Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    1) // SPDX-License-Identifier: GPL-2.0+
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    2) // Copyright IBM Corp 2019
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    3) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    4) #include <linux/device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    5) #include <linux/export.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    6) #include <linux/hwmon.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    7) #include <linux/hwmon-sysfs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    8) #include <linux/jiffies.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    9) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   10) #include <linux/math64.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   11) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   12) #include <linux/mutex.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   13) #include <linux/sysfs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   14) #include <asm/unaligned.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   15) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   16) #include "common.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   17) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   18) #define EXTN_FLAG_SENSOR_ID		BIT(7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   19) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   20) #define OCC_ERROR_COUNT_THRESHOLD	2	/* required by OCC spec */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   21) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   22) #define OCC_STATE_SAFE			4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   23) #define OCC_SAFE_TIMEOUT		msecs_to_jiffies(60000) /* 1 min */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   24) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   25) #define OCC_UPDATE_FREQUENCY		msecs_to_jiffies(1000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   26) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   27) #define OCC_TEMP_SENSOR_FAULT		0xFF
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   28) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   29) #define OCC_FRU_TYPE_VRM		3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   30) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   31) /* OCC sensor type and version definitions */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   32) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   33) struct temp_sensor_1 {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   34) 	u16 sensor_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   35) 	u16 value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   36) } __packed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   37) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   38) struct temp_sensor_2 {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   39) 	u32 sensor_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   40) 	u8 fru_type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   41) 	u8 value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   42) } __packed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   43) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   44) struct freq_sensor_1 {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   45) 	u16 sensor_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   46) 	u16 value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   47) } __packed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   48) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   49) struct freq_sensor_2 {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   50) 	u32 sensor_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   51) 	u16 value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   52) } __packed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   53) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   54) struct power_sensor_1 {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   55) 	u16 sensor_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   56) 	u32 update_tag;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   57) 	u32 accumulator;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   58) 	u16 value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   59) } __packed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   60) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   61) struct power_sensor_2 {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   62) 	u32 sensor_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   63) 	u8 function_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   64) 	u8 apss_channel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   65) 	u16 reserved;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   66) 	u32 update_tag;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   67) 	u64 accumulator;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   68) 	u16 value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   69) } __packed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   70) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   71) struct power_sensor_data {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   72) 	u16 value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   73) 	u32 update_tag;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   74) 	u64 accumulator;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   75) } __packed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   76) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   77) struct power_sensor_data_and_time {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   78) 	u16 update_time;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   79) 	u16 value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   80) 	u32 update_tag;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   81) 	u64 accumulator;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   82) } __packed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   83) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   84) struct power_sensor_a0 {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   85) 	u32 sensor_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   86) 	struct power_sensor_data_and_time system;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   87) 	u32 reserved;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   88) 	struct power_sensor_data_and_time proc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   89) 	struct power_sensor_data vdd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   90) 	struct power_sensor_data vdn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   91) } __packed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   92) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   93) struct caps_sensor_2 {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   94) 	u16 cap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   95) 	u16 system_power;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   96) 	u16 n_cap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   97) 	u16 max;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   98) 	u16 min;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   99) 	u16 user;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  100) 	u8 user_source;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  101) } __packed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  102) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  103) struct caps_sensor_3 {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  104) 	u16 cap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  105) 	u16 system_power;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  106) 	u16 n_cap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  107) 	u16 max;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  108) 	u16 hard_min;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  109) 	u16 soft_min;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  110) 	u16 user;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  111) 	u8 user_source;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  112) } __packed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  113) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  114) struct extended_sensor {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  115) 	union {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  116) 		u8 name[4];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  117) 		u32 sensor_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  118) 	};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  119) 	u8 flags;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  120) 	u8 reserved;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  121) 	u8 data[6];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  122) } __packed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  123) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  124) static int occ_poll(struct occ *occ)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  125) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  126) 	int rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  127) 	u16 checksum = occ->poll_cmd_data + occ->seq_no + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  128) 	u8 cmd[8];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  129) 	struct occ_poll_response_header *header;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  130) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  131) 	/* big endian */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  132) 	cmd[0] = occ->seq_no++;		/* sequence number */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  133) 	cmd[1] = 0;			/* cmd type */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  134) 	cmd[2] = 0;			/* data length msb */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  135) 	cmd[3] = 1;			/* data length lsb */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  136) 	cmd[4] = occ->poll_cmd_data;	/* data */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  137) 	cmd[5] = checksum >> 8;		/* checksum msb */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  138) 	cmd[6] = checksum & 0xFF;	/* checksum lsb */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  139) 	cmd[7] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  140) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  