Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0-or-later
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * via686a.c - Part of lm_sensors, Linux kernel modules
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  *	       for hardware monitoring
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  * Copyright (c) 1998 - 2002  Frodo Looijaard <frodol@dds.nl>,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  *			      Kyösti Mälkki <kmalkki@cc.hut.fi>,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  *			      Mark Studebaker <mdsxyz123@yahoo.com>,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  *			      and Bob Dougherty <bobd@stanford.edu>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11)  * (Some conversion-factor data were contributed by Jonathan Teh Soon Yew
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12)  * <j.teh@iname.com> and Alex van Kaam <darkside@chello.nl>.)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16)  * Supports the Via VT82C686A, VT82C686B south bridges.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17)  * Reports all as a 686A.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18)  * Warning - only supports a single device.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) #include <linux/pci.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) #include <linux/jiffies.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) #include <linux/platform_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) #include <linux/hwmon.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) #include <linux/hwmon-sysfs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) #include <linux/err.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) #include <linux/mutex.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) #include <linux/sysfs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) #include <linux/acpi.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) #include <linux/io.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38)  * If force_addr is set to anything different from 0, we forcibly enable
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39)  * the device at the given address.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) static unsigned short force_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) module_param(force_addr, ushort, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) MODULE_PARM_DESC(force_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) 		 "Initialize the base address of the sensors");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) static struct platform_device *pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49)  * The Via 686a southbridge has a LM78-like chip integrated on the same IC.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50)  * This driver is a customized copy of lm78.c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) /* Many VIA686A constants specified below */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) /* Length of ISA address segment */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) #define VIA686A_EXTENT		0x80
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) #define VIA686A_BASE_REG	0x70
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) #define VIA686A_ENABLE_REG	0x74
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) /* The VIA686A registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) /* ins numbered 0-4 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) #define VIA686A_REG_IN_MAX(nr)	(0x2b + ((nr) * 2))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) #define VIA686A_REG_IN_MIN(nr)	(0x2c + ((nr) * 2))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) #define VIA686A_REG_IN(nr)	(0x22 + (nr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) /* fans numbered 1-2 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) #define VIA686A_REG_FAN_MIN(nr)	(0x3a + (nr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) #define VIA686A_REG_FAN(nr)	(0x28 + (nr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) /* temps numbered 1-3 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) static const u8 VIA686A_REG_TEMP[]	= { 0x20, 0x21, 0x1f };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) static const u8 VIA686A_REG_TEMP_OVER[]	= { 0x39, 0x3d, 0x1d };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) static const u8 VIA686A_REG_TEMP_HYST[]	= { 0x3a, 0x3e, 0x1e };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) /* bits 7-6 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) #define VIA686A_REG_TEMP_LOW1	0x4b
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) /* 2 = bits 5-4, 3 = bits 7-6 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) #define VIA686A_REG_TEMP_LOW23	0x49
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) #define VIA686A_REG_ALARM1	0x41
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) #define VIA686A_REG_ALARM2	0x42
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) #define VIA686A_REG_FANDIV	0x47
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) #define VIA686A_REG_CONFIG	0x40
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84)  * The following register sets temp interrupt mode (bits 1-0 for temp1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85)  * 3-2 for temp2, 5-4 for temp3).  Modes are:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86)  * 00 interrupt stays as long as value is out-of-range
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87)  * 01 interrupt is cleared once register is read (default)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88)  * 10 comparator mode- like 00, but ignores hysteresis
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89)  * 11 same as 00
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) #define VIA686A_REG_TEMP_MODE		0x4b
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) /* We'll just assume that you want to set all 3 simultaneously: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) #define VIA686A_TEMP_MODE_MASK		0x3F
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) #define VIA686A_TEMP_MODE_CONTINUOUS	0x00
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97)  * Conversions. Limit checking is only done on the TO_REG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98)  * variants.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100)  ******** VOLTAGE CONVERSIONS (Bob Dougherty) ********
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101)  * From HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102)  * voltagefactor[0]=1.25/2628; (2628/1.25=2102.4)   // Vccp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103)  * voltagefactor[1]=1.25/2628; (2628/1.25=2102.4)   // +2.5V
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104)  * voltagefactor[2]=1.67/2628; (2628/1.67=1573.7)   // +3.3V
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105)  * voltagefactor[3]=2.6/2628;  (2628/2.60=1010.8)   // +5V
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106)  * voltagefactor[4]=6.3/2628;  (2628/6.30=417.14)   // +12V
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107)  * in[i]=(data[i+2]*25.0+133)*voltagefactor[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108)  * That is:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109)  * volts = (25*regVal+133)*factor
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110)  * regVal = (volts/factor-133)/25
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111)  * (These conversions were contributed by Jonathan Teh Soon Yew
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112)  * <j.teh@iname.com>)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) static inline u8 IN_TO_REG(long val, int in_num)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 	 * To avoid floating point, we multiply constants by 10 (100 for +12V).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 	 * Rounding is done (120500 is actually 133000 - 12500).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 	 * Remember that val is expressed in 0.001V/bit, which is why we divide
