^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) // SPDX-License-Identifier: GPL-2.0-or-later
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * lm85.c - Part of lm_sensors, Linux kernel modules for hardware
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) * monitoring
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) * Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) * Copyright (c) 2002, 2003 Philip Pokorny <ppokorny@penguincomputing.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) * Copyright (c) 2003 Margit Schubert-While <margitsw@t-online.de>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) * Copyright (c) 2004 Justin Thiessen <jthiessen@penguincomputing.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) * Copyright (C) 2007--2014 Jean Delvare <jdelvare@suse.de>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) * Chip details at <http://www.national.com/ds/LM/LM85.pdf>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) #include <linux/of_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) #include <linux/jiffies.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) #include <linux/i2c.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) #include <linux/hwmon.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) #include <linux/hwmon-vid.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) #include <linux/hwmon-sysfs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) #include <linux/err.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) #include <linux/mutex.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) #include <linux/util_macros.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) /* Addresses to scan */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) enum chips {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) lm85, lm96000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) adm1027, adt7463, adt7468,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) emc6d100, emc6d102, emc6d103, emc6d103s
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) /* The LM85 registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) #define LM85_REG_IN(nr) (0x20 + (nr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) #define LM85_REG_IN_MIN(nr) (0x44 + (nr) * 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) #define LM85_REG_IN_MAX(nr) (0x45 + (nr) * 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) #define LM85_REG_TEMP(nr) (0x25 + (nr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) #define LM85_REG_TEMP_MIN(nr) (0x4e + (nr) * 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) #define LM85_REG_TEMP_MAX(nr) (0x4f + (nr) * 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) /* Fan speeds are LSB, MSB (2 bytes) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) #define LM85_REG_FAN(nr) (0x28 + (nr) * 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) #define LM85_REG_FAN_MIN(nr) (0x54 + (nr) * 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) #define LM85_REG_PWM(nr) (0x30 + (nr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) #define LM85_REG_COMPANY 0x3e
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) #define LM85_REG_VERSTEP 0x3f
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) #define ADT7468_REG_CFG5 0x7c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) #define ADT7468_OFF64 (1 << 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) #define ADT7468_HFPWM (1 << 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) #define IS_ADT7468_OFF64(data) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) #define IS_ADT7468_HFPWM(data) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) /* These are the recognized values for the above regs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) #define LM85_COMPANY_NATIONAL 0x01
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) #define LM85_COMPANY_ANALOG_DEV 0x41
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) #define LM85_COMPANY_SMSC 0x5c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) #define LM85_VERSTEP_LM85C 0x60
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) #define LM85_VERSTEP_LM85B 0x62
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) #define LM85_VERSTEP_LM96000_1 0x68
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) #define LM85_VERSTEP_LM96000_2 0x69
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) #define LM85_VERSTEP_ADM1027 0x60
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) #define LM85_VERSTEP_ADT7463 0x62
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) #define LM85_VERSTEP_ADT7463C 0x6A
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) #define LM85_VERSTEP_ADT7468_1 0x71
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) #define LM85_VERSTEP_ADT7468_2 0x72
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) #define LM85_VERSTEP_EMC6D100_A0 0x60
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) #define LM85_VERSTEP_EMC6D100_A1 0x61
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) #define LM85_VERSTEP_EMC6D102 0x65
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) #define LM85_VERSTEP_EMC6D103_A0 0x68
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) #define LM85_VERSTEP_EMC6D103_A1 0x69
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) #define LM85_VERSTEP_EMC6D103S 0x6A /* Also known as EMC6D103:A2 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) #define LM85_REG_CONFIG 0x40
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) #define LM85_REG_ALARM1 0x41
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) #define LM85_REG_ALARM2 0x42
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) #define LM85_REG_VID 0x43
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) /* Automated FAN control */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) #define LM85_REG_AFAN_CONFIG(nr) (0x5c + (nr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) #define LM85_REG_AFAN_RANGE(nr) (0x5f + (nr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) #define LM85_REG_AFAN_SPIKE1 0x62
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) #define LM85_REG_AFAN_MINPWM(nr) (0x64 + (nr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) #define LM85_REG_AFAN_LIMIT(nr) (0x67 + (nr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) #define LM85_REG_AFAN_CRITICAL(nr) (0x6a + (nr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) #define LM85_REG_AFAN_HYST1 0x6d
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) #define LM85_REG_AFAN_HYST2 0x6e
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) #define ADM1027_REG_EXTEND_ADC1 0x76
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) #define ADM1027_REG_EXTEND_ADC2 0x77
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) #define EMC6D100_REG_ALARM3 0x7d
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) /* IN5, IN6 and IN7 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) #define EMC6D100_REG_IN(nr) (0x70 + ((nr) - 5))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) #define EMC6D100_REG_IN_MIN(nr) (0x73 + ((nr) - 5) * 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) #define EMC6D100_REG_IN_MAX(nr) (0x74 + ((nr) - 5) * 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) #define EMC6D102_REG_EXTEND_ADC1 0x85
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) #define EMC6D102_REG_EXTEND_ADC2 0x86
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) #define EMC6D102_REG_EXTEND_ADC3 0x87
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) #define EMC6D102_REG_EXTEND_ADC4 0x88
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) * Conversions. Rounding and limit checking is only done on the TO_REG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) * variants. Note that you should be a bit careful with which arguments
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) * these macros are called: arguments may be evaluated more than once.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) /* IN are scaled according to built-in resistors */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) static const int lm85_scaling[] = { /* .001 Volts */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 2500, 2250, 3300, 5000, 12000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 3300, 1500, 1800 /*EMC6D100*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) #define SCALE(val, from, to) (((val) * (to) + ((from) / 2)) / (from))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) #define INS_TO_REG(n, val) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) SCALE(clamp_val(val, 0, 255 * lm85_scaling[n] / 192), \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) lm85_scaling[n], 192)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) #define INSEXT_FROM_REG(n, val, ext) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) #define INS_FROM_REG(n, val) SCALE((val), 192, lm85_scaling[n])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) /* FAN speed is measured using 90kHz clock */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) static inline u16 FAN_TO_REG(unsigned long val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) if (!val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) return 0xffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) return clamp_val(5400000 / val, 1, 0xfffe);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) #define FAN_FROM_REG(val) ((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 5400000 / (val))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) /* Temperature is reported in .001 degC increments */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) #define TEMP_TO_REG(val) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) DIV_ROUND_CLOSEST(clamp_val((val), -127000, 127000), 1000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) #define TEMPEXT_FROM_REG(val, ext) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) SCALE(((val) << 4) + (ext), 16, 1000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) #define TEMP_FROM_REG(val) ((val) * 1000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) #define PWM_TO_REG(val) clamp_val(val, 0, 255)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) #define PWM_FROM_REG(val) (val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) * ZONEs have the following parameters:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) * Limit (low) temp, 1. degC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) * Hysteresis (below limit), 1. degC (0-15)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) * Range of speed control, .1 degC (2-80)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) * Critical (high) temp, 1. degC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) * FAN PWMs have the following parameters:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) * Reference Zone, 1, 2, 3, etc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) * Spinup time, .05 sec
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) * PWM value at limit/low temp, 1 count
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) * PWM Frequency, 1. Hz
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) * PWM is Min or OFF below limit, flag
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) * Invert PWM output, flag
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) * Some chips filter the temp, others the fan.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) * Filter constant (or disabled) .1 seconds
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) /* These are the zone temperature range encodings in .001 degree C */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) static const int lm85_range_map[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) static int RANGE_TO_REG(long range)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) return find_closest(range, lm85_range_map, ARRAY_SIZE(lm85_range_map));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) #define RANGE_FROM_REG(val) lm85_range_map[(val) & 0x0f]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) /* These are the PWM frequency encodings */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) static const int lm85_freq_map[] = { /* 1 Hz */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 10, 15, 23, 30, 38, 47, 61, 94
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) static const int lm96000_freq_map[] = { /* 1 Hz */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 10, 15, 23, 30, 38, 47, 61, 94,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 22500, 24000, 25700, 25700, 27700, 27700, 30000, 30000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) static const int adm1027_freq_map[] = { /* 1 Hz */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 11, 15, 22, 29, 35, 44, 59, 88
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) static int FREQ_TO_REG(const int *map,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) unsigned int map_size, unsigned long freq)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) return find_closest(freq, map, map_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) static int FREQ_FROM_REG(const int *map, unsigned int map_size, u8 reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) return map[reg % map_size];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) * Since we can't use strings, I'm abusing these numbers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) * to stand in for the following meanings:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) * 1 -- PWM responds to Zone 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) * 2 -- PWM responds to Zone 2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) * 3 -- PWM responds to Zone 3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) * 23 -- PWM responds to the higher temp of Zone 2 or 3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) * 123 -- PWM responds to highest of Zone 1, 2, or 3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) * 0 -- PWM is always at 0% (ie, off)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) * -1 -- PWM is always at 100%