141) 	/* mutex should already be locked if necessary */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  142) 	rc = occ->send_cmd(occ, cmd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  143) 	if (rc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  144) 		occ->last_error = rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  145) 		if (occ->error_count++ > OCC_ERROR_COUNT_THRESHOLD)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  146) 			occ->error = rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  147) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  148) 		goto done;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  149) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  150) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  151) 	/* clear error since communication was successful */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  152) 	occ->error_count = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  153) 	occ->last_error = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  154) 	occ->error = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  155) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  156) 	/* check for safe state */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  157) 	header = (struct occ_poll_response_header *)occ->resp.data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  158) 	if (header->occ_state == OCC_STATE_SAFE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  159) 		if (occ->last_safe) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  160) 			if (time_after(jiffies,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  161) 				       occ->last_safe + OCC_SAFE_TIMEOUT))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  162) 				occ->error = -EHOSTDOWN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  163) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  164) 			occ->last_safe = jiffies;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  165) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  166) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  167) 		occ->last_safe = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  168) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  169) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  170) done:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  171) 	occ_sysfs_poll_done(occ);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  172) 	return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  173) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  174) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  175) static int occ_set_user_power_cap(struct occ *occ, u16 user_power_cap)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  176) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  177) 	int rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  178) 	u8 cmd[8];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  179) 	u16 checksum = 0x24;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  180) 	__be16 user_power_cap_be = cpu_to_be16(user_power_cap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  181) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  182) 	cmd[0] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  183) 	cmd[1] = 0x22;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  184) 	cmd[2] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  185) 	cmd[3] = 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  186) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  187) 	memcpy(&cmd[4], &user_power_cap_be, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  188) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  189) 	checksum += cmd[4] + cmd[5];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  190) 	cmd[6] = checksum >> 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  191) 	cmd[7] = checksum & 0xFF;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  192) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  193) 	rc = mutex_lock_interruptible(&occ->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  194) 	if (rc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  195) 		return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  196) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  197) 	rc = occ->send_cmd(occ, cmd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  198) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  199) 	mutex_unlock(&occ->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  200) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  201) 	return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  202) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  203) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  204) int occ_update_response(struct occ *occ)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  205) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  206) 	int rc = mutex_lock_interruptible(&occ->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  207) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  208) 	if (rc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  209) 		return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  210) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  211) 	/* limit the maximum rate of polling the OCC */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  212) 	if (time_after(jiffies, occ->next_update)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  213) 		rc = occ_poll(occ);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  214) 		occ->next_update = jiffies + OCC_UPDATE_FREQUENCY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  215) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  216) 		rc = occ->last_error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  217) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  218) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  219) 	mutex_unlock(&occ->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  220) 	return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  221) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  222) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  223) static ssize_t occ_show_temp_1(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  224) 			       struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  225) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  226) 	int rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  227) 	u32 val = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  228) 	struct temp_sensor_1 *temp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  229) 	struct occ *occ = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  230) 	struct occ_sensors *sensors = &occ->sensors;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  231) 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  232) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  233) 	rc = occ_update_response(occ);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  234) 	if (rc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  235) 		return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  236) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  237) 	temp = ((struct temp_sensor_1 *)sensors->temp.data) + sattr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  238) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  239) 	switch (sattr->nr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  240) 	case 0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  241) 		val = get_unaligned_be16(&temp->sensor_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  242) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  243) 	case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  244) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  245) 		 * If a sensor reading has expired and couldn't be refreshed,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  246) 		 * OCC returns 0xFFFF for that sensor.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  247) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  248) 		if (temp->value == 0xFFFF)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  249) 			return -EREMOTEIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  250) 		val = get_unaligned_be16(&temp->value) * 1000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  251) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  252) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  253) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  254) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  255) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  256) 	return snprintf(buf, PAGE_SIZE - 1, "%u\n", val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  257) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  258) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  259) static ssize_t occ_show_temp_2(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  260) 			       struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  261) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  262) 	int rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  263) 	u32 val = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  264) 	struct temp_sensor_2 *temp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  265) 	struct occ *occ = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  266) 	struct occ_sensors *sensors = &occ->sensors;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  267) 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  268) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  269) 	rc = occ_update_response(occ);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  270) 	if (rc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  271) 		return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  272) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  273) 	temp = ((struct temp_sensor_2 *)sensors->temp.data) + sattr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  274) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  275) 	switch (sattr->nr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  276) 	case 0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  277) 		val = get_unaligned_be32(&temp->sensor_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  278) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  279) 	case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  280) 		val = temp->value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  281) 		if (val == OCC_TEMP_SENSOR_FAULT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  282) 			return -EREMOTEIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  283) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  284) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  285) 		 * VRM doesn't return temperature, only alarm bit. This
