Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0-or-later
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * lm80.c - From lm_sensors, Linux kernel modules for hardware
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  *	    monitoring
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  * Copyright (C) 1998, 1999  Frodo Looijaard <frodol@dds.nl>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  *			     and Philip Edelbrock <phil@netroedge.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  * Ported to Linux 2.6 by Tiago Sousa <mirage@kaotik.org>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #include <linux/jiffies.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) #include <linux/i2c.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) #include <linux/hwmon.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) #include <linux/hwmon-sysfs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) #include <linux/err.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #include <linux/mutex.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) /* Addresses to scan */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) static const unsigned short normal_i2c[] = { 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) 						0x2e, 0x2f, I2C_CLIENT_END };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) /* Many LM80 constants specified below */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) /* The LM80 registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) #define LM80_REG_IN_MAX(nr)		(0x2a + (nr) * 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) #define LM80_REG_IN_MIN(nr)		(0x2b + (nr) * 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) #define LM80_REG_IN(nr)			(0x20 + (nr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) #define LM80_REG_FAN1			0x28
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) #define LM80_REG_FAN2			0x29
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) #define LM80_REG_FAN_MIN(nr)		(0x3b + (nr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) #define LM80_REG_TEMP			0x27
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) #define LM80_REG_TEMP_HOT_MAX		0x38
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) #define LM80_REG_TEMP_HOT_HYST		0x39
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) #define LM80_REG_TEMP_OS_MAX		0x3a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) #define LM80_REG_TEMP_OS_HYST		0x3b
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) #define LM80_REG_CONFIG			0x00
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) #define LM80_REG_ALARM1			0x01
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) #define LM80_REG_ALARM2			0x02
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) #define LM80_REG_MASK1			0x03
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) #define LM80_REG_MASK2			0x04
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) #define LM80_REG_FANDIV			0x05
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) #define LM80_REG_RES			0x06
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) #define LM96080_REG_CONV_RATE		0x07
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) #define LM96080_REG_MAN_ID		0x3e
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) #define LM96080_REG_DEV_ID		0x3f
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56)  * Conversions. Rounding and limit checking is only done on the TO_REG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57)  * variants. Note that you should be a bit careful with which arguments
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58)  * these macros are called: arguments may be evaluated more than once.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59)  * Fixing this is just not worth it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) #define IN_TO_REG(val)		(clamp_val(((val) + 5) / 10, 0, 255))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) #define IN_FROM_REG(val)	((val) * 10)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) static inline unsigned char FAN_TO_REG(unsigned rpm, unsigned div)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) 	if (rpm == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) 		return 255;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) 	rpm = clamp_val(rpm, 1, 1000000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) 	return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) #define FAN_FROM_REG(val, div)	((val) == 0 ? -1 : \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 				(val) == 255 ? 0 : 1350000/((div) * (val)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) #define TEMP_FROM_REG(reg)	((reg) * 125 / 32)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) #define TEMP_TO_REG(temp)	(DIV_ROUND_CLOSEST(clamp_val((temp), \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 					-128000, 127000), 1000) << 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) #define DIV_FROM_REG(val)		(1 << (val))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) enum temp_index {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 	t_input = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 	t_hot_max,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 	t_hot_hyst,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 	t_os_max,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 	t_os_hyst,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 	t_num_temp
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) static const u8 temp_regs[t_num_temp] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 	[t_input] = LM80_REG_TEMP,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 	[t_hot_max] = LM80_REG_TEMP_HOT_MAX,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 	[t_hot_hyst] = LM80_REG_TEMP_HOT_HYST,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 	[t_os_max] = LM80_REG_TEMP_OS_MAX,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 	[t_os_hyst] = LM80_REG_TEMP_OS_HYST,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) enum in_index {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 	i_input = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 	i_max,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 	i_min,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 	i_num_in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) enum fan_index {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 	f_input,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 	f_min,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 	f_num_fan
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113)  * Client data (each client gets its own)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) struct lm80_data {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 	struct i2c_client *client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 	struct mutex update_lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 	char error;		/* !=0 if error occurred during last update */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 	char valid;		/* !=0 if following fields are valid */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 	unsigned long last_updated;	/* In jiffies */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 	u8 in[i_num_in][7];	/* Register value, 1st index is enum in_index */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 	u8 fan[f_num_fan][2];	/* Register value, 1st index enum fan_index */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 	u8 fan_div[2];		/* Register encoding, shifted right */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 	s16 temp[t_num_temp];	/* Register values, normalized to 16 bit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 	u16 alarms;		/* Register encoding, combined */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) static int lm80_read_value(struct i2c_client *client, u8 reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 	return i2c_smbus_read_byte_data(client, reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) static int lm80_write_value(struct i2c_client *client, u8 reg, u8 value)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 	return i2c_smbus_write_byte_data(client, reg, value);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) /* Called when we have found a new LM80 and after read errors */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) static void lm80_init_client(struct i2c_client *client)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 	 * Reset all except Watchdog values and last conversion values