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 	 * by an additional 10000 (100000 for +12V): 1000 for val and 10 (100)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 	 * for the constants.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 	if (in_num <= 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 		return (u8) clamp_val((val * 21024 - 1205000) / 250000, 0, 255);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 	else if (in_num == 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 		return (u8) clamp_val((val * 15737 - 1205000) / 250000, 0, 255);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 	else if (in_num == 3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 		return (u8) clamp_val((val * 10108 - 1205000) / 250000, 0, 255);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 		return (u8) clamp_val((val * 41714 - 12050000) / 2500000, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 				      255);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) static inline long IN_FROM_REG(u8 val, int in_num)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 	 * To avoid floating point, we multiply constants by 10 (100 for +12V).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 	 * We also multiply them by 1000 because we want 0.001V/bit for the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 	 * output value. Rounding is done.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 	if (in_num <= 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 		return (long) ((250000 * val + 1330000 + 21024 / 2) / 21024);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 	else if (in_num == 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 		return (long) ((250000 * val + 1330000 + 15737 / 2) / 15737);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 	else if (in_num == 3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 		return (long) ((250000 * val + 1330000 + 10108 / 2) / 10108);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 		return (long) ((2500000 * val + 13300000 + 41714 / 2) / 41714);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) /********* FAN RPM CONVERSIONS ********/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153)  * Higher register values = slower fans (the fan's strobe gates a counter).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154)  * But this chip saturates back at 0, not at 255 like all the other chips.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155)  * So, 0 means 0 RPM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) static inline u8 FAN_TO_REG(long rpm, int div)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 	if (rpm == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 	rpm = clamp_val(rpm, 1, 1000000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 	return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 255);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) #define FAN_FROM_REG(val, div) ((val) == 0 ? 0 : (val) == 255 ? 0 : 1350000 / \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 				((val) * (div)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) /******** TEMP CONVERSIONS (Bob Dougherty) *********/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170)  * linear fits from HWMon.cpp (Copyright 1998-2000 Jonathan Teh Soon Yew)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171)  *	if(temp<169)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172)  *		return double(temp)*0.427-32.08;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173)  *	else if(temp>=169 && temp<=202)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174)  *		return double(temp)*0.582-58.16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175)  *	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176)  *		return double(temp)*0.924-127.33;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178)  * A fifth-order polynomial fits the unofficial data (provided by Alex van
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179)  * Kaam <darkside@chello.nl>) a bit better.  It also give more reasonable
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180)  * numbers on my machine (ie. they agree with what my BIOS tells me).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181)  * Here's the fifth-order fit to the 8-bit data:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182)  * temp = 1.625093e-10*val^5 - 1.001632e-07*val^4 + 2.457653e-05*val^3 -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183)  *	2.967619e-03*val^2 + 2.175144e-01*val - 7.090067e+0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185)  * (2000-10-25- RFD: thanks to Uwe Andersen <uandersen@mayah.com> for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186)  * finding my typos in this formula!)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188)  * Alas, none of the elegant function-fit solutions will work because we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189)  * aren't allowed to use floating point in the kernel and doing it with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190)  * integers doesn't provide enough precision.  So we'll do boring old
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191)  * look-up table stuff.  The unofficial data (see below) have effectively
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192)  * 7-bit resolution (they are rounded to the nearest degree).  I'm assuming
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193)  * that the transfer function of the device is monotonic and smooth, so a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194)  * smooth function fit to the data will allow us to get better precision.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195)  * I used the 5th-order poly fit described above and solved for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196)  * VIA register values 0-255.  I *10 before rounding, so we get tenth-degree
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197)  * precision.  (I could have done all 1024 values for our 10-bit readings,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198)  * but the function is very linear in the useful range (0-80 deg C), so
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199)  * we'll just use linear interpolation for 10-bit readings.)  So, temp_lut
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200)  * is the temp at via register values 0-255:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) static const s16 temp_lut[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 	-709, -688, -667, -646, -627, -607, -589, -570, -553, -536, -519,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 	-503, -487, -471, -456, -442, -428, -414, -400, -387, -375,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 	-362, -350, -339, -327, -316, -305, -295, -285, -275, -265,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 	-255, -246, -237, -229, -220, -212, -204, -196, -188, -180,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 	-173, -166, -159, -152, -145, -139, -132, -126, -120, -114,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 	-108, -102, -96, -91, -85, -80, -74, -69, -64, -59, -54, -49,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 	-44, -39, -34, -29, -25, -20, -15, -11, -6, -2, 3, 7, 12, 16,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 	20, 25, 29, 33, 37, 42, 46, 50, 54, 59, 63, 67, 71, 75, 79, 84,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 	88, 92, 96, 100, 104, 109, 113, 117, 121, 125, 130, 134, 138,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 	142, 146, 151, 155, 159, 163, 168, 172, 176, 181, 185, 189,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 	193, 198, 202, 206, 211, 215, 219, 224, 228, 232, 237, 241,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 	245, 250, 254, 259, 263, 267, 272, 276, 281, 285, 290, 294,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 	299, 303, 307, 312, 316, 321, 325, 330, 334, 339, 344, 348,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 	353, 357, 362, 366, 371, 376, 380, 385, 390, 395, 399, 404,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 	409, 414, 419, 423, 428, 433, 438, 443, 449, 454, 459, 464,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 	469, 475, 480, 486, 491, 497, 502, 508, 514, 520, 526, 532,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 	538, 544, 551, 557, 564, 571, 578, 584, 592, 599, 606, 614,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 	621, 629, 637, 645, 654, 662, 671, 680, 689, 698, 708, 718,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 	728, 738, 749, 759, 770, 782, 793, 805, 818, 830, 843, 856,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 	870, 883, 898, 912, 927, 943, 958, 975, 991, 1008, 1026, 1044,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 	1062, 1081, 1101, 1121, 1141, 1162, 1184, 1206, 1229, 1252,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 	1276, 1301, 1326, 1352, 1378, 1406, 1434, 1462