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  286) 		 * attribute maps to tempX_alarm instead of tempX_input for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  287) 		 * VRM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  288) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  289) 		if (temp->fru_type != OCC_FRU_TYPE_VRM) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  290) 			/* sensor not ready */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  291) 			if (val == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  292) 				return -EAGAIN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  293) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  294) 			val *= 1000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  295) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  296) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  297) 	case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  298) 		val = temp->fru_type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  299) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  300) 	case 3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  301) 		val = temp->value == OCC_TEMP_SENSOR_FAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  302) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  303) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  304) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  305) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  306) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  307) 	return snprintf(buf, PAGE_SIZE - 1, "%u\n", val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  308) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  309) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  310) static ssize_t occ_show_freq_1(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  311) 			       struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  312) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  313) 	int rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  314) 	u16 val = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  315) 	struct freq_sensor_1 *freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  316) 	struct occ *occ = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  317) 	struct occ_sensors *sensors = &occ->sensors;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  318) 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  319) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  320) 	rc = occ_update_response(occ);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  321) 	if (rc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  322) 		return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  323) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  324) 	freq = ((struct freq_sensor_1 *)sensors->freq.data) + sattr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  325) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  326) 	switch (sattr->nr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  327) 	case 0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  328) 		val = get_unaligned_be16(&freq->sensor_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  329) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  330) 	case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  331) 		val = get_unaligned_be16(&freq->value);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  332) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  333) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  334) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  335) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  336) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  337) 	return snprintf(buf, PAGE_SIZE - 1, "%u\n", val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  338) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  339) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  340) static ssize_t occ_show_freq_2(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  341) 			       struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  342) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  343) 	int rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  344) 	u32 val = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  345) 	struct freq_sensor_2 *freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  346) 	struct occ *occ = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  347) 	struct occ_sensors *sensors = &occ->sensors;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  348) 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  349) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  350) 	rc = occ_update_response(occ);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  351) 	if (rc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  352) 		return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  353) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  354) 	freq = ((struct freq_sensor_2 *)sensors->freq.data) + sattr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  355) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  356) 	switch (sattr->nr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  357) 	case 0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  358) 		val = get_unaligned_be32(&freq->sensor_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  359) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  360) 	case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  361) 		val = get_unaligned_be16(&freq->value);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  362) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  363) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  364) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  365) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  366) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  367) 	return snprintf(buf, PAGE_SIZE - 1, "%u\n", val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  368) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  369) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  370) static ssize_t occ_show_power_1(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  371) 				struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  372) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  373) 	int rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  374) 	u64 val = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  375) 	struct power_sensor_1 *power;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  376) 	struct occ *occ = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  377) 	struct occ_sensors *sensors = &occ->sensors;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  378) 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  379) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  380) 	rc = occ_update_response(occ);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  381) 	if (rc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  382) 		return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  383) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  384) 	power = ((struct power_sensor_1 *)sensors->power.data) + sattr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  385) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  386) 	switch (sattr->nr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  387) 	case 0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  388) 		val = get_unaligned_be16(&power->sensor_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  389) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  390) 	case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  391) 		val = get_unaligned_be32(&power->accumulator) /
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  392) 			get_unaligned_be32(&power->update_tag);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  393) 		val *= 1000000ULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  394) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  395) 	case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  396) 		val = (u64)get_unaligned_be32(&power->update_tag) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  397) 			   occ->powr_sample_time_us;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  398) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  399) 	case 3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  400) 		val = get_unaligned_be16(&power->value) * 1000000ULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  401) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  402) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  403) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  404) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  405) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  406) 	return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  407) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  408) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  409) static u64 occ_get_powr_avg(u64 *accum, u32 *samples)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  410) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  411) 	u64 divisor = get_unaligned_be32(samples);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  412) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  413) 	return (divisor == 0) ? 