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 	 * This sets fan-divs to 2, among others. This makes most other
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 	 * initializations unnecessary
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 	lm80_write_value(client, LM80_REG_CONFIG, 0x80);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 	/* Set 11-bit temperature resolution */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 	lm80_write_value(client, LM80_REG_RES, 0x08);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 	/* Start monitoring */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 	lm80_write_value(client, LM80_REG_CONFIG, 0x01);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) static struct lm80_data *lm80_update_device(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 	struct lm80_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 	struct i2c_client *client = data->client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 	int rv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 	int prev_rv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 	struct lm80_data *ret = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) 	if (data->error)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 		lm80_init_client(client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 	if (time_after(jiffies, data->last_updated + 2 * HZ) || !data->valid) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 		dev_dbg(dev, "Starting lm80 update\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 		for (i = 0; i <= 6; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 			rv = lm80_read_value(client, LM80_REG_IN(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 			if (rv < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 				goto abort;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 			data->in[i_input][i] = rv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 			rv = lm80_read_value(client, LM80_REG_IN_MIN(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 			if (rv < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 				goto abort;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 			data->in[i_min][i] = rv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 			rv = lm80_read_value(client, LM80_REG_IN_MAX(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 			if (rv < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 				goto abort;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 			data->in[i_max][i] = rv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 		rv = lm80_read_value(client, LM80_REG_FAN1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 		if (rv < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 			goto abort;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 		data->fan[f_input][0] = rv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 		rv = lm80_read_value(client, LM80_REG_FAN_MIN(1));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 		if (rv < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 			goto abort;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 		data->fan[f_min][0] = rv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 		rv = lm80_read_value(client, LM80_REG_FAN2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 		if (rv < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 			goto abort;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 		data->fan[f_input][1] = rv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 		rv = lm80_read_value(client, LM80_REG_FAN_MIN(2));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 		if (rv < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 			goto abort;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 		data->fan[f_min][1] = rv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 		prev_rv = rv = lm80_read_value(client, LM80_REG_TEMP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 		if (rv < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 			goto abort;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 		rv = lm80_read_value(client, LM80_REG_RES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 		if (rv < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 			goto abort;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 		data->temp[t_input] = (prev_rv << 8) | (rv & 0xf0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 		for (i = t_input + 1; i < t_num_temp; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 			rv = lm80_read_value(client, temp_regs[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 			if (rv < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 				goto abort;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 			data->temp[i] = rv << 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 		rv = lm80_read_value(client, LM80_REG_FANDIV);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 		if (rv < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 			goto abort;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 		data->fan_div[0] = (rv >> 2) & 0x03;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) 		data->fan_div[1] = (rv >> 4) & 0x03;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 		prev_rv = rv = lm80_read_value(client, LM80_REG_ALARM1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 		if (rv < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 			goto abort;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 		rv = lm80_read_value(client, LM80_REG_ALARM2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 		if (rv < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 			goto abort;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 		data->alarms = prev_rv + (rv << 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 		data->last_updated = jiffies;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 		data->valid = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 		data->error = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 	goto done;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) abort:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 	ret = ERR_PTR(rv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) 	data->valid = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 	data->error = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) done:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256)  * Sysfs stuff