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) * -2 -- PWM responds to manual control
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) #define ZONE_FROM_REG(val) lm85_zone_map[(val) >> 5]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) static int ZONE_TO_REG(int zone)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) for (i = 0; i <= 7; ++i)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) if (zone == lm85_zone_map[i])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) if (i > 7) /* Not found. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) i = 3; /* Always 100% */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) return i << 5;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) #define HYST_TO_REG(val) clamp_val(((val) + 500) / 1000, 0, 15)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) #define HYST_FROM_REG(val) ((val) * 1000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) * Chip sampling rates
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) * Some sensors are not updated more frequently than once per second
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) * so it doesn't make sense to read them more often than that.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) * We cache the results and return the saved data if the driver
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) * is called again before a second has elapsed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) * Also, there is significant configuration data for this chip
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) * given the automatic PWM fan control that is possible. There
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) * are about 47 bytes of config data to only 22 bytes of actual
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) * readings. So, we keep the config data up to date in the cache
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) * when it is written and only sample it once every 1 *minute*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) #define LM85_DATA_INTERVAL (HZ + HZ / 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) #define LM85_CONFIG_INTERVAL (1 * 60 * HZ)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) * LM85 can automatically adjust fan speeds based on temperature
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) * This structure encapsulates an entire Zone config. There are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) * three zones (one for each temperature input) on the lm85
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) struct lm85_zone {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) s8 limit; /* Low temp limit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) u8 hyst; /* Low limit hysteresis. (0-15) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) u8 range; /* Temp range, encoded */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) s8 critical; /* "All fans ON" temp limit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) u8 max_desired; /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) * Actual "max" temperature specified. Preserved
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) * to prevent "drift" as other autofan control
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) * values change.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) struct lm85_autofan {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) u8 config; /* Register value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) u8 min_pwm; /* Minimum PWM value, encoded */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) u8 min_off; /* Min PWM or OFF below "limit", flag */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) * For each registered chip, we need to keep some data in memory.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) * The structure is dynamically allocated.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) struct lm85_data {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) struct i2c_client *client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) const struct attribute_group *groups[6];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) const int *freq_map;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) unsigned int freq_map_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) enum chips type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) bool has_vid5; /* true if VID5 is configured for ADT7463 or ADT7468 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) struct mutex update_lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) int valid; /* !=0 if following fields are valid */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) unsigned long last_reading; /* In jiffies */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) unsigned long last_config; /* In jiffies */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) u8 in[8]; /* Register value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) u8 in_max[8]; /* Register value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) u8 in_min[8]; /* Register value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) s8 temp[3]; /* Register value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) s8 temp_min[3]; /* Register value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) s8 temp_max[3]; /* Register value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) u16 fan[4]; /* Register value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) u16 fan_min[4]; /* Register value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) u8 pwm[3]; /* Register value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) u8 pwm_freq[3]; /* Register encoding */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) u8 temp_ext[3]; /* Decoded values */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) u8 in_ext[8]; /* Decoded values */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) u8 vid; /* Register value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) u8 vrm; /* VRM version */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) u32 alarms; /* Register encoding, combined */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) u8 cfg5; /* Config Register 5 on ADT7468 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) struct lm85_autofan autofan[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) struct lm85_zone zone[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) static int lm85_read_value(struct i2c_client *client, u8 reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) int res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) /* What size location is it? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) switch (reg) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) case LM85_REG_FAN(0): /* Read WORD data */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) case LM85_REG_FAN(1):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) case LM85_REG_FAN(2):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) case LM85_REG_FAN(3):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) case LM85_REG_FAN_MIN(0):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) case LM85_REG_FAN_MIN(1):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) case LM85_REG_FAN_MIN(2):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) case LM85_REG_FAN_MIN(3):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) case LM85_REG_ALARM1: /* Read both bytes at once */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) res = i2c_smbus_read_byte_data(client, reg) & 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) default: /* Read BYTE data */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) res = i2c_smbus_read_byte_data(client, reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) return res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) switch (reg) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) case LM85_REG_FAN(0): /* Write WORD data */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) case LM85_REG_FAN(1):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) case LM85_REG_FAN(2):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) case LM85_REG_FAN(3):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) case LM85_REG_FAN_MIN(0):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) case LM85_REG_FAN_MIN(1):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) case LM85_REG_FAN_MIN(2):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) case LM85_REG_FAN_MIN(3):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) /* NOTE: ALARM is read only, so not included here */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) i2c_smbus_write_byte_data(client, reg, value & 0xff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) default: /* Write BYTE data */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) i2c_smbus_write_byte_data(client, reg, value);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) static struct lm85_data *lm85_update_device(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) struct lm85_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) struct i2c_client *client = data->client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) if (!data->valid ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) /* Things that change quickly */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) dev_dbg(&client->dev, "Reading sensor values\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) * Have to read extended bits first to "freeze" the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) * more significant bits that are read later.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) * There are 2 additional resolution bits per channel and we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) * have room for 4, so we shift them to the left.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) if (data->type == adm1027 || data->type == adt7463 ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) data->type == adt7468) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) int ext1 = lm85_read_value(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) ADM1027_REG_EXTEND_ADC1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) int ext2 = lm85_read_value(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) ADM1027_REG_EXTEND_ADC2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) int val = (ext1 << 8) + ext2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) for (i = 0; i <= 4; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) data->in_ext[i] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) ((val >> (i * 2)) & 0x03) << 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) for (i = 0; i <= 2; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) data->temp_ext[i] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) (val >> ((i + 4) * 2)) & 0x0c;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) data->vid = lm85_read_value(client, LM85_REG_VID);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) for (i = 0; i <= 3; ++i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) data->in[i] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) lm85_read_value(client, LM85_REG_IN(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) data->fan[i] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) lm85_read_value(client, LM85_REG_FAN(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) if (!data->has_vid5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) data->in[4] = lm85_read_value(client, LM85_REG_IN(4));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) if (data->type == adt7468)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) for (i = 0; i <= 2; ++i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) data->temp[i] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) lm85_read_value(client, LM85_REG_TEMP(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) data->pwm[i] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) lm85_read_value(client, LM85_REG_PWM(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) if (IS_ADT7468_OFF64(data))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) data->temp[i] -= 64;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) if (data->type == emc6d100) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) /* Three more voltage sensors */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) for (i = 5; i <= 7; ++i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) data->in[i] = lm85_read_value(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) EMC6D100_REG_IN(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) /* More alarm bits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) data->alarms |= lm85_read_value(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) EMC6D100_REG_ALARM3) << 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) } else if (data->type == emc6d102 || data->type == emc6d103 ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) data->type == emc6d103s) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) * Have to read LSB bits after the MSB ones because