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228)  * the original LUT values from Alex van Kaam <darkside@chello.nl>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229)  * (for via register values 12-240):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230)  * {-50,-49,-47,-45,-43,-41,-39,-38,-37,-35,-34,-33,-32,-31,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231)  * -30,-29,-28,-27,-26,-25,-24,-24,-23,-22,-21,-20,-20,-19,-18,-17,-17,-16,-15,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232)  * -15,-14,-14,-13,-12,-12,-11,-11,-10,-9,-9,-8,-8,-7,-7,-6,-6,-5,-5,-4,-4,-3,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233)  * -3,-2,-2,-1,-1,0,0,1,1,1,3,3,3,4,4,4,5,5,5,6,6,7,7,8,8,9,9,9,10,10,11,11,12,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234)  * 12,12,13,13,13,14,14,15,15,16,16,16,17,17,18,18,19,19,20,20,21,21,21,22,22,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235)  * 22,23,23,24,24,25,25,26,26,26,27,27,27,28,28,29,29,30,30,30,31,31,32,32,33,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236)  * 33,34,34,35,35,35,36,36,37,37,38,38,39,39,40,40,41,41,42,42,43,43,44,44,45,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237)  * 45,46,46,47,48,48,49,49,50,51,51,52,52,53,53,54,55,55,56,57,57,58,59,59,60,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238)  * 61,62,62,63,64,65,66,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,83,84,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239)  * 85,86,88,89,91,92,94,96,97,99,101,103,105,107,109,110};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242)  * Here's the reverse LUT.  I got it by doing a 6-th order poly fit (needed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243)  * an extra term for a good fit to these inverse data!) and then
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244)  * solving for each temp value from -50 to 110 (the useable range for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245)  * this chip).  Here's the fit:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246)  * viaRegVal = -1.160370e-10*val^6 +3.193693e-08*val^5 - 1.464447e-06*val^4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247)  * - 2.525453e-04*val^3 + 1.424593e-02*val^2 + 2.148941e+00*val +7.275808e+01)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248)  * Note that n=161:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) static const u8 via_lut[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 	12, 12, 13, 14, 14, 15, 16, 16, 17, 18, 18, 19, 20, 20, 21, 22, 23,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 	23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 39, 40,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 	41, 43, 45, 46, 48, 49, 51, 53, 55, 57, 59, 60, 62, 64, 66,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 	69, 71, 73, 75, 77, 79, 82, 84, 86, 88, 91, 93, 95, 98, 100,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 	103, 105, 107, 110, 112, 115, 117, 119, 122, 124, 126, 129,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 	131, 134, 136, 138, 140, 143, 145, 147, 150, 152, 154, 156,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 	158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 	182, 183, 185, 187, 188, 190, 192, 193, 195, 196, 198, 199,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 	200, 202, 203, 205, 206, 207, 208, 209, 210, 211, 212, 213,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 	214, 215, 216, 217, 218, 219, 220, 221, 222, 222, 223, 224,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 	225, 226, 226, 227, 228, 228, 229, 230, 230, 231, 232, 232,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 	233, 233, 234, 235, 235, 236, 236, 237, 237, 238, 238, 239,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 	239, 240
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267)  * Converting temps to (8-bit) hyst and over registers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268)  * No interpolation here.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269)  * The +50 is because the temps start at -50
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) static inline u8 TEMP_TO_REG(long val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) 	return via_lut[val <= -50000 ? 0 : val >= 110000 ? 160 :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 		      (val < 0 ? val - 500 : val + 500) / 1000 + 50];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) /* for 8-bit temperature hyst and over registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) #define TEMP_FROM_REG(val)	((long)temp_lut[val] * 100)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) /* for 10-bit temperature readings */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) static inline long TEMP_FROM_REG10(u16 val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 	u16 eight_bits = val >> 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) 	u16 two_bits = val & 3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 	/* no interpolation for these */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 	if (two_bits == 0 || eight_bits == 255)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 		return TEMP_FROM_REG(eight_bits);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 	/* do some linear interpolation */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 	return (temp_lut[eight_bits] * (4 - two_bits) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) 		temp_lut[eight_bits + 1] * two_bits) * 25;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) #define DIV_FROM_REG(val) (1 << (val))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) #define DIV_TO_REG(val) ((val) == 8 ? 3 : (val) == 4 ? 2 : (val) == 1 ? 0 : 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299)  * For each registered chip, we need to keep some data in memory.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300)  * The structure is dynamically allocated.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) struct via686a_data {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 	unsigned short addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 	const char *name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 	struct device *hwmon_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 	struct mutex update_lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 	char valid;		/* !=0 if following fields are valid */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 	unsigned long last_updated;	/* In jiffies */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 	u8 in[5];		/* Register value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) 	u8 in_max[5];		/* Register value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 	u8 in_min[5];		/* Register value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) 	u8 fan[2];		/* Register value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 	u8 fan_min[2];		/* Register value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) 	u16 temp[3];		/* Register value 10 bit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) 	u8 temp_over[3];	/* Register value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) 	u8 temp_hyst[3];	/* Register value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) 	u8 fan_div[2];		/* Register encoding, shifted right */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) 	u16 alarms;		/* Register encoding, combined */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) static struct pci_dev *s_bridge;	/* pointer to the (only) via686a */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) static int via686a_probe(struct platform_device *pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) static int via686a_remove(struct platform_device *pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) static inline int via686a_read_value(struct via686a_data *data, u8 reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 	return inb_p(data->addr + reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) static inline void via686a_write_value(struct via686a_data *data, u8 reg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 				       u8 value)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 	outb_p(value, data->addr + reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) static struct via686a_data *via686a_update_device(struct device *dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) static void via686a_init_device(struct via686a_data *data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) /* following are the sysfs callback functions */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) /* 7 voltage sensors */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) static ssize_t in_show(struct device *dev, struct device_attribute *da,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) 		       char *buf) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 	struct via686a_data *data = via686a_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) 	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) 	int nr = attr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) 	return sprintf(buf, "%ld\n", IN_FROM_REG(data->in[nr], nr));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) static ssize_t in_min_show(struct device *dev, struct device_attribute *da,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) 			   char *buf) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) 	struct via686a_data *data = via686a_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) 	int nr = attr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) 	return sprintf(buf, "%ld\n", IN_FROM_REG(data->in_min[nr], nr));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) static ssize_t in_max_show(struct device *dev, struct device_attribute *da,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 			   char *buf) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) 	struct via686a_data *data = via686a_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) 	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) 	int nr = attr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) 	return sprintf(buf, "%ld\n", IN_FROM_REG(data->in_max[nr], nr));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) static ssize_t in_min_store(struct device *dev, struct device_attribute *da,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) 			    const char *buf, size_t count) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) 	struct via686a_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) 	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) 	int nr = attr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) 	unsigned long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) 	err = kstrtoul(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) 	data->in_min[nr] = IN_TO_REG(val, nr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) 	via686a_write_value(data, VIA686A_REG_IN_MIN(nr),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) 			data->in_min[nr]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) static ssize_t in_max_store(struct device *dev, struct device_attribute *da,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) 			    const char *buf, size_t count) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) 	struct via686a_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) 	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) 	int nr = attr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) 	unsigned long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) 	err = kstrtoul(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) 	data->in_max[nr] = IN_TO_REG(val, nr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) 	via686a_write_value(data, VIA686A_REG_IN_MAX(nr),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) 			data->in_max[nr]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) static SENSOR_DEVICE_ATTR_RO(in0_input, in, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) static SENSOR_DEVICE_ATTR_RW(in0_min, in_min, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) static SENSOR_DEVICE_ATTR_RW(in0_max, in_max, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) static SENSOR_DEVICE_ATTR_RO(in1_input, in, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) static SENSOR_DEVICE_ATTR_RW(in1_min, in_min, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) static SENSOR_DEVICE_ATTR_RW(in1_max, in_max, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) static SENSOR_DEVICE_ATTR_RO(in2_input, in, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) static SENSOR_DEVICE_ATTR_RW(in2_min, in_min, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) static SENSOR_DEVICE_ATTR_RW(in2_max, in_max, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) static SENSOR_DEVICE_ATTR_RO(in3_input, in, 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) static SENSOR_DEVICE_ATTR_RW(in3_min, in_min, 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) static SENSOR_DEVICE_ATTR_RW(in3_max, in_max, 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) static SENSOR_DEVICE_ATTR_RO(in4_input, in, 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) static SENSOR_DEVICE_ATTR_RW(in4_min, in_min, 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) static SENSOR_DEVICE_ATTR_RW(in4_max, in_max, 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) /* 3 temperatures */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) static ssize_t temp_show(struct device *dev, struct device_attribute *da,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) 			 char *buf) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) 	struct via686a_data *data = via686a_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) 	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) 	int nr = attr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) 	return sprintf(buf, "%ld\n", TEMP_FROM_REG10(data->temp[nr]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) static ssize_t temp_over_show(struct device *dev, struct device_attribute *da,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) 			      char *buf) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) 	struct via686a_data *data = via686a_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) 	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) 	int nr = attr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) 	return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp_over[nr]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) static ssize_t temp_hyst_show(struct device *dev, struct device_attribute *da,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) 			      char *buf) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) 	struct via686a_data *data = via686a_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) 	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) 	int nr = attr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) 	return sprintf(buf, "%ld\n", TEMP_FROM_REG(data->temp_hyst[nr]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) static ssize_t temp_over_store(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) 			       struct device_attribute *da, const char *buf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) 			       size_t count) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) 	struct via686a_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) 	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) 	int nr = attr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) 	long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) 	err = kstrtol(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) 	data->temp_over[nr] = TEMP_TO_REG(val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) 	via686a_write_value(data, VIA686A_REG_TEMP_OVER[nr],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) 			    data->temp_over[nr]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) static ssize_t temp_hyst_store(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) 			       struct device_attribute *da, const char *buf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) 			       size_t count) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) 	struct via686a_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) 	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) 	