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) static ssize_t in_show(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) 		       char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 	struct lm80_data *data = lm80_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 	int index = to_sensor_dev_attr_2(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 	int nr = to_sensor_dev_attr_2(attr)->nr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 	if (IS_ERR(data))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) 		return PTR_ERR(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 	return sprintf(buf, "%d\n", IN_FROM_REG(data->in[nr][index]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) static ssize_t in_store(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 			const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 	struct lm80_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) 	struct i2c_client *client = data->client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 	int index = to_sensor_dev_attr_2(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 	int nr = to_sensor_dev_attr_2(attr)->nr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 	long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 	u8 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) 	int err = kstrtol(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 	if (err < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) 	reg = nr == i_min ? LM80_REG_IN_MIN(index) : LM80_REG_IN_MAX(index);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 	data->in[nr][index] = IN_TO_REG(val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 	lm80_write_value(client, reg, data->in[nr][index]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) static ssize_t fan_show(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 			char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 	int index = to_sensor_dev_attr_2(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 	int nr = to_sensor_dev_attr_2(attr)->nr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 	struct lm80_data *data = lm80_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 	if (IS_ERR(data))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 		return PTR_ERR(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr][index],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 		       DIV_FROM_REG(data->fan_div[index])));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) static ssize_t fan_div_show(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 			    char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 	int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 	struct lm80_data *data = lm80_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 	if (IS_ERR(data))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) 		return PTR_ERR(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 	return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) static ssize_t fan_store(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) 			 const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) 	int index = to_sensor_dev_attr_2(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) 	int nr = to_sensor_dev_attr_2(attr)->nr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) 	struct lm80_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) 	struct i2c_client *client = data->client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) 	unsigned long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) 	int err = kstrtoul(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) 	if (err < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 	data->fan[nr][index] = FAN_TO_REG(val,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) 					  DIV_FROM_REG(data->fan_div[index]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 	lm80_write_value(client, LM80_REG_FAN_MIN(index + 1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) 			 data->fan[nr][index]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337)  * Note: we save and restore the fan minimum here, because its value is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338)  * determined in part by the fan divisor.  This follows the principle of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339)  * least surprise; the user doesn't expect the fan minimum to change just
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340)  * because the divisor changed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) static ssize_t fan_div_store(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) 			     struct device_attribute *attr, const char *buf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) 			     size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) 	int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) 	struct lm80_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) 	struct i2c_client *client = data->client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) 	unsigned long min, val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) 	u8 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) 	int rv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) 	rv = kstrtoul(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) 	if (rv < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) 		return rv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) 	/* Save fan_min */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) 	min = FAN_FROM_REG(data->fan[f_min][nr],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) 			   DIV_FROM_REG(data->fan_div[nr]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) 	switch (val) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) 	case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) 		data->fan_div[nr] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) 	case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) 		data->fan_div[nr] = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) 	case 4:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) 		data->fan_div[nr] = 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) 	case 8:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) 		data->fan_div[nr] = 3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) 		dev_err(dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) 			"fan_div value %ld not supported. Choose one of 1, 2, 4 or 8!\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) 			val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) 		mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) 	rv = lm80_read_value(client, LM80_REG_FANDIV);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) 	if (rv < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) 		mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) 		return rv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) 	reg = (rv & ~(3 << (2 * (nr + 1))))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) 	    | (data->fan_div[nr] << (2 * (nr + 1)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) 	lm80_write_value(client, LM80_REG_FANDIV, reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) 	/* Restore fan_min */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) 	data->fan[f_min][nr] = FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) 	lm80_write_value(client, LM80_REG_FAN_MIN(nr + 1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) 			 data->fan[f_min][nr]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) static ssize_t temp_show(struct device *dev, struct device_attribute *devattr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) 			 char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) 	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) 	struct lm80_data *data = lm80_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) 	if (IS_ERR(data))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) 		return