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) * the reading of the MSB bits has frozen the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) * LSBs (backward from the ADM1027).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) int ext1 = lm85_read_value(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) EMC6D102_REG_EXTEND_ADC1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) int ext2 = lm85_read_value(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) EMC6D102_REG_EXTEND_ADC2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) int ext3 = lm85_read_value(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) EMC6D102_REG_EXTEND_ADC3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) int ext4 = lm85_read_value(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) EMC6D102_REG_EXTEND_ADC4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) data->in_ext[0] = ext3 & 0x0f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) data->in_ext[1] = ext4 & 0x0f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) data->in_ext[2] = ext4 >> 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) data->in_ext[3] = ext3 >> 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) data->in_ext[4] = ext2 >> 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) data->temp_ext[0] = ext1 & 0x0f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) data->temp_ext[1] = ext2 & 0x0f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) data->temp_ext[2] = ext1 >> 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) data->last_reading = jiffies;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) } /* last_reading */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) if (!data->valid ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) /* Things that don't change often */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) dev_dbg(&client->dev, "Reading config values\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) for (i = 0; i <= 3; ++i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) data->in_min[i] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) lm85_read_value(client, LM85_REG_IN_MIN(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) data->in_max[i] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) lm85_read_value(client, LM85_REG_IN_MAX(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) data->fan_min[i] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) lm85_read_value(client, LM85_REG_FAN_MIN(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) if (!data->has_vid5) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) data->in_min[4] = lm85_read_value(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) LM85_REG_IN_MIN(4));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) data->in_max[4] = lm85_read_value(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) LM85_REG_IN_MAX(4));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) if (data->type == emc6d100) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) for (i = 5; i <= 7; ++i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) data->in_min[i] = lm85_read_value(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) EMC6D100_REG_IN_MIN(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) data->in_max[i] = lm85_read_value(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) EMC6D100_REG_IN_MAX(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) for (i = 0; i <= 2; ++i) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) int val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) data->temp_min[i] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) lm85_read_value(client, LM85_REG_TEMP_MIN(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) data->temp_max[i] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) lm85_read_value(client, LM85_REG_TEMP_MAX(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) data->autofan[i].config =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) data->pwm_freq[i] = val % data->freq_map_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) data->zone[i].range = val >> 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) data->autofan[i].min_pwm =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) data->zone[i].limit =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) data->zone[i].critical =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) if (IS_ADT7468_OFF64(data)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) data->temp_min[i] -= 64;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) data->temp_max[i] -= 64;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) data->zone[i].limit -= 64;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) data->zone[i].critical -= 64;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) if (data->type != emc6d103s) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) data->autofan[0].min_off = (i & 0x20) != 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) data->autofan[1].min_off = (i & 0x40) != 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) data->autofan[2].min_off = (i & 0x80) != 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) data->zone[0].hyst = i >> 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) data->zone[1].hyst = i & 0x0f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) data->zone[2].hyst = i >> 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) data->last_config = jiffies;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) } /* last_config */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) data->valid = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) return data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) /* 4 Fans */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) static ssize_t fan_show(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) struct lm85_data *data = lm85_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) struct lm85_data *data = lm85_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) static ssize_t fan_min_store(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) struct device_attribute *attr, const char *buf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) struct lm85_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) struct i2c_client *client = data->client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) unsigned long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) err = kstrtoul(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) data->fan_min[nr] = FAN_TO_REG(val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) static SENSOR_DEVICE_ATTR_RO(fan3_input, fan, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) static SENSOR_DEVICE_ATTR_RW(fan3_min, fan_min, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) static SENSOR_DEVICE_ATTR_RO(fan4_input, fan, 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) static SENSOR_DEVICE_ATTR_RW(fan4_min, fan_min, 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) /* vid, vrm, alarms */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600) static ssize_t cpu0_vid_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603) struct lm85_data *data = lm85_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) int vid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) if (data->has_vid5) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) /* 6-pin VID (VRM 10) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) vid = vid_from_reg(data->vid & 0x3f, data->vrm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) /* 5-pin VID (VRM 9) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611) vid = vid_from_reg(data->vid & 0x1f, data->vrm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614) return sprintf(buf, "%d\n", vid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) static DEVICE_ATTR_RO(cpu0_vid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619) static ssize_t vrm_show(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620) char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622) struct lm85_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623) return sprintf(buf, "%ld\n", (long) data->vrm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626) static ssize_t vrm_store(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627) const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629) struct lm85_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630) unsigned long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633) err = kstrtoul(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637) if (val > 255)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640) data->vrm = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641) return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644) static DEVICE_ATTR_RW(vrm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 645)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 646) static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 647) char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 648) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 649) struct lm85_data *data = lm85_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 650) return sprintf(buf, "%u\n", data->alarms);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 651) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 652)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 653) static DEVICE_ATTR_RO(alarms);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 654)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 655) static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 656) char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 657) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 658) int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 659) struct lm85_data *data = lm85_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 660) return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 661) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 662)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 663) static SENSOR_DEVICE_ATTR_RO(in0_alarm, alarm, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 664) static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 665) static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 666) static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm, 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 667) static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm, 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 668) static SENSOR_DEVICE_ATTR_RO(in5_alarm, alarm, 18);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 669) static SENSOR_DEVICE_ATTR_RO(in6_alarm, alarm, 16);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 670) static SENSOR_DEVICE_ATTR_RO(in7_alarm, alarm, 17);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 671) static SENSOR_DEVICE_ATTR_RO(temp1_alarm, alarm, 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 672) static SENSOR_DEVICE_ATTR_RO(temp1_fault, alarm, 14);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 673) static SENSOR_DEVICE_ATTR_RO(temp2_alarm, alarm, 5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 674) static SENSOR_DEVICE_ATTR_RO(temp3_alarm, alarm, 6);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 675) static SENSOR_DEVICE_ATTR_RO(temp3_fault, alarm, 15);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 676) static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 10);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 677) static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 11);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 678) static SENSOR_DEVICE_ATTR_RO(fan3_alarm, alarm, 12);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 679) static SENSOR_DEVICE_ATTR_RO(fan4_alarm, alarm, 13);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 680)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 681) /* pwm */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 682)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 683) static ssize_t pwm_show(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 684) char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 685) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 686) int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 687) struct lm85_data *data = lm85_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 688) return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 689) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 690)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 691) static ssize_t pwm_store(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 692) const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 693) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 694) int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 695) struct lm85_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 696) struct i2c_client *client = data->client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 697) unsigned long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 698) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 699)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 700) err = kstrtoul(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 701) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 702) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 703)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 704) mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 705) data->pwm[nr] = PWM_TO_REG(val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 706) lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 707) mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 708) return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 709) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 710)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 711) static ssize_t pwm_enable_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 712) struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 713) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 714) int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 715) struct lm85_data *data = lm85_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 716) int pwm_zone, enable;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 717)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 718) pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 719) switch (pwm_zone) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 720) case -1: /* PWM is always at 100% */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 721) enable = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 722) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 723) case 0: /* PWM is always at 0% */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 724) case -2: /* PWM responds to manual control */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 725) enable = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 726) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 727) default: /* PWM in automatic mode */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 728) enable = 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 729) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 730) return sprintf(buf, "%d\n", enable);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 731) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 732)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 733) static ssize_t pwm_enable_store(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 734) struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 735) const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 736) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 737) int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 738) struct lm85_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 739) struct i2c_client *client = data->client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 740) u8 config;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 741) unsigned long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 742) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 743)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 744) err = kstrtoul(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 745) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 746) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 747)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 748) switch (val) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 749) case 0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 750) config = 3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 751) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 752) case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 753) config = 7;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 754) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 755) case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 756) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 757) * Here we have to choose arbitrarily one of the 5 possible
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 758) * configurations; I go for the safest
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 759) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 760) config = 6;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 761) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 762) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 763) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 764) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 765)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 766) mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 767) data->autofan[nr].config = lm85_read_value(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 768) LM85_REG_AFAN_CONFIG(nr));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 769) data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 770) | (config << 5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 771) lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 772) data->autofan[nr].config);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 773) mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 774) return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 775) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 776)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 777) static ssize_t pwm_freq_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 778) struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 779) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 780) int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 781) struct lm85_data *data = lm85_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 782) int freq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 783)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 784) if (IS_ADT7468_HFPWM(data))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 785) freq = 22500;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 786) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 787) freq = FREQ_FROM_REG(data->freq_map, data->freq_map_size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 788) data->pwm_freq[nr]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 789)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 790) return sprintf(buf, "%d\n", freq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 791) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 792)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 793) static ssize_t pwm_freq_store(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 794) struct device_attribute *attr, const char *buf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 795) size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 796) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 797) int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 798) struct lm85_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 799) struct i2c_client *client = data->client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 800) unsigned long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 801) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 802)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 803) err = kstrtoul(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 804) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 805) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 806)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 807) mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 808) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 809) * The ADT7468 has a special high-frequency PWM output mode,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 810) * where all PWM outputs are driven by a 22.5 kHz clock.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 811) * This might confuse the user, but there's not much we can do.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 812) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 813) if (data->type == adt7468 && val >= 11300) { /* High freq. mode */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 814) data->cfg5 &= ~ADT7468_HFPWM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 815) lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 816) } else { /* Low freq. mode */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 817) data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 818) data->freq_map_size, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 819) lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 820) (data->zone[nr].range << 4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 821) | data->pwm_freq[nr]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 822) if (data->type == adt7468) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 823) data->cfg5 |= ADT7468_HFPWM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 824) lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 825) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 826) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 827) mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 828) return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 829) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 830)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 831) static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 832) static SENSOR_DEVICE_ATTR_RW(pwm1_enable, pwm_enable, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 833) static SENSOR_DEVICE_ATTR_RW(pwm1_freq, pwm_freq, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 834) static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 835) static SENSOR_DEVICE_ATTR_RW(pwm2_enable, pwm_enable, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 836) static SENSOR_DEVICE_ATTR_RW(pwm2_freq, pwm_freq, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 837) static SENSOR_DEVICE_ATTR_RW(pwm3, pwm, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 838) static SENSOR_DEVICE_ATTR_RW(pwm3_enable, pwm_enable, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 839) static SENSOR_DEVICE_ATTR_RW(pwm3_freq, pwm_freq, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 840)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 841) /* Voltages */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 842)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 843) static ssize_t in_show(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 844) char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 845) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 846) int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 847) struct lm85_data *data = lm85_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 848) return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 849) data->in_ext[nr]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 850) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 851)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 852) static ssize_t in_min_show(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 853) char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 854) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 855) int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 856) struct lm85_data *data = lm85_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 857) return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 858) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 859)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 860) static ssize_t in_min_store(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 861) const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 862) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 863) int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 864) struct lm85_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 865) struct i2c_client *client = data->client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 866) long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 867) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 868)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 869) err = kstrtol(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 870) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 871) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 872)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 873) mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 874) data->in_min[nr] = INS_TO_REG(nr, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 875) lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 876) mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 877) return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 878) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 879)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 880) static ssize_t in_max_show(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 881) char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 882) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 883) int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 884) struct lm85_data *data = lm85_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 885) return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 886) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 887)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 888) static ssize_t in_max_store(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 889) const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 890) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 891) int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 892) struct lm85_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 893) struct i2c_client *client = data->client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 894) long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 895) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 896)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 897) err = kstrtol(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 898) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 899) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 900)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 901) mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 902) data->in_max[nr] = INS_TO_REG(nr, val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 903) lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 904) mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 905) return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 906) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 907)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 908) static SENSOR_DEVICE_ATTR_RO(in0_input, in, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 909) static SENSOR_DEVICE_ATTR_RW(in0_min, in_min, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 910) static SENSOR_DEVICE_ATTR_RW(in0_max, in_max, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 911) static SENSOR_DEVICE_ATTR_RO(in1_input, in, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 912) static SENSOR_DEVICE_ATTR_RW(in1_min, in_min, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 913) static SENSOR_DEVICE_ATTR_RW(in1_max, in_max, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 