int nr = attr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) 	long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) 	err = kstrtol(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) 	data->temp_hyst[nr] = TEMP_TO_REG(val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) 	via686a_write_value(data, VIA686A_REG_TEMP_HYST[nr],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) 			    data->temp_hyst[nr]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_over, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) static SENSOR_DEVICE_ATTR_RW(temp1_max_hyst, temp_hyst, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_over, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) static SENSOR_DEVICE_ATTR_RW(temp2_max_hyst, temp_hyst, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_over, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) static SENSOR_DEVICE_ATTR_RW(temp3_max_hyst, temp_hyst, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) /* 2 Fans */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) static ssize_t fan_show(struct device *dev, struct device_attribute *da,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) 			char *buf) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) 	struct via686a_data *data = via686a_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) 	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) 	int nr = attr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) 	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) 				DIV_FROM_REG(data->fan_div[nr])));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) static ssize_t fan_min_show(struct device *dev, struct device_attribute *da,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) 			    char *buf) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) 	struct via686a_data *data = via686a_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) 	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) 	int nr = attr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) 	return sprintf(buf, "%d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) 		FAN_FROM_REG(data->fan_min[nr],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) 			     DIV_FROM_REG(data->fan_div[nr])));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) static ssize_t fan_div_show(struct device *dev, struct device_attribute *da,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) 			    char *buf) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) 	struct via686a_data *data = via686a_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) 	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) 	int nr = attr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) 	return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) static ssize_t fan_min_store(struct device *dev, struct device_attribute *da,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) 			     const char *buf, size_t count) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) 	struct via686a_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) 	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) 	int nr = attr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) 	unsigned long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) 	err = kstrtoul(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) 	data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) 	via686a_write_value(data, VIA686A_REG_FAN_MIN(nr+1), data->fan_min[nr]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) static ssize_t fan_div_store(struct device *dev, struct device_attribute *da,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) 			     const char *buf, size_t count) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) 	struct via686a_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) 	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) 	int nr = attr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) 	int old;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) 	unsigned long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) 	err = kstrtoul(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) 	old = via686a_read_value(data, VIA686A_REG_FANDIV);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) 	data->fan_div[nr] = DIV_TO_REG(val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) 	old = (old & 0x0f) | (data->fan_div[1] << 6) | (data->fan_div[0] << 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) 	via686a_write_value(data, VIA686A_REG_FANDIV, old);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) static SENSOR_DEVICE_ATTR_RW(fan1_div, fan_div, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) static SENSOR_DEVICE_ATTR_RW(fan2_div, fan_div, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) /* Alarms */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) 			   char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) 	struct via686a_data *data = via686a_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) 	return sprintf(buf, "%u\n", data->alarms);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) static DEVICE_ATTR_RO(alarms);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) 			  char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) 	int bitnr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) 	struct via686a_data *data = via686a_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) 	return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) static SENSOR_DEVICE_ATTR_RO(in0_alarm, alarm, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm, 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm, 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) static SENSOR_DEVICE_ATTR_RO(temp1_alarm, alarm, 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) static SENSOR_DEVICE_ATTR_RO(temp2_alarm, alarm, 11);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) static SENSOR_DEVICE_ATTR_RO(temp3_alarm, alarm, 15);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 6);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 7);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) static ssize_t name_show(struct device *dev, struct device_attribute
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) 			 *devattr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) 	struct via686a_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600) 	return sprintf(buf, "%s\n", data->name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) static DEVICE_ATTR_RO(name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) static struct attribute *via686a_attributes[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) 	&sensor_dev_attr_in0_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) 	&sensor_dev_attr_in1_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) 	&sensor_dev_attr_in2_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) 	&sensor_dev_attr_in3_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) 	&sensor_dev_attr_in4_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) 	&sensor_dev_attr_in0_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611) 	&sensor_dev_attr_in1_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) 	&sensor_dev_attr_in2_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) 	&sensor_dev_attr_in3_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614) 	&sensor_dev_attr_in4_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615) 	&sensor_dev_attr_in0_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616) 	&sensor_dev_attr_in1_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) 	&sensor_dev_attr_in2_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618) 	&sensor_dev_attr_in3_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619) 	&sensor_dev_attr_in4_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620) 	&sensor_dev_attr_in0_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621) 	&sensor_dev_attr_in1_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622) 	&sensor_dev_attr_in2_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623) 	&sensor_dev_attr_in3_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624) 	&sensor_dev_attr_in4_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626) 	&sensor_dev_attr_temp1_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627) 	&sensor_dev_attr_temp2_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628) 	&sensor_dev_attr_temp3_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629) 	&sensor_dev_attr_temp1_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630) 	&sensor_dev_attr_temp2_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631) 	&sensor_dev_attr_temp3_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632) 	&sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633) 	&sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634) 	&sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635) 	&sensor_dev_attr_temp1_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636) 	&sensor_dev_attr_temp2_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637) 	&sensor_dev_attr_temp3_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639) 	&sensor_dev_attr_fan1_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640) 	&sensor_dev_attr_fan2_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641) 	&sensor_dev_attr_fan1_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642) 	&sensor_dev_attr_fan2_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643) 	&sensor_dev_attr_fan1_div.