0 :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  414) 		div64_u64(get_unaligned_be64(accum) * 1000000ULL, divisor);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  415) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  416) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  417) static ssize_t occ_show_power_2(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  418) 				struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  419) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  420) 	int rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  421) 	u64 val = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  422) 	struct power_sensor_2 *power;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  423) 	struct occ *occ = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  424) 	struct occ_sensors *sensors = &occ->sensors;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  425) 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  426) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  427) 	rc = occ_update_response(occ);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  428) 	if (rc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  429) 		return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  430) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  431) 	power = ((struct power_sensor_2 *)sensors->power.data) + sattr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  432) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  433) 	switch (sattr->nr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  434) 	case 0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  435) 		return snprintf(buf, PAGE_SIZE - 1, "%u_%u_%u\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  436) 				get_unaligned_be32(&power->sensor_id),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  437) 				power->function_id, power->apss_channel);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  438) 	case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  439) 		val = occ_get_powr_avg(&power->accumulator,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  440) 				       &power->update_tag);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  441) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  442) 	case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  443) 		val = (u64)get_unaligned_be32(&power->update_tag) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  444) 			   occ->powr_sample_time_us;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  445) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  446) 	case 3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  447) 		val = get_unaligned_be16(&power->value) * 1000000ULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  448) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  449) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  450) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  451) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  452) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  453) 	return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  454) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  455) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  456) static ssize_t occ_show_power_a0(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  457) 				 struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  458) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  459) 	int rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  460) 	u64 val = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  461) 	struct power_sensor_a0 *power;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  462) 	struct occ *occ = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  463) 	struct occ_sensors *sensors = &occ->sensors;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  464) 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  465) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  466) 	rc = occ_update_response(occ);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  467) 	if (rc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  468) 		return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  469) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  470) 	power = ((struct power_sensor_a0 *)sensors->power.data) + sattr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  471) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  472) 	switch (sattr->nr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  473) 	case 0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  474) 		return snprintf(buf, PAGE_SIZE - 1, "%u_system\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  475) 				get_unaligned_be32(&power->sensor_id));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  476) 	case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  477) 		val = occ_get_powr_avg(&power->system.accumulator,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  478) 				       &power->system.update_tag);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  479) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  480) 	case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  481) 		val = (u64)get_unaligned_be32(&power->system.update_tag) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  482) 			   occ->powr_sample_time_us;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  483) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  484) 	case 3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  485) 		val = get_unaligned_be16(&power->system.value) * 1000000ULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  486) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  487) 	case 4:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  488) 		return snprintf(buf, PAGE_SIZE - 1, "%u_proc\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  489) 				get_unaligned_be32(&power->sensor_id));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  490) 	case 5:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  491) 		val = occ_get_powr_avg(&power->proc.accumulator,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  492) 				       &power->proc.update_tag);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  493) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  494) 	case 6:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  495) 		val = (u64)get_unaligned_be32(&power->proc.update_tag) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  496) 			   occ->powr_sample_time_us;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  497) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  498) 	case 7:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  499) 		val = get_unaligned_be16(&power->proc.value) * 1000000ULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  500) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  501) 	case 8:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  502) 		return snprintf(buf, PAGE_SIZE - 1, "%u_vdd\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  503) 				get_unaligned_be32(&power->sensor_id));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  504) 	case 9:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  505) 		val = occ_get_powr_avg(&power->vdd.accumulator,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  506) 				       &power->vdd.update_tag);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  507) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  508) 	case 10:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  509) 		val = (u64)get_unaligned_be32(&power->vdd.update_tag) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  510) 			   occ->powr_sample_time_us;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  511) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  512) 	case 11:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  513) 		val = get_unaligned_be16(&power->vdd.value) * 1000000ULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  514) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  515) 	case 12:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  516) 		return snprintf(buf, PAGE_SIZE - 1, "%u_vdn\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  517) 				get_unaligned_be32(&power->sensor_id));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  518) 	case 13:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  519) 		val = occ_get_powr_avg(&power->vdn.accumulator,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  520) 				       &power->vdn.update_tag);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  521) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  522) 	case 14:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  523) 		val = (u64)get_unaligned_be32(&power->vdn.update_tag) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  524) 			   occ->powr_sample_time_us;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  525) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  526) 	case 15:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  527) 		val = get_unaligned_be16(&power->vdn.value) * 1000000ULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  528) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  529) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  530) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  531) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  532) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  533) 	return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  534) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  535) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  536) static ssize_t occ_show_caps_1_2(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  537) 				 struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  538) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  539) 	int rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  540) 	u64 val = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  541) 	struct caps_sensor_2 *caps;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  542) 	struct occ *occ = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  543) 	struct occ_sensors *sensors = &occ->sensors;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  544) 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  545) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  546) 	rc = occ_update_response(occ);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  547) 	if (rc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  548) 		return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  549) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  550) 	caps = ((struct caps_sensor_2 *)sensors->caps.data) + sattr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  551) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  552) 	switch (sattr->nr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  553) 	case 0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  554) 		return snprintf(buf, PAGE_SIZE - 1, "system\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  555) 	case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  556) 		val = get_unaligned_be16(&caps->cap) * 1000000ULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  557) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  558) 	case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  559) 		val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  560) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  561) 	case 3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  562) 		val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  563) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  564) 	case 4:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  565) 		val = get_unaligned_be16(&caps->max) * 1000000ULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  566) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  567) 	case 5:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  568) 		val = get_unaligned_be16(&caps->min) * 1000000ULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  569) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  570) 	case 6:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  571) 		val = get_unaligned_be16(&caps->user) * 1000000ULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  572) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  573) 	case 7:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  574) 		if (occ->sensors.caps.version == 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  575) 			return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  576) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  577) 		val = caps->user_source;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  578) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  579) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  580) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  581) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  582) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  583) 	return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  584) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  585) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  586) static ssize_t occ_show_caps_3(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  587) 			       struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  588) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  589) 	int rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  590) 	u64 val = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  591) 	struct caps_sensor_3 *caps;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  592) 	struct occ *occ = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  593) 	struct occ_sensors *sensors = &occ->sensors;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  594) 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  595) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  596) 	rc = occ_update_response(occ);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  597) 	if (rc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  598) 		return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  599) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  600) 	caps = ((struct caps_sensor_3 *)sensors->caps.data) + sattr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  601) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  602) 	switch (sattr->nr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  603) 	case 0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  604) 		return snprintf(buf, PAGE_SIZE - 1, "system\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  605) 	case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  606) 		val = get_unaligned_be16(&caps->cap) * 1000000ULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  607) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  608) 	case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  609) 		val = get_unaligned_be16(&caps->system_power) * 1000000ULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  610) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  611) 	case 3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  612) 		val = get_unaligned_be16(&caps->n_cap) * 1000000ULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  613) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  614) 	case 4:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  615) 		val = get_unaligned_be16(&caps->max) * 1000000ULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  616) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  617) 	case 5:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  618) 		val = get_unaligned_be16(&caps->hard_min) * 1000000ULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  619) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  620) 	case 6:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  621) 		val = get_unaligned_be16(&caps->user) * 1000000ULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  622) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  623) 	case 7:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  624) 		val = caps->user_source;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  625) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  626) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  627) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  628) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  629) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  630) 	return snprintf(buf, PAGE_SIZE - 1, "%llu\n", val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  631) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  632) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  633) static ssize_t occ_store_caps_user(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  634) 				   struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  635) 				   const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  636) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  637) 	int rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  638) 	u16 user_power_cap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  639) 	unsigned long long value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  640) 	struct occ *occ = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  641) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  642) 	rc = kstrtoull(buf, 0, &value);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  643) 	if (rc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  644) 		return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  645) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  646) 	user_power_cap = div64_u64(value, 1000000ULL); /* microwatt to watt */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  647) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  648) 	rc = occ_set_user_power_cap(occ, user_power_cap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  649) 	if (rc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  650) 		return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  651) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  652) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  653) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  654) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  655) static ssize_t occ_show_extended(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  656) 				 struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  657) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  658) 	int rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  659) 	struct extended_sensor *extn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  660) 	struct occ *occ = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  661) 	struct occ_sensors *sensors = &occ->sensors;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  662) 	struct sensor_device_attribute_2 *sattr = to_sensor_dev_attr_2(attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  663) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  664) 	rc = occ_update_response(occ);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  665) 	if (rc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  666) 		return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  667) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  668) 	extn = ((struct extended_sensor *)sensors->extended.data) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  669) 		sattr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  670) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  671) 	switch (sattr->nr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  672) 	case 0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  673) 		if (extn->flags & EXTN_FLAG_SENSOR_ID)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  674) 			rc = snprintf(buf, PAGE_SIZE - 1, "%u",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  675) 				      get_unaligned_be32(&extn->sensor_id));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  676) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  677) 			rc = snprintf(buf, PAGE_SIZE - 1, "%02x%02x%02x%02x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  678) 				      extn->name[0], extn->name[1],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  679) 				      extn->name[2], extn->name[3]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  680) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  681) 	case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  682) 		rc = snprintf(buf, PAGE_SIZE - 1, "%02x\n", extn->flags);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  683) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  684) 	case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  685) 		rc = snprintf(buf, PAGE_SIZE - 1, "%02x%02x%02x%02x%02x%02x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  686) 			      extn->data[0], extn->data[1], extn->data[2],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  687) 			      extn->data[3], extn->data[4], extn->data[5]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  688) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  689) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  690) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  691) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  692) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  693) 	return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  694) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  695) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  696) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  697)  * Some helper macros to make it easier to define an occ_attribute. Since these
