Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0-or-later
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * hwmon-vid.c - VID/VRM/VRD voltage conversions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  * Copyright (c) 2004 Rudolf Marek <r.marek@assembler.cz>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  * Partly imported from i2c-vid.h of the lm_sensors project
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  * Copyright (c) 2002 Mark D. Studebaker <mdsxyz123@yahoo.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  * With assistance from Trent Piepho <xyzzy@speakeasy.org>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12) #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15) #include <linux/kernel.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16) #include <linux/hwmon-vid.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19)  * Common code for decoding VID pins.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21)  * References:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23)  * For VRM 8.4 to 9.1, "VRM x.y DC-DC Converter Design Guidelines",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24)  * available at http://developer.intel.com/.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26)  * For VRD 10.0 and up, "VRD x.y Design Guide",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27)  * available at http://developer.intel.com/.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29)  * AMD Athlon 64 and AMD Opteron Processors, AMD Publication 26094,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30)  * http://support.amd.com/us/Processor_TechDocs/26094.PDF
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31)  * Table 74. VID Code Voltages
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32)  * This corresponds to an arbitrary VRM code of 24 in the functions below.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33)  * These CPU models (K8 revision <= E) have 5 VID pins. See also:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34)  * Revision Guide for AMD Athlon 64 and AMD Opteron Processors, AMD Publication 25759,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35)  * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/25759.pdf
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37)  * AMD NPT Family 0Fh Processors, AMD Publication 32559,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38)  * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/32559.pdf
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39)  * Table 71. VID Code Voltages
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40)  * This corresponds to an arbitrary VRM code of 25 in the functions below.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41)  * These CPU models (K8 revision >= F) have 6 VID pins. See also:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42)  * Revision Guide for AMD NPT Family 0Fh Processors, AMD Publication 33610,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43)  * http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/33610.pdf
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45)  * The 17 specification is in fact Intel Mobile Voltage Positioning -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46)  * (IMVP-II). You can find more information in the datasheet of Max1718
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47)  * http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2452
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49)  * The 13 specification corresponds to the Intel Pentium M series. There
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50)  * doesn't seem to be any named specification for these. The conversion
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51)  * tables are detailed directly in the various Pentium M datasheets:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52)  * https://www.intel.com/design/intarch/pentiumm/docs_pentiumm.htm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54)  * The 14 specification corresponds to Intel Core series. There
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55)  * doesn't seem to be any named specification for these. The conversion
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56)  * tables are detailed directly in the various Pentium Core datasheets:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57)  * https://www.intel.com/design/mobile/datashts/309221.htm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59)  * The 110 (VRM 11) specification corresponds to Intel Conroe based series.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60)  * https://www.intel.com/design/processor/applnots/313214.htm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64)  * vrm is the VRM/VRD document version multiplied by 10.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65)  * val is the 4-bit or more VID code.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66)  * Returned value is in mV to avoid floating point in the kernel.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67)  * Some VID have some bits in uV scale, this is rounded to mV.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) int vid_from_reg(int val, u8 vrm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 	int vid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) 	switch (vrm) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) 	case 100:		/* VRD 10.0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) 		/* compute in uV, round to mV */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 		val &= 0x3f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 		if ((val & 0x1f) == 0x1f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 			return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 		if ((val & 0x1f) <= 0x09 || val == 0x0a)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 			vid = 1087500 - (val & 0x1f) * 25000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 			vid = 1862500 - (val & 0x1f) * 25000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 		if (val & 0x20)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 			vid -= 12500;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 		return (vid + 500) / 1000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 	case 110:		/* Intel Conroe */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 				/* compute in uV, round to mV */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 		val &= 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) 		if (val < 0x02 || val > 0xb2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 			return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) 		return (1600000 - (val - 2) * 6250 + 500) / 1000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 	case 24:		/* Athlon64 & Opteron */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 		val &= 0x1f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 		if (val == 0x1f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 			return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 		fallthrough;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 	case 25:		/* AMD NPT 0Fh */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 		val &= 0x3f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 		return (val < 32) ? 1550 - 25 * val