PTR_ERR(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp[attr->index]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) static ssize_t temp_store(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) 			  struct device_attribute *devattr, const char *buf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) 			  size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) 	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) 	struct lm80_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) 	struct i2c_client *client = data->client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) 	int nr = attr->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) 	long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) 	int err = kstrtol(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) 	if (err < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) 	data->temp[nr] = TEMP_TO_REG(val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) 	lm80_write_value(client, temp_regs[nr], data->temp[nr] >> 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) 			   char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) 	struct lm80_data *data = lm80_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) 	if (IS_ERR(data))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) 		return PTR_ERR(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) 	return sprintf(buf, "%u\n", data->alarms);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) 			  char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) 	int bitnr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) 	struct lm80_data *data = lm80_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) 	if (IS_ERR(data))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) 		return PTR_ERR(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) 	return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) static SENSOR_DEVICE_ATTR_2_RW(in0_min, in, i_min, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) static SENSOR_DEVICE_ATTR_2_RW(in1_min, in, i_min, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) static SENSOR_DEVICE_ATTR_2_RW(in2_min, in, i_min, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) static SENSOR_DEVICE_ATTR_2_RW(in3_min, in, i_min, 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) static SENSOR_DEVICE_ATTR_2_RW(in4_min, in, i_min, 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) static SENSOR_DEVICE_ATTR_2_RW(in5_min, in, i_min, 5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) static SENSOR_DEVICE_ATTR_2_RW(in6_min, in, i_min, 6);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) static SENSOR_DEVICE_ATTR_2_RW(in0_max, in, i_max, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) static SENSOR_DEVICE_ATTR_2_RW(in1_max, in, i_max, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) static SENSOR_DEVICE_ATTR_2_RW(in2_max, in, i_max, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) static SENSOR_DEVICE_ATTR_2_RW(in3_max, in, i_max, 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) static SENSOR_DEVICE_ATTR_2_RW(in4_max, in, i_max, 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) static SENSOR_DEVICE_ATTR_2_RW(in5_max, in, i_max, 5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) static SENSOR_DEVICE_ATTR_2_RW(in6_max, in, i_max, 6);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) static SENSOR_DEVICE_ATTR_2_RO(in0_input, in, i_input, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) static SENSOR_DEVICE_ATTR_2_RO(in1_input, in, i_input, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) static SENSOR_DEVICE_ATTR_2_RO(in2_input, in, i_input, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) static SENSOR_DEVICE_ATTR_2_RO(in3_input, in, i_input, 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) static SENSOR_DEVICE_ATTR_2_RO(in4_input, in, i_input, 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) static SENSOR_DEVICE_ATTR_2_RO(in5_input, in, i_input, 5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) static SENSOR_DEVICE_ATTR_2_RO(in6_input, in, i_input, 6);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) static SENSOR_DEVICE_ATTR_2_RW(fan1_min, fan, f_min, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) static SENSOR_DEVICE_ATTR_2_RW(fan2_min, fan, f_min, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) static SENSOR_DEVICE_ATTR_2_RO(fan1_input, fan, f_input, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) static SENSOR_DEVICE_ATTR_2_RO(fan2_input, fan, f_input, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) static SENSOR_DEVICE_ATTR_RW(fan1_div, fan_div, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) static SENSOR_DEVICE_ATTR_RW(fan2_div, fan_div, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, t_input);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) static SENSOR_DEVICE_ATTR_RW(temp1_max, temp, t_hot_max);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) static SENSOR_DEVICE_ATTR_RW(temp1_max_hyst, temp, t_hot_hyst);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) static SENSOR_DEVICE_ATTR_RW(temp1_crit, temp, t_os_max);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) static SENSOR_DEVICE_ATTR_RW(temp1_crit_hyst, temp, t_os_hyst);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) static DEVICE_ATTR_RO(alarms);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) static SENSOR_DEVICE_ATTR_RO(in0_alarm, alarm, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm, 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm, 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) static SENSOR_DEVICE_ATTR_RO(in5_alarm, alarm, 5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) static SENSOR_DEVICE_ATTR_RO(in6_alarm, alarm, 6);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 10);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 11);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) static SENSOR_DEVICE_ATTR_RO(temp1_max_alarm, alarm, 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) static SENSOR_DEVICE_ATTR_RO(temp1_crit_alarm, alarm, 13);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496)  * Real code
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) static struct attribute *lm80_attrs[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) 	&sensor_dev_attr_in0_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) 	&sensor_dev_attr_in1_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) 	&sensor_dev_attr_in2_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) 	&sensor_dev_attr_in3_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) 	&sensor_dev_attr_in4_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) 	&sensor_dev_attr_in5_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) 	&sensor_dev_attr_in6_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) 	&sensor_dev_attr_in0_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) 	&sensor_dev_attr_in1_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) 	&sensor_dev_attr_in2_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) 	&sensor_dev_attr_in3_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) 	&sensor_dev_attr_in4_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) 	&sensor_dev_attr_in5_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) 	&sensor_dev_attr_in6_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) 	&sensor_dev_attr_in0_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) 	&sensor_dev_attr_in1_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) 	&sensor_dev_attr_in2_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) 	&sensor_dev_attr_in3_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) 	&sensor_dev_attr_in4_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) 	&sensor_dev_attr_in5_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) 	&sensor_dev_attr_in6_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) 	&sensor_dev_attr_fan1_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) 	&sensor_dev_attr_fan2_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) 	&sensor_dev_attr_fan1_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) 	&sensor_dev_attr_fan2_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) 	&sensor_dev_attr_fan1_div.