914) static SENSOR_DEVICE_ATTR_RO(in2_input, in, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 915) static SENSOR_DEVICE_ATTR_RW(in2_min, in_min, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 916) static SENSOR_DEVICE_ATTR_RW(in2_max, in_max, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 917) static SENSOR_DEVICE_ATTR_RO(in3_input, in, 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 918) static SENSOR_DEVICE_ATTR_RW(in3_min, in_min, 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 919) static SENSOR_DEVICE_ATTR_RW(in3_max, in_max, 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 920) static SENSOR_DEVICE_ATTR_RO(in4_input, in, 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 921) static SENSOR_DEVICE_ATTR_RW(in4_min, in_min, 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 922) static SENSOR_DEVICE_ATTR_RW(in4_max, in_max, 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 923) static SENSOR_DEVICE_ATTR_RO(in5_input, in, 5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 924) static SENSOR_DEVICE_ATTR_RW(in5_min, in_min, 5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 925) static SENSOR_DEVICE_ATTR_RW(in5_max, in_max, 5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 926) static SENSOR_DEVICE_ATTR_RO(in6_input, in, 6);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 927) static SENSOR_DEVICE_ATTR_RW(in6_min, in_min, 6);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 928) static SENSOR_DEVICE_ATTR_RW(in6_max, in_max, 6);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 929) static SENSOR_DEVICE_ATTR_RO(in7_input, in, 7);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 930) static SENSOR_DEVICE_ATTR_RW(in7_min, in_min, 7);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 931) static SENSOR_DEVICE_ATTR_RW(in7_max, in_max, 7);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 932)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 933) /* Temps */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 934)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 935) static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 936) char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 937) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 938) int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 939) struct lm85_data *data = lm85_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 940) return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 941) data->temp_ext[nr]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 942) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 943)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 944) static ssize_t temp_min_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 945) struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 946) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 947) int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 948) struct lm85_data *data = lm85_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 949) return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 950) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 951)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 952) static ssize_t temp_min_store(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 953) struct device_attribute *attr, const char *buf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 954) size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 955) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 956) int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 957) struct lm85_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 958) struct i2c_client *client = data->client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 959) long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 960) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 961)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 962) err = kstrtol(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 963) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 964) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 965)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 966) if (IS_ADT7468_OFF64(data))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 967) val += 64;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 968)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 969) mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 970) data->temp_min[nr] = TEMP_TO_REG(val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 971) lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 972) mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 973) return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 974) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 975)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 976) static ssize_t temp_max_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 977) struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 978) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 979) int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 980) struct lm85_data *data = lm85_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 981) return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 982) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 983)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 984) static ssize_t temp_max_store(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 985) struct device_attribute *attr, const char *buf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 986) size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 987) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 988) int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 989) struct lm85_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 990) struct i2c_client *client = data->client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 991) long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 992) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 993)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 994) err = kstrtol(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 995) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 996) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 997)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 998) if (IS_ADT7468_OFF64(data))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 999) val += 64;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) data->temp_max[nr] = TEMP_TO_REG(val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005) return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008) static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011) static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012) static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014) static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_min, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016) static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018) /* Automatic PWM control */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020) static ssize_t pwm_auto_channels_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021) struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022) char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) struct lm85_data *data = lm85_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029) static ssize_t pwm_auto_channels_store(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030) struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031) const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033) int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) struct lm85_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035) struct i2c_client *client = data->client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036) long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039) err = kstrtol(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043) mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044) data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045) | ZONE_TO_REG(val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046) lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047) data->autofan[nr].config);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048) mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049) return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052) static ssize_t pwm_auto_pwm_min_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053) struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055) int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056) struct lm85_data *data = lm85_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057) return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060) static ssize_t pwm_auto_pwm_min_store(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) struct lm85_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) struct i2c_client *client = data->client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) unsigned long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) err = kstrtoul(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) data->autofan[nr].min_pwm = PWM_TO_REG(val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) data->autofan[nr].min_pwm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078) mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) static ssize_t pwm_auto_pwm_minctl_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086) int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) struct lm85_data *data = lm85_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088) return sprintf(buf, "%d\n", data->autofan[nr].min_off);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) static ssize_t pwm_auto_pwm_minctl_store(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096) struct lm85_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097) struct i2c_client *client = data->client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098) u8 tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099) long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102) err = kstrtol(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106) mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) data->autofan[nr].min_off = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108) tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109) tmp &= ~(0x20 << nr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110) if (data->autofan[nr].min_off)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111) tmp |= 0x20 << nr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112) lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114) return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) static SENSOR_DEVICE_ATTR_RW(pwm1_auto_channels, pwm_auto_channels, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118) static SENSOR_DEVICE_ATTR_RW(pwm1_auto_pwm_min, pwm_auto_pwm_min, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119) static SENSOR_DEVICE_ATTR_RW(pwm1_auto_pwm_minctl, pwm_auto_pwm_minctl, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) static SENSOR_DEVICE_ATTR_RW(pwm2_auto_channels, pwm_auto_channels, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) static SENSOR_DEVICE_ATTR_RW(pwm2_auto_pwm_min, pwm_auto_pwm_min, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122) static SENSOR_DEVICE_ATTR_RW(pwm2_auto_pwm_minctl, pwm_auto_pwm_minctl, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123) static SENSOR_DEVICE_ATTR_RW(pwm3_auto_channels, pwm_auto_channels, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124) static SENSOR_DEVICE_ATTR_RW(pwm3_auto_pwm_min, pwm_auto_pwm_min, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125) static SENSOR_DEVICE_ATTR_RW(pwm3_auto_pwm_minctl, pwm_auto_pwm_minctl, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127) /* Temperature settings for automatic PWM control */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129) static ssize_t temp_auto_temp_off_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130) struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131) char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133) int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134) struct lm85_data *data = lm85_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135) return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136) HYST_FROM_REG(data->zone[nr].hyst));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139) static ssize_t temp_auto_temp_off_store(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140) struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141) const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143) int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144) struct lm85_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145) struct i2c_client *client = data->client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146) int min;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147) long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150) err = kstrtol(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154) mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155) min = TEMP_FROM_REG(data->zone[nr].limit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156) data->zone[nr].hyst = HYST_TO_REG(min - val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157) if (nr == 0 || nr == 1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158) lm85_write_value(client, LM85_REG_AFAN_HYST1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159) (data->zone[0].hyst << 4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160) | data->zone[1].hyst);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1162) lm85_write_value(client, LM85_REG_AFAN_HYST2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1163) (data->zone[2].hyst << 