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644) 	&sensor_dev_attr_fan2_div.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 645) 	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 646) 	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 647) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 648) 	&dev_attr_alarms.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 649) 	&dev_attr_name.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 650) 	NULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 651) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 652) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 653) static const struct attribute_group via686a_group = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 654) 	.attrs = via686a_attributes,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 655) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 656) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 657) static struct platform_driver via686a_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 658) 	.driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 659) 		.name	= "via686a",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 660) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 661) 	.probe		= via686a_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 662) 	.remove		= via686a_remove,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 663) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 664) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 665) /* This is called when the module is loaded */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 666) static int via686a_probe(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 667) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 668) 	struct via686a_data *data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 669) 	struct resource *res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 670) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 671) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 672) 	/* Reserve the ISA region */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 673) 	res = platform_get_resource(pdev, IORESOURCE_IO, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 674) 	if (!devm_request_region(&pdev->dev, res->start, VIA686A_EXTENT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 675) 				 via686a_driver.driver.name)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 676) 		dev_err(&pdev->dev, "Region 0x%lx-0x%lx already in use!\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 677) 			(unsigned long)res->start, (unsigned long)res->end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 678) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 679) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 680) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 681) 	data = devm_kzalloc(&pdev->dev, sizeof(struct via686a_data),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 682) 			    GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 683) 	if (!data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 684) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 685) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 686) 	platform_set_drvdata(pdev, data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 687) 	data->addr = res->start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 688) 	data->name = "via686a";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 689) 	mutex_init(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 690) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 691) 	/* Initialize the VIA686A chip */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 692) 	via686a_init_device(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 693) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 694) 	/* Register sysfs hooks */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 695) 	err = sysfs_create_group(&pdev->dev.kobj, &via686a_group);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 696) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 697) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 698) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 699) 	data->hwmon_dev = hwmon_device_register(&pdev->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 700) 	if (IS_ERR(data->hwmon_dev)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 701) 		err = PTR_ERR(data->hwmon_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 702) 		goto exit_remove_files;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 703) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 704) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 705) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 706) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 707) exit_remove_files:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 708) 	sysfs_remove_group(&pdev->dev.kobj, &via686a_group);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 709) 	return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 710) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 711) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 712) static int via686a_remove(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 713) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 714) 	struct via686a_data *data = platform_get_drvdata(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 715) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 716) 	hwmon_device_unregister(data->hwmon_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 717) 	sysfs_remove_group(&pdev->dev.kobj, &via686a_group);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 718) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 719) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 720) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 721) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 722) static void via686a_update_fan_div(struct via686a_data *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 723) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 724) 	int reg = via686a_read_value(data, VIA686A_REG_FANDIV);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 725) 	data->fan_div[0] = (reg >> 4) & 0x03;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 726) 	data->fan_div[1] = reg >> 6;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 727) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 728) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 729) static void via686a_init_device(struct via686a_data *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 730) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 731) 	u8 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 732) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 733) 	/* Start monitoring */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 734) 	reg = via686a_read_value(data, VIA686A_REG_CONFIG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 735) 	via686a_write_value(data, VIA686A_REG_CONFIG, (reg | 0x01) & 0x7F);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 736) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 737) 	/* Configure temp interrupt mode for continuous-interrupt operation */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 