdata(client, data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1361) 	mutex_init(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1362) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1363) 	err = w83791d_detect_subclients(client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1364) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1365) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1366) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1367) 	/* Initialize the chip */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1368) 	w83791d_init_client(client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1369) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1370) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1371) 	 * If the fan_div is changed, make sure there is a rational
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1372) 	 * fan_min in place
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1373) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1374) 	for (i = 0; i < NUMBER_OF_FANIN; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1375) 		data->fan_min[i] = w83791d_read(client, W83791D_REG_FAN_MIN[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1376) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1377) 	/* Register sysfs hooks */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1378) 	err = sysfs_create_group(&client->dev.kobj, &w83791d_group);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1379) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1380) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1381) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1382) 	/* Check if pins of fan/pwm 4-5 are in use as GPIO */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1383) 	has_fanpwm45 = w83791d_read(client, W83791D_REG_GPIO) & 0x10;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1384) 	if (has_fanpwm45) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1385) 		err = sysfs_create_group(&client->dev.kobj,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1386) 					 &w83791d_group_fanpwm45);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1387) 		if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1388) 			goto error4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1389) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1390) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1391) 	/* Everything is ready, now register the working device */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1392) 	data->hwmon_dev = hwmon_device_register(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1393) 	if (IS_ERR(data->hwmon_dev)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1394) 		err = PTR_ERR(data->hwmon_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1395) 		goto error5;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1396) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1397) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1398) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1399) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1400) error5:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1401) 	if (has_fanpwm45)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1402) 		sysfs_remove_group(&client->dev.kobj, &w83791d_group_fanpwm45);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1403) error4:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1404) 	sysfs_remove_group(&client->dev.kobj, &w83791d_group);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1405) 	return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1406) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1407) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1408) static int w83791d_remove(struct i2c_client *client)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1409) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1410) 	struct w83791d_data *data = i2c_get_clientdata(client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1411) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1412) 	hwmon_device_unregister(data->hwmon_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1413) 	sysfs_remove_group(&client->dev.kobj, &w83791d_group);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1414) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1415) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1416) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1417) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1418) static void w83791d_init_client(struct i2c_client *client)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1419) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1420) 	struct w83791d_data *data = i2c_get_clientdata(client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1421) 	u8 tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1422) 	u8 old_beep;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1423) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1424) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1425) 	 * The difference between reset and init is that reset
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1426) 	 * does a hard reset of the chip via index 0x40, bit 7,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1427) 	 * but init simply forces certain registers to have "sane"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1428) 	 * values. The hope is that the BIOS has done the right
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1429) 	 * thing (which is why the default is reset=0, init=0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1430) 	 * but if not, reset is the hard hammer and init
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1431) 	 * is the soft mallet both of which are trying to whack
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1432) 	 * things into place...
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1433) 	 * NOTE: The data sheet makes a distinction between
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1434) 	 * "power on defaults" and "reset by MR". As far as I can tell,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1435) 	 * the hard reset puts everything into a power-on state so I'm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1436) 	 * not sure what "reset by MR" means or how it can happen.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1437) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1438) 	if (reset || init) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1439) 		/* keep some BIOS settings when we... */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1440) 		old_beep = w83791d_read(client, W83791D_REG_BEEP_CONFIG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1441) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1442) 		if (reset) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1443) 			/* ... reset the chip and ... */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1444) 			w83791d_write(client, W83791D_REG_CONFIG, 0x80);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1445) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1446) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1447) 		/* ... disable power-on abnormal beep */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1448) 		w83791d_write(client, W83791D_REG_BEEP_CONFIG, old_beep | 0x80);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1449) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1450) 		/* disable the global beep (not done by hard reset) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1451) 		tmp = w83791d_read(client, W83791D_REG_BEEP_CTRL[1]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1452) 		w83791d_write(client, W83791D_REG_BEEP_CTRL[1], tmp & 0xef);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1453) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1454) 		if (init) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1455) 			/* Make sure monitoring is turned on for add-ons */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1456) 			tmp = w83791d_read(client, W83791D_REG_TEMP2_CONFIG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1457) 			if (tmp & 1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1458) 				w83791d_write(client, W83791D_REG_TEMP2_CONFIG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1459) 					tmp & 