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  698)  * are dynamically allocated, we shouldn't use the existing kernel macros which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  699)  * stringify the name argument.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  700)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  701) #define ATTR_OCC(_name, _mode, _show, _store) {				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  702) 	.attr	= {							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  703) 		.name = _name,						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  704) 		.mode = VERIFY_OCTAL_PERMISSIONS(_mode),		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  705) 	},								\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  706) 	.show	= _show,						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  707) 	.store	= _store,						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  708) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  709) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  710) #define SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index) {	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  711) 	.dev_attr	= ATTR_OCC(_name, _mode, _show, _store),	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  712) 	.index		= _index,					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  713) 	.nr		= _nr,						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  714) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  715) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  716) #define OCC_INIT_ATTR(_name, _mode, _show, _store, _nr, _index)		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  717) 	((struct sensor_device_attribute_2)				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  718) 		SENSOR_ATTR_OCC(_name, _mode, _show, _store, _nr, _index))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  719) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  720) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  721)  * Allocate and instatiate sensor_device_attribute_2s. It's most efficient to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  722)  * use our own instead of the built-in hwmon attribute types.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  723)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  724) static int occ_setup_sensor_attrs(struct occ *occ)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  725) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  726) 	unsigned int i, s, num_attrs = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  727) 	struct device *dev = occ->bus_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  728) 	struct occ_sensors *sensors = &occ->sensors;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  729) 	struct occ_attribute *attr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  730) 	struct temp_sensor_2 *temp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  731) 	ssize_t (*show_temp)(struct device *, struct device_attribute *,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  732) 			     char *) = occ_show_temp_1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  733) 	ssize_t (*show_freq)(struct device *, struct device_attribute *,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  734) 			     char *) = occ_show_freq_1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  735) 	ssize_t (*show_power)(struct device *, struct device_attribute *,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  736) 			      char *) = occ_show_power_1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  737) 	ssize_t (*show_caps)(struct device *, struct device_attribute *,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  738) 			     char *) = occ_show_caps_1_2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  739) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  740) 	switch (sensors->temp.version) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  741) 	case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  742) 		num_attrs += (sensors->temp.num_sensors * 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  743) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  744) 	case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  745) 		num_attrs += (sensors->temp.num_sensors * 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  746) 		show_temp = occ_show_temp_2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  747) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  748) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  749) 		sensors->temp.num_sensors = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  750) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  751) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  752) 	switch (sensors->freq.version) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  753) 	case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  754) 		show_freq = occ_show_freq_2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  755) 		fallthrough;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  756) 	case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  757) 		num_attrs += (sensors->freq.num_sensors * 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  758) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  759) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  760) 		sensors->freq.num_sensors = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  761) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  762) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  763) 	switch (sensors->power.version) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  764) 	case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  765) 		show_power = occ_show_power_2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  766) 		fallthrough;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  767) 	case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  768) 		num_attrs += (sensors->power.num_sensors * 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  769) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  770) 	case 0xA0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  771) 		num_attrs += (sensors->power.num_sensors * 16);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  772) 		show_power = occ_show_power_a0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  773) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  774) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  775) 		sensors->power.num_sensors = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  776) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  777) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  778) 	switch (sensors->caps.version) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  779) 	case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  780) 		num_attrs += (sensors->caps.num_sensors * 7);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  781) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  782) 	case 3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  783) 		show_caps = occ_show_caps_3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  784) 		fallthrough;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  785) 	case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  786) 		num_attrs += (sensors->caps.num_sensors * 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  787) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  788) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  789) 		sensors->caps.num_sensors = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  790) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  791) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  792) 	switch (sensors->extended.version) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  793) 	case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  794) 		num_attrs += (sensors->extended.num_sensors * 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  795) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  796) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  797) 		sensors->extended.num_sensors = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  798) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  799) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  800) 	occ->attrs = devm_kzalloc(dev, sizeof(*occ->attrs) * num_attrs,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  801) 				  GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  802) 	if (!occ->attrs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  803) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  804) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  805) 	/* null-terminated list */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  806) 	occ->group.attrs = devm_kzalloc(dev, sizeof(*occ->group.attrs) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  807) 					num_attrs + 1, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  808) 	if (!occ->group.attrs)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  809) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  810) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  811) 	attr = occ->attrs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  812) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  813) 	for (i = 0; i < sensors->temp.num_sensors; ++i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  814) 		s = i + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  815) 		temp = ((struct temp_sensor_2 *)sensors->temp.data) + i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  816) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  817) 		snprintf(attr->name, sizeof(attr->name), "temp%d_label", s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  818) 		attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  819) 					     0, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  820) 		attr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  821) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  822) 		if (sensors->temp.version > 1 &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  823) 		    temp->fru_type == OCC_FRU_TYPE_VRM) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  824) 			snprintf(attr->name, sizeof(attr->name),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  825) 				 "temp%d_alarm", s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  826) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  827) 			snprintf(attr->name, sizeof(attr->name),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  828) 				 "temp%d_input", s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  829) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  830) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  