738) 	reg = via686a_read_value(data, VIA686A_REG_TEMP_MODE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 739) 	via686a_write_value(data, VIA686A_REG_TEMP_MODE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 740) 			    (reg & ~VIA686A_TEMP_MODE_MASK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 741) 			    | VIA686A_TEMP_MODE_CONTINUOUS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 742) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 743) 	/* Pre-read fan clock divisor values */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 744) 	via686a_update_fan_div(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 745) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 746) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 747) static struct via686a_data *via686a_update_device(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 748) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 749) 	struct via686a_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 750) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 751) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 752) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 753) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 754) 	if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 755) 	    || !data->valid) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 756) 		for (i = 0; i <= 4; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 757) 			data->in[i] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 758) 			    via686a_read_value(data, VIA686A_REG_IN(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 759) 			data->in_min[i] = via686a_read_value(data,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 760) 							     VIA686A_REG_IN_MIN
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 761) 							     (i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 762) 			data->in_max[i] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 763) 			    via686a_read_value(data, VIA686A_REG_IN_MAX(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 764) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 765) 		for (i = 1; i <= 2; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 766) 			data->fan[i - 1] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 767) 			    via686a_read_value(data, VIA686A_REG_FAN(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 768) 			data->fan_min[i - 1] = via686a_read_value(data,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 769) 						     VIA686A_REG_FAN_MIN(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 770) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 771) 		for (i = 0; i <= 2; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 772) 			data->temp[i] = via686a_read_value(data,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 773) 						 VIA686A_REG_TEMP[i]) << 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 774) 			data->temp_over[i] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 775) 			    via686a_read_value(data,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 776) 					       VIA686A_REG_TEMP_OVER[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 777) 			data->temp_hyst[i] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 778) 			    via686a_read_value(data,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 779) 					       VIA686A_REG_TEMP_HYST[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 780) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 781) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 782) 		 * add in lower 2 bits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 783) 		 * temp1 uses bits 7-6 of VIA686A_REG_TEMP_LOW1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 784) 		 * temp2 uses bits 5-4 of VIA686A_REG_TEMP_LOW23
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 785) 		 * temp3 uses bits 7-6 of VIA686A_REG_TEMP_LOW23
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 786) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 787) 		data->temp[0] |= (via686a_read_value(data,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 788) 						     VIA686A_REG_TEMP_LOW1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 789) 				  & 0xc0) >> 6;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 790) 		data->temp[1] |=
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 791) 		    (via686a_read_value(data, VIA686A_REG_TEMP_LOW23) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 792) 		     0x30) >> 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 793) 		data->temp[2] |=
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 794) 		    (via686a_read_value(data, VIA686A_REG_TEMP_LOW23) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 795) 		     0xc0) >> 6;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 796) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 797) 		via686a_update_fan_div(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 798) 		data->alarms =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 799) 		    via686a_read_value(data,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 800) 				       VIA686A_REG_ALARM1) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 801) 		    (via686a_read_value(data, VIA686A_REG_ALARM2) << 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 802) 		data->last_updated = jiffies;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 803) 		data->valid = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 804) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 805) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 806) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 807) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 808) 	return data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 809) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 810) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 811) static const struct pci_device_id via686a_pci_ids[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 812) 	{ PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_82C686_4) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 813) 	{ }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 814) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 815) MODULE_DEVICE_TABLE(pci, via686a_pci_ids);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 816) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 817) static int via686a_device_add(unsigned short address)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 818) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 819) 	struct resource res = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 820) 		.start	= address,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 821) 		.end	= address + VIA686A_EXTENT - 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 822) 		.name	= "via686a",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 823) 		.flags	= IORESOURCE_IO,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 824) 	};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 825) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 826) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 827) 	err = acpi_check_resource_conflict(&res);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 828) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 829) 		goto exit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 830) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 831) 	pdev = platform_device_alloc("via686a", address);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 832) 	if (!pdev) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 833) 		err = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 834) 		pr_err("Device allocation failed\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 835) 		goto exit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 836) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 837) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 838) 	err = platform_device_add_resources(pdev, &res, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 839) 	if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 840) 		pr_err("Device resource addition failed (%d)\n", err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 841) 		goto exit_device_put;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 842) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 843) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 844) 	err = platform_device_add(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 845) 	if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 846) 		pr_err("Device addition failed (%d)\n", err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 847) 		goto exit_device_put;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 848) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 849) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 850) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 851) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 852) exit_device_put:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 853) 	platform_device_put(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 854) exit:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 855) 	return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 856) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 857) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 858) static int via686a_pci_probe(struct pci_dev *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 859) 				       const struct pci_device_id *id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 860) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 861) 	u16 address, val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 862) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 863) 	if (force_addr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 864) 		address = force_addr & ~(VIA686A_EXTENT - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 865) 		dev_warn(&dev->dev, "Forcing ISA address 0x%x\n", address);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 866) 		if (PCIBIOS_SUCCESSFUL !=
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 867) 		    pci_write_config_word(dev, VIA686A_BASE_REG, address | 1))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 868) 			return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 869) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 870) 	if (PCIBIOS_SUCCESSFUL !=
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 871) 	    pci_read_config_word(dev, VIA686A_BASE_REG, &val))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 872) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 873) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 874) 	address = val & ~(VIA686A_EXTENT - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 875) 	if (address == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 876) 		dev_err(&dev->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 877) 			"base address not set - upgrade BIOS or use force_addr=0xaddr\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 878) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 879) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 880) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 881) 	if (PCIBIOS_SUCCESSFUL !=
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 882) 	    pci_read_config_word(dev, VIA686A_ENABLE_REG, &val))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 883) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 884) 	if (!(val & 0x0001)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 885) 		if (!force_addr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 886) 			dev_warn(&dev->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 887) 				 "Sensors disabled, enable with force_addr=0x%x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 888) 				 address);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 889) 			return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 890) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 891) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 892) 		dev_warn(&dev->dev, "Enabling sensors\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 893) 		if (PCIBIOS_SUCCESSFUL !=
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 894) 		    pci_write_config_word(dev, VIA686A_ENABLE_REG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 895) 					  val | 0x0001))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 896) 			return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 897) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 898) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 899) 	if (platform_driver_register(&via686a_driver))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 900) 		goto exit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 901) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 902) 	/* Sets global pdev as a side effect */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 903) 	if (via686a_device_add(address))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 904) 		goto exit_unregister;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 905) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 906) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 907) 	 * Always return failure here.  This is to allow other drivers to bind
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 908) 	 * to this pci device.  We don't really want to have control over the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 909) 	 * pci device, we only wanted to read as few register values from it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 910) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 911) 	s_bridge = pci_dev_get(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 912) 	return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 913) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 914) exit_unregister:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 915) 	platform_driver_unregister(&via686a_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 916) exit:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 917) 	return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 918) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 919) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 920) static struct pci_driver via686a_pci_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 921) 	.name		= "via686a",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 922) 	.id_table	= via686a_pci_ids,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 923) 	.probe		= via686a_pci_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 924) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 925) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 926) static int __init sm_via686a_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 927) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 928) 	return pci_register_driver(&via686a_pci_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 929) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 930) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 931) static void __exit sm_via686a_exit(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 932) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 933) 	pci_unregister_driver(&via686a_pci_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 934) 	if (s_bridge != NULL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 935) 		platform_device_unregister(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 936) 		platform_driver_unregister(&via686a_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 937) 		pci_dev_put(s_bridge);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 938) 		s_bridge = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 939) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 940) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 941) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 942) MODULE_AUTHOR("Kyösti Mälkki <kmalkki@cc.hut.fi>, "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 943) 	      "Mark Studebaker <mdsxyz123@yahoo.com> "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 944) 	      "and Bob Dougherty <bobd@stanford.edu>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 945) MODULE_DESCRIPTION("VIA 686A Sensor device");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 946) MODULE_LICENSE("GPL");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 947) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 948) module_init(sm_via686a_init);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 949) module_exit(sm_via686a_exit);