0xfe);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1460) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1461) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1462) 			tmp = w83791d_read(client, W83791D_REG_TEMP3_CONFIG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1463) 			if (tmp & 1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1464) 				w83791d_write(client, W83791D_REG_TEMP3_CONFIG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1465) 					tmp & 0xfe);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1466) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1467) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1468) 			/* Start monitoring */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1469) 			tmp = w83791d_read(client, W83791D_REG_CONFIG) & 0xf7;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1470) 			w83791d_write(client, W83791D_REG_CONFIG, tmp | 0x01);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1471) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1472) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1473) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1474) 	data->vrm = vid_which_vrm();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1475) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1476) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1477) static struct w83791d_data *w83791d_update_device(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1478) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1479) 	struct i2c_client *client = to_i2c_client(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1480) 	struct w83791d_data *data = i2c_get_clientdata(client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1481) 	int i, j;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1482) 	u8 reg_array_tmp[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1483) 	u8 vbat_reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1484) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1485) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1486) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1487) 	if (time_after(jiffies, data->last_updated + (HZ * 3))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1488) 			|| !data->valid) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1489) 		dev_dbg(dev, "Starting w83791d device update\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1490) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1491) 		/* Update the voltages measured value and limits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1492) 		for (i = 0; i < NUMBER_OF_VIN; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1493) 			data->in[i] = w83791d_read(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1494) 						W83791D_REG_IN[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1495) 			data->in_max[i] = w83791d_read(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1496) 						W83791D_REG_IN_MAX[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1497) 			data->in_min[i] = w83791d_read(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1498) 						W83791D_REG_IN_MIN[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1499) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1500) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1501) 		/* Update the fan counts and limits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1502) 		for (i = 0; i < NUMBER_OF_FANIN; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1503) 			/* Update the Fan measured value and limits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1504) 			data->fan[i] = w83791d_read(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1505) 						W83791D_REG_FAN[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1506) 			data->fan_min[i] = w83791d_read(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1507) 						W83791D_REG_FAN_MIN[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1508) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1509) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1510) 		/* Update the fan divisor */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1511) 		for (i = 0; i < 3; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1512) 			reg_array_tmp[i] = w83791d_read(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1513) 						W83791D_REG_FAN_DIV[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1514) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1515) 		data->fan_div[0] = (reg_array_tmp[0] >> 4) & 0x03;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1516) 		data->fan_div[1] = (reg_array_tmp[0] >> 6) & 0x03;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1517) 		data->fan_div[2] = (reg_array_tmp[1] >> 6) & 0x03;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1518) 		data->fan_div[3] = reg_array_tmp[2] & 0x07;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1519) 		data->fan_div[4] = (reg_array_tmp[2] >> 4) & 0x07;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1520) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1521) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1522) 		 * The fan divisor for fans 0-2 get bit 2 from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1523) 		 * bits 5-7 respectively of vbat register
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1524) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1525) 		vbat_reg = w83791d_read(client, W83791D_REG_VBAT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1526) 		for (i = 0; i < 3; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1527) 			data->fan_div[i] |= (vbat_reg >> (3 + i)) & 0x04;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1528) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1529) 		/* Update PWM duty cycle */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1530) 		for (i = 0; i < NUMBER_OF_PWM; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1531) 			data->pwm[i] =  w83791d_read(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1532) 						W83791D_REG_PWM[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1533) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1534) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1535) 		/* Update PWM enable status */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1536) 		for (i = 0; i < 2; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1537) 			reg_array_tmp[i] = w83791d_read(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1538) 						W83791D_REG_FAN_CFG[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1539) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1540) 		data->pwm_enable[0] = (reg_array_tmp[0] >> 2) & 0x03;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1541) 		data->pwm_enable[1] = (reg_array_tmp[0] >> 4) & 0x03;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1542) 		data->pwm_enable[2] = (reg_array_tmp[1] >> 2) & 0x03;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1543) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1544) 		/* Update PWM target temperature */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1545) 		for (i = 0; i < 3; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1546) 			data->temp_target[i] = w83791d_read(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1547) 				W83791D_REG_TEMP_TARGET[i]) & 0x7f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1548) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1549) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1550) 		/* Update PWM temperature tolerance */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1551) 		for (i = 0; i < 2; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1552) 			reg_array_tmp[i] = w83791d_read(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1553) 					W83791D_REG_TEMP_TOL[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1554) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1555) 		data->temp_tolerance[0] = reg_array_tmp[0] & 0x0f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1556) 		data->temp_tolerance[1] = (reg_array_tmp[0] >> 4) & 0x0f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1557) 		data->temp_tolerance[2] = reg_array_tmp[1] & 0x0f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1558) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1559) 		/* Update the first temperature sensor */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1560) 		for (i = 0; i < 3; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1561) 			data->temp1[i] = w83791d_read(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1562) 						W83791D_REG_TEMP1[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1563) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1564) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1565) 		/* Update the rest of the temperature sensors */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1566) 		for (i = 0; i < 2; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1567) 			for (j = 0; j < 3; j++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1568) 				data->temp_add[i][j] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1569) 					(w83791d_read(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1570) 					W83791D_REG_TEMP_ADD[i][j * 2]) << 8) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1571) 					w83791d_read(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1572) 					W83791D_REG_TEMP_ADD[i][j * 2 + 1]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1573) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1574) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1575) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1576) 		/* Update the realtime status */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1577) 		data->alarms =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1578) 			w83791d_read(client, W83791D_REG_ALARM1) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1579) 			(w83791d_read(client, W83791D_REG_ALARM2) << 8) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1580) 			(w83791d_read(client, W83791D_REG_ALARM3) << 16);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1581) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1582) 		/* Update the beep configuration information */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1583) 		data->beep_mask =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1584) 			w83791d_read(client, W83791D_REG_BEEP_CTRL[0]) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1585) 			(w83791d_read(client, W83791D_REG_BEEP_CTRL[1]) << 8) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1586) 			(w83791d_read(client, W83791D_REG_BEEP_CTRL[2]) << 16);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1587) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1588) 		/* Extract global beep enable flag */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1589) 		data->beep_enable =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1590) 			(data->beep_mask >> GLOBAL_BEEP_ENABLE_SHIFT) & 0x01;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1591) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1592) 		/* Update the cpu voltage information */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1593) 		i = w83791d_read(client, W83791D_REG_VID_FANDIV);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1594) 		data->vid = i & 0x0f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1595) 		data->vid |= (w83791d_read(client, W83791D_REG_DID_VID4) & 0x01)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1596) 				<< 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1597) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1598) 		data->last_updated = jiffies;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1599) 		data->valid = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1600) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1601) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1602) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1603) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1604) #ifdef DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1605) 	w83791d_print_debug(data, dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1606) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1607) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1608) 	return data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1609) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1610) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1611) #ifdef DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1612) static void w83791d_print_debug(struct w83791d_data *data, struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1613) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1614) 	int i = 0, j = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1615) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1616) 	dev_dbg(dev, "======Start of w83791d debug values======\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1617) 	dev_dbg(dev, "%d set of Voltages: ===>\n", NUMBER_OF_VIN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1618) 	for (i = 0; i < NUMBER_OF_VIN; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1619) 		dev_dbg(dev, "vin[%d] is:     0x%02x\n", i, data->in[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1620) 		dev_dbg(dev, "vin[%d] min is: 0x%02x\n", i, data->in_min[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1621) 		dev_dbg(dev, "vin[%d] max is: 0x%02x\n", i, data->in_max[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1622) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1623) 	dev_dbg(dev, "%d set of Fan Counts/Divisors: ===>\n", NUMBER_OF_FANIN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1624) 	for (i = 0; i < NUMBER_OF_FANIN; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1625) 		dev_dbg(dev, "fan[%d] is:     0x%02x\n", i, data->fan[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1626) 		dev_dbg(dev, "fan[%d] min is: 0x%02x\n", i, data->fan_min[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1627) 		dev_dbg(dev, "fan_div[%d] is: 0x%02x\n", i, data->fan_div[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1628) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1629) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1630) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1631) 	 * temperature math is signed, but only print out the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1632) 	 * bits that matter
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1633) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1634) 	dev_dbg(dev, "%d set of Temperatures: ===>\n", NUMBER_OF_TEMPIN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1635) 	for (i = 0; i < 3; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1636) 		dev_dbg(dev, "temp1[%d] is: 0x%02x\n", i, (u8) data->temp1[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1637) 	for (i = 0; i < 2; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1638) 		for (j = 0; j < 3; j++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1639) 			dev_dbg(dev, "temp_add[%d][%d] is: 0x%04x\n", i, j,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1640) 				(u16) data->temp_add[i][j]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1641) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1642) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1643) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1644) 	dev_dbg(dev, "Misc Information: ===>\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1645) 	dev_dbg(dev, "alarm is:     0x%08x\n", data->alarms);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1646) 	dev_dbg(dev, "beep_mask is: 0x%08x\n", data->beep_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1647) 	dev_dbg(dev, "beep_enable is: %d\n", data->beep_enable);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1648) 	dev_dbg(dev, "vid is: 0x%02x\n", data->vid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1649) 	dev_dbg(dev, "vrm is: 0x%02x\n", data->vrm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1650) 	dev_dbg(dev, "=======End of w83791d debug values========\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1651) 	dev_dbg(dev, "\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1652) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1653) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1654) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1655) module_i2c_driver(w83791d_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1656) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1657) MODULE_AUTHOR("Charles Spirakis <bezaur@gmail.com>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1658) MODULE_DESCRIPTION("W83791D driver");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1659) MODULE_LICENSE("GPL");