831) 		attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_temp, NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  832) 					     1, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  833) 		attr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  834) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  835) 		if (sensors->temp.version > 1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  836) 			snprintf(attr->name, sizeof(attr->name),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  837) 				 "temp%d_fru_type", s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  838) 			attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  839) 						     show_temp, NULL, 2, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  840) 			attr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  841) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  842) 			snprintf(attr->name, sizeof(attr->name),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  843) 				 "temp%d_fault", s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  844) 			attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  845) 						     show_temp, NULL, 3, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  846) 			attr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  847) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  848) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  849) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  850) 	for (i = 0; i < sensors->freq.num_sensors; ++i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  851) 		s = i + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  852) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  853) 		snprintf(attr->name, sizeof(attr->name), "freq%d_label", s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  854) 		attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  855) 					     0, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  856) 		attr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  857) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  858) 		snprintf(attr->name, sizeof(attr->name), "freq%d_input", s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  859) 		attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_freq, NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  860) 					     1, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  861) 		attr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  862) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  863) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  864) 	if (sensors->power.version == 0xA0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  865) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  866) 		 * Special case for many-attribute power sensor. Split it into
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  867) 		 * a sensor number per power type, emulating several sensors.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  868) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  869) 		for (i = 0; i < sensors->power.num_sensors; ++i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  870) 			unsigned int j;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  871) 			unsigned int nr = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  872) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  873) 			s = (i * 4) + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  874) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  875) 			for (j = 0; j < 4; ++j) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  876) 				snprintf(attr->name, sizeof(attr->name),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  877) 					 "power%d_label", s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  878) 				attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  879) 							     show_power, NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  880) 							     nr++, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  881) 				attr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  882) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  883) 				snprintf(attr->name, sizeof(attr->name),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  884) 					 "power%d_average", s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  885) 				attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  886) 							     show_power, NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  887) 							     nr++, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  888) 				attr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  889) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  890) 				snprintf(attr->name, sizeof(attr->name),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  891) 					 "power%d_average_interval", s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  892) 				attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  893) 							     show_power, NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  894) 							     nr++, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  895) 				attr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  896) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  897) 				snprintf(attr->name, sizeof(attr->name),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  898) 					 "power%d_input", s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  899) 				attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  900) 							     show_power, NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  901) 							     nr++, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  902) 				attr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  903) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  904) 				s++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  905) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  906) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  907) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  908) 		s = (sensors->power.num_sensors * 4) + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  909) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  910) 		for (i = 0; i < sensors->power.num_sensors; ++i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  911) 			s = i + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  912) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  913) 			snprintf(attr->name, sizeof(attr->name),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  914) 				 "power%d_label", s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  915) 			attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  916) 						     show_power, NULL, 0, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  917) 			attr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  918) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  919) 			snprintf(attr->name, sizeof(attr->name),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  920) 				 "power%d_average", s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  921) 			attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  922) 						     show_power, NULL, 1, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  923) 			attr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  924) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  925) 			snprintf(attr->name, sizeof(attr->name),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  926) 				 "power%d_average_interval", s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  927) 			attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  928) 						     show_power, NULL, 2, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  929) 			attr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  930) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  931) 			snprintf(attr->name, sizeof(attr->name),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  932) 				 "power%d_input", s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  933) 			attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  934) 						     show_power, NULL, 3, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  935) 			attr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  936) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  937) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  938) 		s = sensors->power.num_sensors + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  939) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  940) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  941) 	if (sensors->caps.num_sensors >= 1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  942) 		snprintf(attr->name, sizeof(attr->name), "power%d_label", s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  943) 		attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  944) 					     0, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  945) 		attr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  946) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  947) 		snprintf(attr->name, sizeof(attr->name), "power%d_cap", s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  948) 		attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  949) 					     1, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  950) 		attr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  951) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  952) 		snprintf(attr->name, sizeof(attr->name), "power%d_input", s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  953) 		attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  954) 					     2, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  955) 		attr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  956) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  957) 		snprintf(attr->name, sizeof(attr->name),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  958) 			 "power%d_cap_not_redundant", s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  959) 		attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  960) 					     3, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  961) 		attr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  962) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  963) 		snprintf(attr->name, sizeof(attr->name), "power%d_cap_max", s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  964) 		attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  965) 					     4, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  966) 		attr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  967) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  