4));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1164) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1165) mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1166) return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1167) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1168)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1169) static ssize_t temp_auto_temp_min_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1170) struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1171) char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1172) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1173) int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1174) struct lm85_data *data = lm85_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1175) return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1176) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1177)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1178) static ssize_t temp_auto_temp_min_store(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1179) struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1180) const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1181) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1182) int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1183) struct lm85_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1184) struct i2c_client *client = data->client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1185) long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1186) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1187)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1188) err = kstrtol(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1189) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1190) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1191)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1192) mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1193) data->zone[nr].limit = TEMP_TO_REG(val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1194) lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1195) data->zone[nr].limit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1196)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1197) /* Update temp_auto_max and temp_auto_range */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1198) data->zone[nr].range = RANGE_TO_REG(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1199) TEMP_FROM_REG(data->zone[nr].max_desired) -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1200) TEMP_FROM_REG(data->zone[nr].limit));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1201) lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1202) ((data->zone[nr].range & 0x0f) << 4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1203) | data->pwm_freq[nr]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1204)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1205) mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1206) return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1207) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1208)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1209) static ssize_t temp_auto_temp_max_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1210) struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1211) char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1212) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1213) int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1214) struct lm85_data *data = lm85_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1215) return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1216) RANGE_FROM_REG(data->zone[nr].range));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1217) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1218)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1219) static ssize_t temp_auto_temp_max_store(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1220) struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1221) const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1222) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1223) int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1224) struct lm85_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1225) struct i2c_client *client = data->client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1226) int min;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1227) long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1228) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1229)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1230) err = kstrtol(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1231) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1232) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1233)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1234) mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1235) min = TEMP_FROM_REG(data->zone[nr].limit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1236) data->zone[nr].max_desired = TEMP_TO_REG(val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1237) data->zone[nr].range = RANGE_TO_REG(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1238) val - min);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1239) lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1240) ((data->zone[nr].range & 0x0f) << 4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1241) | data->pwm_freq[nr]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1242) mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1243) return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1244) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1245)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1246) static ssize_t temp_auto_temp_crit_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1247) struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1248) char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1249) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1250) int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1251) struct lm85_data *data = lm85_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1252) return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1253) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1254)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1255) static ssize_t temp_auto_temp_crit_store(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1256) struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1257) const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1258) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1259) int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1260) struct lm85_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1261) struct i2c_client *client = data->client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1262) long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1263) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1264)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1265) err = kstrtol(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1266) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1267) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1268)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1269) mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1270) data->zone[nr].critical = TEMP_TO_REG(val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1271) lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1272) data->zone[nr].critical);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1273) mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1274) return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1275) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1276)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1277) static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_off, temp_auto_temp_off, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1278) static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_min, temp_auto_temp_min, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1279) static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_max, temp_auto_temp_max, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1280) static SENSOR_DEVICE_ATTR_RW(temp1_auto_temp_crit, temp_auto_temp_crit, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1281) static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_off, temp_auto_temp_off, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1282) static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_min, temp_auto_temp_min, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1283) static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_max, temp_auto_temp_max, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1284) static SENSOR_DEVICE_ATTR_RW(temp2_auto_temp_crit, temp_auto_temp_crit, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1285) static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_off, temp_auto_temp_off, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1286) static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_min, temp_auto_temp_min, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1287) static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_max, temp_auto_temp_max, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1288) static SENSOR_DEVICE_ATTR_RW(temp3_auto_temp_crit, temp_auto_temp_crit, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1289)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1290) static struct attribute *lm85_attributes[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1291) &sensor_dev_attr_fan1_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1292) &sensor_dev_attr_fan2_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1293) &sensor_dev_attr_fan3_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1294) &sensor_dev_attr_fan4_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1295) &sensor_dev_attr_fan1_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1296) &sensor_dev_attr_fan2_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1297) &sensor_dev_attr_fan3_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1298) &sensor_dev_attr_fan4_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1299) &sensor_dev_attr_fan1_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1300) &sensor_dev_attr_fan2_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1301) &sensor_dev_attr_fan3_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1302) &sensor_dev_attr_fan4_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1303)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1304) &sensor_dev_attr_pwm1.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1305) &sensor_dev_attr_pwm2.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1306) &sensor_dev_attr_pwm3.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1307) &sensor_dev_attr_pwm1_enable.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1308) &sensor_dev_attr_pwm2_enable.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1309) &sensor_dev_attr_pwm3_enable.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1310) &sensor_dev_attr_pwm1_freq.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1311) &sensor_dev_attr_pwm2_freq.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1312) &sensor_dev_attr_pwm3_freq.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1313)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1314) &sensor_dev_attr_in0_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1315) &sensor_dev_attr_in1_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1316) &sensor_dev_attr_in2_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1317) &sensor_dev_attr_in3_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1318) &sensor_dev_attr_in0_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1319) &sensor_dev_attr_in1_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1320) &sensor_dev_attr_in2_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1321) &sensor_dev_attr_in3_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1322) &sensor_dev_attr_in0_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1323) &sensor_dev_attr_in1_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1324) &sensor_dev_attr_in2_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1325) &sensor_dev_attr_in3_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1326) &sensor_dev_attr_in0_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1327) &sensor_dev_attr_in1_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1328) &sensor_dev_attr_in2_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1329) &sensor_dev_attr_in3_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1330)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1331) &sensor_dev_attr_temp1_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1332) &sensor_dev_attr_temp2_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1333) &sensor_dev_attr_temp3_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1334) &sensor_dev_attr_temp1_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1335) &sensor_dev_attr_temp2_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1336) &sensor_dev_attr_temp3_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1337) &sensor_dev_attr_temp1_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1338) &sensor_dev_attr_temp2_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1339) &sensor_dev_attr_temp3_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1340) &sensor_dev_attr_temp1_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1341) &sensor_dev_attr_temp2_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1342) &sensor_dev_attr_temp3_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1343) &sensor_dev_attr_temp1_fault.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1344) &sensor_dev_attr_temp3_fault.