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 			: 775 - (25 * (val - 31)) / 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) 	case 26:		/* AMD family 10h to 15h, serial VID */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 		val &= 0x7f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) 		if (val >= 0x7c)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 			return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 		return DIV_ROUND_CLOSEST(15500 - 125 * val, 10);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 	case 91:		/* VRM 9.1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 	case 90:		/* VRM 9.0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 		val &= 0x1f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 		return val == 0x1f ? 0 :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 				     1850 - val * 25;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 	case 85:		/* VRM 8.5 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 		val &= 0x1f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 		return (val & 0x10  ? 25 : 0) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 		       ((val & 0x0f) > 0x04 ? 2050 : 1250) -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 		       ((val & 0x0f) * 50);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 	case 84:		/* VRM 8.4 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 		val &= 0x0f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 		fallthrough;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 	case 82:		/* VRM 8.2 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 		val &= 0x1f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 		return val == 0x1f ? 0 :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 		       val & 0x10  ? 5100 - (val) * 100 :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 				     2050 - (val) * 50;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 	case 17:		/* Intel IMVP-II */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 		val &= 0x1f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 		return val & 0x10 ? 975 - (val & 0xF) * 25 :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 				    1750 - val * 50;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 	case 13:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 	case 131:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 		val &= 0x3f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 		/* Exception for Eden ULV 500 MHz */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 		if (vrm == 131 && val == 0x3f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 			val++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 		return 1708 - val * 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 	case 14:		/* Intel Core */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 				/* compute in uV, round to mV */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 		val &= 0x7f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 		return val > 0x77 ? 0 : (1500000 - (val * 12500) + 500) / 1000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 	default:		/* report 0 for unknown */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 		if (vrm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 			pr_warn("Requested unsupported VRM version (%u)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 				(unsigned int)vrm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) EXPORT_SYMBOL(vid_from_reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156)  * After this point is the code to automatically determine which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157)  * VRM/VRD specification should be used depending on the CPU.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) struct vrm_model {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 	u8 vendor;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 	u8 family;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) 	u8 model_from;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 	u8 model_to;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) 	u8 stepping_to;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 	u8 vrm_type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) #define ANY 0xFF
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) #ifdef CONFIG_X86
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174)  * The stepping_to parameter is highest acceptable stepping for current line.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175)  * The model match must be exact for 4-bit values. For model values 0x10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176)  * and above (extended model), all models below the parameter will match.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) static struct vrm_model vrm_models[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 	{X86_VENDOR_AMD, 0x6, 0x0, ANY, ANY, 90},	/* Athlon Duron etc */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 	{X86_VENDOR_AMD, 0xF, 0x0, 0x3F, ANY, 24},	/* Athlon 64, Opteron */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 	 * In theory, all NPT family 0Fh processors have 6 VID pins and should
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 	 * thus use vrm 25, however in practice not all mainboards route the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 	 * 6th VID pin because it is never needed. So we use the 5 VID pin
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 	 * variant (vrm 24) for the models which exist today.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 	{X86_VENDOR_AMD, 0xF, 0x40, 0x7F, ANY, 24},	/* NPT family 0Fh */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 	{X86_VENDOR_AMD, 0xF, 0x80, ANY, ANY, 25},	/* future fam. 0Fh */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 	{X86_VENDOR_AMD, 0x10, 0x0, ANY, ANY, 25},	/* NPT family 10h */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 	{X86_VENDOR_AMD, 0x11, 0x0, ANY, ANY, 26},	/* family 11h */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 	{X86_VENDOR_AMD, 0x12, 0x0, ANY, ANY, 26},	/* family 12h */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 	{X86_VENDOR_AMD, 0x14, 0x0, ANY, ANY, 26},	/* family 14h */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 	{X86_VENDOR_AMD, 0x15, 0x0, ANY, ANY, 26},	/* family 15h */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 	{X86_VENDOR_INTEL, 0x6, 0x0, 0x6, ANY, 82},	/* Pentium Pro,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 							 * Pentium II, Xeon,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 							 * Mobile Pentium,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 							 * Celeron */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 	{X86_VENDOR_INTEL, 0x6, 0x7, 0x7, ANY, 84},	/* Pentium III, Xeon */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 	{X86_VENDOR_INTEL, 0x6, 0x8, 0x8, ANY, 82},	/* Pentium III, Xeon */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 	{X86_VENDOR_INTEL, 0x6, 0x9, 0x9, ANY, 13},	/* Pentium M (130 nm) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 	{X86_VENDOR_INTEL, 0x6, 0xA, 0xA, ANY, 82},	/* Pentium III Xeon */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 	{X86_VENDOR_INTEL, 0x6, 0xB, 0xB, ANY, 85},	/* Tualatin */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 	{X86_VENDOR_INTEL, 0x6, 0xD, 0xD, ANY, 13},	/* Pentium M (90 nm) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 	{X86_VENDOR_INTEL, 0x6, 0xE, 0xE, ANY, 14},	/* Intel Core (65 nm) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 	{X86_VENDOR_INTEL, 0x6, 0xF, ANY, ANY, 110},	/* Intel Conroe and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 							 * later */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 	{X86_VENDOR_INTEL, 0xF, 0x0, 0x0, ANY, 90},	/* P4 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 	{X86_VENDOR_INTEL, 0xF, 0x1, 0x1, ANY, 90},	/* P4 Willamette */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 	{X86_VENDOR_INTEL, 0xF, 0x2, 0x2, ANY, 90},	/* P4 Northwood */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 	{X86_VENDOR_INTEL, 0xF, 0x3, ANY, ANY, 100},	/* Prescott and above
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 							 * assume VRD 10 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 	{X86_VENDOR_CENTAUR, 0x6, 0x7, 0x7, ANY, 85},	/* Eden ESP/Ezra */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 	{X86_VENDOR_CENTAUR, 0x6, 0x8, 0x8, 0x7, 85},	/* Ezra T */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 	{X86_VENDOR_CENTAUR, 0x6, 0x9, 0x9, 0x7, 85},	/* Nehemiah */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) 	{X86_VENDOR_CENTAUR, 0x6, 0x9, 0x9, ANY, 17},	/* C3-M, Eden-N */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 	{X86_VENDOR_CENTAUR, 0x6, 0xA, 0xA, 0x7, 0},	/* No information */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) 	{X86_VENDOR_CENTAUR, 0x6, 0xA, 0xA, ANY, 13},	/* C7-M, C7,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 							 * Eden (Esther) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) 	{X86_VENDOR_CENTAUR, 0x6, 0xD, 0xD, ANY, 134},	/* C7-D, C7-M, C7,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 							 * Eden (Esther) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227)  * Special case for VIA model D: there are two different possible
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228)  * VID tables, so we have to figure out first, which one must be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229)  * used. This resolves temporary drm value 134 to 14 (Intel Core
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230)  * 7-bit VID), 13 (Pentium M 6-bit VID) or 131 (Pentium M 6-bit VID
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231)  * + quirk for Eden ULV 500 MHz).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232)  * Note: something similar might be needed for model A, I'm not sure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) static u8 get_via_model_d_vrm(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 	unsigned int vid, brand, __maybe_unused dummy;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 	static const char *brands[4] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 		"C7-M", "C7", "Eden", "C7-D"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 	};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 	rdmsr(0x198, dummy, vid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 	vid &= 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 	rdmsr(0x1154, brand, dummy);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 	brand = ((brand >> 4) ^ (brand >> 2)) & 0x03;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 	if (vid > 0x3f) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 		pr_info("Using %d-bit VID table for VIA %s CPU\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 			7, brands[brand]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 		return 14;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 		pr_info("Using %d-bit VID table for VIA %s CPU\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) 			6, brands[brand]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 		/* Enable quirk for Eden */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) 		return brand == 2 ? 131 : 13;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) static u8 find_vrm(u8 family, u8 model, u8 stepping, u8 vendor)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 	for (i = 0; i < ARRAY_SIZE(vrm_models); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 		if (vendor == vrm_models[i].vendor &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) 		    family == vrm_models[i].family &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 		    model >= vrm_models[i].model_from &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) 		    model <= vrm_models[i].model_to &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 		    stepping <= vrm_models[i].stepping_to)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 			return vrm_models[i].vrm_type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) u8 vid_which_vrm(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) 	struct cpuinfo_x86 *c = &cpu_data(0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 	u8 vrm_ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) 	if (c->x86 < 6)		/* Any CPU with family lower than 6 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 		return 0;	/* doesn't have VID */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) 	vrm_ret = find_vrm(c->x86, c->x86_model, c->x86_stepping, c->x86_vendor);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) 	if (vrm_ret == 134)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 		vrm_ret = get_via_model_d_vrm();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 	if (vrm_ret == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 		pr_info("Unknown VRM version of your x86 CPU\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 	return vrm_ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) /* and now for something completely different for the non-x86 world */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) u8 vid_which_vrm(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 	pr_info("Unknown VRM version of your CPU\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) EXPORT_SYMBOL(vid_which_vrm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) MODULE_AUTHOR("Rudolf Marek <r.marek@assembler.cz>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) MODULE_DESCRIPTION("hwmon-vid driver");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) MODULE_LICENSE("GPL");