968) 		snprintf(attr->name, sizeof(attr->name), "power%d_cap_min", s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  969) 		attr->sensor = OCC_INIT_ATTR(attr->name, 0444, show_caps, NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  970) 					     5, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  971) 		attr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  972) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  973) 		snprintf(attr->name, sizeof(attr->name), "power%d_cap_user",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  974) 			 s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  975) 		attr->sensor = OCC_INIT_ATTR(attr->name, 0644, show_caps,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  976) 					     occ_store_caps_user, 6, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  977) 		attr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  978) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  979) 		if (sensors->caps.version > 1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  980) 			snprintf(attr->name, sizeof(attr->name),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  981) 				 "power%d_cap_user_source", s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  982) 			attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  983) 						     show_caps, NULL, 7, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  984) 			attr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  985) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  986) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  987) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  988) 	for (i = 0; i < sensors->extended.num_sensors; ++i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  989) 		s = i + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  990) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  991) 		snprintf(attr->name, sizeof(attr->name), "extn%d_label", s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  992) 		attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  993) 					     occ_show_extended, NULL, 0, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  994) 		attr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  995) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  996) 		snprintf(attr->name, sizeof(attr->name), "extn%d_flags", s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  997) 		attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  998) 					     occ_show_extended, NULL, 1, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  999) 		attr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) 		snprintf(attr->name, sizeof(attr->name), "extn%d_input", s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) 		attr->sensor = OCC_INIT_ATTR(attr->name, 0444,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) 					     occ_show_extended, NULL, 2, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) 		attr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) 	/* put the sensors in the group */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008) 	for (i = 0; i < num_attrs; ++i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) 		sysfs_attr_init(&occ->attrs[i].sensor.dev_attr.attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) 		occ->group.attrs[i] = &occ->attrs[i].sensor.dev_attr.attr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016) /* only need to do this once at startup, as OCC won't change sensors on us */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017) static void occ_parse_poll_response(struct occ *occ)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019) 	unsigned int i, old_offset, offset = 0, size = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020) 	struct occ_sensor *sensor;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021) 	struct occ_sensors *sensors = &occ->sensors;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022) 	struct occ_response *resp = &occ->resp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) 	struct occ_poll_response *poll =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) 		(struct occ_poll_response *)&resp->data[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) 	struct occ_poll_response_header *header = &poll->header;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) 	struct occ_sensor_data_block *block = &poll->block;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) 	dev_info(occ->bus_dev, "OCC found, code level: %.16s\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029) 		 header->occ_code_level);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031) 	for (i = 0; i < header->num_sensor_data_blocks; ++i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032) 		block = (struct occ_sensor_data_block *)((u8 *)block + offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033) 		old_offset = offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) 		offset = (block->header.num_sensors *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035) 			  block->header.sensor_length) + sizeof(block->header);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036) 		size += offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038) 		/* validate all the length/size fields */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039) 		if ((size + sizeof(*header)) >= OCC_RESP_DATA_BYTES) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040) 			dev_warn(occ->bus_dev, "exceeded response buffer\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041) 			return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044) 		dev_dbg(occ->bus_dev, " %04x..%04x: %.4s (%d sensors)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045) 			old_offset, offset - 1, block->header.eye_catcher,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046) 			block->header.num_sensors);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048) 		/* match sensor block type */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049) 		if (strncmp(block->header.eye_catcher, "TEMP", 4) == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050) 			sensor = &sensors->temp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051) 		else if (strncmp(block->header.eye_catcher, "FREQ", 4) == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052) 			sensor = &sensors->freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053) 		else if (strncmp(block->header.eye_catcher, "POWR", 4) == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054) 			sensor = &sensors->power;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055) 		else if (strncmp(block->header.eye_catcher, "CAPS", 4) == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056) 			sensor = &sensors->caps;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057) 		else if (strncmp(block->header.eye_catcher, "EXTN", 4) == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058) 			sensor = &sensors->extended;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) 		else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060) 			dev_warn(occ->bus_dev, "sensor not supported %.4s\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) 				 block->header.eye_catcher);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) 		sensor->num_sensors = block->header.num_sensors;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) 		sensor->version = block->header.sensor_format;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) 		sensor->data = &block->data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) 	dev_dbg(occ->bus_dev, "Max resp size: %u+%zd=%zd\n", size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) 		sizeof(*header), size + sizeof(*header));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) int occ_setup(struct occ *occ, const char *name)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) 	int rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078) 	mutex_init(&occ->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) 	occ->groups[0] = &occ->group;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) 	/* no need to lock */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) 	rc = occ_poll(occ);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) 	if (rc == -ESHUTDOWN) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) 		dev_info(occ->bus_dev, "host is not ready\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) 		return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086) 	} else if (rc < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) 		dev_err(occ->bus_dev, "failed to get OCC poll response: %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088) 			rc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) 		return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) 	occ->next_update = jiffies + OCC_UPDATE_FREQUENCY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) 	occ_parse_poll_response(occ);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) 	rc = occ_setup_sensor_attrs(occ);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096) 	if (rc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097) 		dev_err(occ->bus_dev, "failed to setup sensor attrs: %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098) 			rc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099) 		return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102) 	occ->hwmon = devm_hwmon_device_register_with_groups(occ->bus_dev, name,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103) 							    occ, occ->groups);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104) 	if (IS_ERR(occ->hwmon)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105) 		rc = PTR_ERR(occ->hwmon);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106) 		dev_err(occ->bus_dev, "failed to register hwmon device: %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) 			rc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108) 		return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111) 	rc = occ_setup_sysfs(occ);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112) 	if (rc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) 		dev_err(occ->bus_dev, "failed to setup sysfs: %d\n", rc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115) 	return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) EXPORT_SYMBOL_GPL(occ_setup);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119) MODULE_AUTHOR("Eddie James <eajames@linux.ibm.com>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) MODULE_DESCRIPTION("Common OCC hwmon code");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) MODULE_LICENSE("GPL");