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1345)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1346) &sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1347) &sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1348) &sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1349) &sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1350) &sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1351) &sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1352)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1353) &sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1354) &sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1355) &sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1356) &sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1357) &sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1358) &sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1359) &sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1360) &sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1361) &sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1362)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1363) &dev_attr_vrm.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1364) &dev_attr_cpu0_vid.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1365) &dev_attr_alarms.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1366) NULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1367) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1368)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1369) static const struct attribute_group lm85_group = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1370) .attrs = lm85_attributes,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1371) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1372)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1373) static struct attribute *lm85_attributes_minctl[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1374) &sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1375) &sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1376) &sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1377) NULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1378) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1379)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1380) static const struct attribute_group lm85_group_minctl = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1381) .attrs = lm85_attributes_minctl,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1382) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1383)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1384) static struct attribute *lm85_attributes_temp_off[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1385) &sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1386) &sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1387) &sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1388) NULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1389) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1390)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1391) static const struct attribute_group lm85_group_temp_off = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1392) .attrs = lm85_attributes_temp_off,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1393) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1394)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1395) static struct attribute *lm85_attributes_in4[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1396) &sensor_dev_attr_in4_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1397) &sensor_dev_attr_in4_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1398) &sensor_dev_attr_in4_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1399) &sensor_dev_attr_in4_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1400) NULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1401) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1402)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1403) static const struct attribute_group lm85_group_in4 = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1404) .attrs = lm85_attributes_in4,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1405) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1406)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1407) static struct attribute *lm85_attributes_in567[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1408) &sensor_dev_attr_in5_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1409) &sensor_dev_attr_in6_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1410) &sensor_dev_attr_in7_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1411) &sensor_dev_attr_in5_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1412) &sensor_dev_attr_in6_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1413) &sensor_dev_attr_in7_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1414) &sensor_dev_attr_in5_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1415) &sensor_dev_attr_in6_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1416) &sensor_dev_attr_in7_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1417) &sensor_dev_attr_in5_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1418) &sensor_dev_attr_in6_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1419) &sensor_dev_attr_in7_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1420) NULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1421) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1422)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1423) static const struct attribute_group lm85_group_in567 = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1424) .attrs = lm85_attributes_in567,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1425) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1426)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1427) static void lm85_init_client(struct i2c_client *client)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1428) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1429) int value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1430)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1431) /* Start monitoring if needed */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1432) value = lm85_read_value(client, LM85_REG_CONFIG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1433) if (!(value & 0x01)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1434) dev_info(&client->dev, "Starting monitoring\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1435) lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1436) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1437)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1438) /* Warn about unusual configuration bits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1439) if (value & 0x02)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1440) dev_warn(&client->dev, "Device configuration is locked\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1441) if (!(value & 0x04))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1442) dev_warn(&client->dev, "Device is not ready\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1443) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1444)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1445) static int lm85_is_fake(struct i2c_client *client)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1446) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1447) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1448) * Differenciate between real LM96000 and Winbond WPCD377I. The latter
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1449) * emulate the former except that it has no hardware monitoring function
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1450) * so the readings are always 0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1451) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1452) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1453) u8 in_temp, fan;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1454)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1455) for (i = 0; i < 8; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1456) in_temp = i2c_smbus_read_byte_data(client, 0x20 + i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1457) fan = i2c_smbus_read_byte_data(client, 0x28 + i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1458) if (in_temp != 0x00 || fan != 0xff)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1459) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1460) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1461)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1462) return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1463) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1464)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1465) /* Return 0 if detection is successful, -ENODEV otherwise */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1466) static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1467) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1468) struct i2c_adapter *adapter = client->adapter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1469) int address = client->addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1470) const char *type_name = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1471) int company, verstep;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1472)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1473) if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1474) /* We need to be able to do byte I/O */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1475) return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1476) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1477)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1478) /* Determine the chip type */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1479) company = lm85_read_value(client, LM85_REG_COMPANY);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1480) verstep = lm85_read_value(client, LM85_REG_VERSTEP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1481)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1482) dev_dbg(&adapter->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1483) "Detecting device at 0x%02x with COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1484) address, company, verstep);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1485)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1486) if (company == LM85_COMPANY_NATIONAL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1487) switch (verstep) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1488) case LM85_VERSTEP_LM85C:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1489) type_name = "lm85c";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1490) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1491) case LM85_VERSTEP_LM85B:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1492) type_name = "lm85b";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1493) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1494) case LM85_VERSTEP_LM96000_1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1495) case LM85_VERSTEP_LM96000_2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1496) /* Check for Winbond WPCD377I */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1497) if (lm85_is_fake(client)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1498) dev_dbg(&adapter->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1499) "Found Winbond WPCD377I, ignoring\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1500) return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1501) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1502) type_name = "lm96000";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1503) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1504) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1505) } else if (company == LM85_COMPANY_ANALOG_DEV) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1506) switch (verstep) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1507) case LM85_VERSTEP_ADM1027:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1508) type_name = "adm1027";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1509) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1510) case LM85_VERSTEP_ADT7463:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1511) case LM85_VERSTEP_ADT7463C:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1512) type_name = "adt7463";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1513) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1514) case LM85_VERSTEP_ADT7468_1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1515) case LM85_VERSTEP_ADT7468_2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1516) type_name = "adt7468";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1517) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1518) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1519) } else if (company == LM85_COMPANY_SMSC) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1520) switch (verstep) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1521) case LM85_VERSTEP_EMC6D100_A0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1522) case LM85_VERSTEP_EMC6D100_A1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1523) /* Note: we can't tell a '100 from a '101 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1524) type_name = "emc6d100";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1525) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1526) case LM85_VERSTEP_EMC6D102:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1527) type_name = "emc6d102";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1528) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1529) case LM85_VERSTEP_EMC6D103_A0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1530) case