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) 	&sensor_dev_attr_fan2_div.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) 	&sensor_dev_attr_temp1_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) 	&sensor_dev_attr_temp1_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) 	&sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) 	&sensor_dev_attr_temp1_crit.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) 	&sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) 	&dev_attr_alarms.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) 	&sensor_dev_attr_in0_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) 	&sensor_dev_attr_in1_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) 	&sensor_dev_attr_in2_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) 	&sensor_dev_attr_in3_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) 	&sensor_dev_attr_in4_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) 	&sensor_dev_attr_in5_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) 	&sensor_dev_attr_in6_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) 	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) 	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) 	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) 	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) 	NULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) ATTRIBUTE_GROUPS(lm80);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) /* Return 0 if detection is successful, -ENODEV otherwise */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) static int lm80_detect(struct i2c_client *client, struct i2c_board_info *info)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) 	struct i2c_adapter *adapter = client->adapter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) 	int i, cur, man_id, dev_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) 	const char *name = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) 	/* First check for unused bits, common to both chip types */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) 	if ((lm80_read_value(client, LM80_REG_ALARM2) & 0xc0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) 	 || (lm80_read_value(client, LM80_REG_CONFIG) & 0x80))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) 	 * The LM96080 has manufacturer and stepping/die rev registers so we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) 	 * can just check that. The LM80 does not have such registers so we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) 	 * have to use a more expensive trick.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) 	man_id = lm80_read_value(client, LM96080_REG_MAN_ID);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) 	dev_id = lm80_read_value(client, LM96080_REG_DEV_ID);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) 	if (man_id == 0x01 && dev_id == 0x08) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) 		/* Check more unused bits for confirmation */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) 		if (lm80_read_value(client, LM96080_REG_CONV_RATE) & 0xfe)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) 			return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) 		name = "lm96080";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) 		/* Check 6-bit addressing */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) 		for (i = 0x2a; i <= 0x3d; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) 			cur = i2c_smbus_read_byte_data(client, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) 			if ((i2c_smbus_read_byte_data(client, i + 0x40) != cur)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) 			 || (i2c_smbus_read_byte_data(client, i + 0x80) != cur)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) 			 || (i2c_smbus_read_byte_data(client, i + 0xc0) != cur))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) 				return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) 		name = "lm80";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) 	strlcpy(info->type, name, I2C_NAME_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) static int lm80_probe(struct i2c_client *client)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) 	struct device *dev = &client->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) 	struct device *hwmon_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) 	struct lm80_data *data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600) 	data = devm_kzalloc(dev, sizeof(struct lm80_data), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) 	if (!data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) 	data->client = client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) 	mutex_init(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) 	/* Initialize the LM80 chip */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) 	lm80_init_client(client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) 	/* A few vars need to be filled upon startup */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611) 	data->fan[f_min][0] = lm80_read_value(client, LM80_REG_FAN_MIN(1));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) 	data->fan[f_min][1] = lm80_read_value(client, LM80_REG_FAN_MIN(2));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614) 	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615) 							   data, lm80_groups);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) 	return PTR_ERR_OR_ZERO(hwmon_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621)  * Driver data (common to all clients)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624) static const struct i2c_device_id lm80_id[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625) 	{ "lm80", 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626) 	{ "lm96080", 1 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627) 	{ }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629) MODULE_DEVICE_TABLE(i2c, lm80_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631) static struct i2c_driver lm80_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632) 	.class		= I2C_CLASS_HWMON,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633) 	.driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634) 		.name	= "lm80",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636) 	.probe_new	= lm80_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637) 	.id_table	= lm80_id,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638) 	.detect		= lm80_detect,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639) 	.address_list	= normal_i2c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642) module_i2c_driver(lm80_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644) MODULE_AUTHOR("Frodo Looijaard <frodol@dds.nl> and "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 645) 	"Philip Edelbrock <phil@netroedge.com>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 646) MODULE_DESCRIPTION("LM80 driver");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 647) MODULE_LICENSE("GPL");