LM85_VERSTEP_EMC6D103_A1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1531) type_name = "emc6d103";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1532) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1533) case LM85_VERSTEP_EMC6D103S:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1534) type_name = "emc6d103s";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1535) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1536) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1537) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1538)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1539) if (!type_name)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1540) return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1541)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1542) strlcpy(info->type, type_name, I2C_NAME_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1543)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1544) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1545) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1546)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1547) static const struct i2c_device_id lm85_id[];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1548)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1549) static int lm85_probe(struct i2c_client *client)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1550) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1551) struct device *dev = &client->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1552) struct device *hwmon_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1553) struct lm85_data *data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1554) int idx = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1555)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1556) data = devm_kzalloc(dev, sizeof(struct lm85_data), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1557) if (!data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1558) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1559)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1560) data->client = client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1561) if (client->dev.of_node)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1562) data->type = (enum chips)of_device_get_match_data(&client->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1563) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1564) data->type = i2c_match_id(lm85_id, client)->driver_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1565) mutex_init(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1566)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1567) /* Fill in the chip specific driver values */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1568) switch (data->type) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1569) case adm1027:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1570) case adt7463:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1571) case adt7468:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1572) case emc6d100:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1573) case emc6d102:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1574) case emc6d103:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1575) case emc6d103s:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1576) data->freq_map = adm1027_freq_map;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1577) data->freq_map_size = ARRAY_SIZE(adm1027_freq_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1578) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1579) case lm96000:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1580) data->freq_map = lm96000_freq_map;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1581) data->freq_map_size = ARRAY_SIZE(lm96000_freq_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1582) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1583) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1584) data->freq_map = lm85_freq_map;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1585) data->freq_map_size = ARRAY_SIZE(lm85_freq_map);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1586) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1587)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1588) /* Set the VRM version */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1589) data->vrm = vid_which_vrm();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1590)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1591) /* Initialize the LM85 chip */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1592) lm85_init_client(client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1593)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1594) /* sysfs hooks */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1595) data->groups[idx++] = &lm85_group;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1596)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1597) /* minctl and temp_off exist on all chips except emc6d103s */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1598) if (data->type != emc6d103s) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1599) data->groups[idx++] = &lm85_group_minctl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1600) data->groups[idx++] = &lm85_group_temp_off;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1601) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1602)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1603) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1604) * The ADT7463/68 have an optional VRM 10 mode where pin 21 is used
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1605) * as a sixth digital VID input rather than an analog input.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1606) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1607) if (data->type == adt7463 || data->type == adt7468) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1608) u8 vid = lm85_read_value(client, LM85_REG_VID);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1609) if (vid & 0x80)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1610) data->has_vid5 = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1611) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1612)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1613) if (!data->has_vid5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1614) data->groups[idx++] = &lm85_group_in4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1615)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1616) /* The EMC6D100 has 3 additional voltage inputs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1617) if (data->type == emc6d100)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1618) data->groups[idx++] = &lm85_group_in567;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1619)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1620) hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1621) data, data->groups);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1622) return PTR_ERR_OR_ZERO(hwmon_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1623) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1624)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1625) static const struct i2c_device_id lm85_id[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1626) { "adm1027", adm1027 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1627) { "adt7463", adt7463 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1628) { "adt7468", adt7468 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1629) { "lm85", lm85 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1630) { "lm85b", lm85 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1631) { "lm85c", lm85 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1632) { "lm96000", lm96000 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1633) { "emc6d100", emc6d100 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1634) { "emc6d101", emc6d100 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1635) { "emc6d102", emc6d102 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1636) { "emc6d103", emc6d103 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1637) { "emc6d103s", emc6d103s },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1638) { }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1639) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1640) MODULE_DEVICE_TABLE(i2c, lm85_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1641)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1642) static const struct of_device_id __maybe_unused lm85_of_match[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1643) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1644) .compatible = "adi,adm1027",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1645) .data = (void *)adm1027
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1646) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1647) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1648) .compatible = "adi,adt7463",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1649) .data = (void *)adt7463
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1650) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1651) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1652) .compatible = "adi,adt7468",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1653) .data = (void *)adt7468
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1654) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1655) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1656) .compatible = "national,lm85",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1657) .data = (void *)lm85
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1658) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1659) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1660) .compatible = "national,lm85b",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1661) .data = (void *)lm85
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1662) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1663) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1664) .compatible = "national,lm85c",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1665) .data = (void *)lm85
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1666) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1667) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1668) .compatible = "ti,lm96000",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1669) .data = (void *)lm96000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1670) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1671) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1672) .compatible = "smsc,emc6d100",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1673) .data = (void *)emc6d100
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1674) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1675) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1676) .compatible = "smsc,emc6d101",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1677) .data = (void *)emc6d100
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1678) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1679) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1680) .compatible = "smsc,emc6d102",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1681) .data = (void *)emc6d102
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1682) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1683) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1684) .compatible = "smsc,emc6d103",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1685) .data = (void *)emc6d103
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1686) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1687) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1688) .compatible = "smsc,emc6d103s",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1689) .data = (void *)emc6d103s
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1690) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1691) { },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1692) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1693) MODULE_DEVICE_TABLE(of, lm85_of_match);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1694)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1695) static struct i2c_driver lm85_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1696) .class = I2C_CLASS_HWMON,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1697) .driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1698) .name = "lm85",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1699) .of_match_table = of_match_ptr(lm85_of_match),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1700) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1701) .probe_new = lm85_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1702) .id_table = lm85_id,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1703) .detect = lm85_detect,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1704) .address_list = normal_i2c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1705) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1706)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1707) module_i2c_driver(lm85_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1708)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1709) MODULE_LICENSE("GPL");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1710) MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1711) "Margit Schubert-While <margitsw@t-online.de>, "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1712) "Justin Thiessen <jthiessen@penguincomputing.com>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1713) MODULE_DESCRIPTION("LM85-B, LM85-C driver");