Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    1) // SPDX-License-Identifier: GPL-2.0-or-later
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    3)  * fschmd.c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    5)  * Copyright (C) 2007 - 2009 Hans de Goede <hdegoede@redhat.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    6)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    7) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    8) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    9)  *  Merged Fujitsu Siemens hwmon driver, supporting the Poseidon, Hermes,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   10)  *  Scylla, Heracles, Heimdall, Hades and Syleus chips
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   11)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   12)  *  Based on the original 2.4 fscscy, 2.6 fscpos, 2.6 fscher and 2.6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   13)  *  (candidate) fschmd drivers:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   14)  *  Copyright (C) 2006 Thilo Cestonaro
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   15)  *			<thilo.cestonaro.external@fujitsu-siemens.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   16)  *  Copyright (C) 2004, 2005 Stefan Ott <stefan@desire.ch>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   17)  *  Copyright (C) 2003, 2004 Reinhard Nissl <rnissl@gmx.de>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   18)  *  Copyright (c) 2001 Martin Knoblauch <mkn@teraport.de, knobi@knobisoft.de>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   19)  *  Copyright (C) 2000 Hermann Jung <hej@odn.de>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   20)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   21) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   22) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   23) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   24) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   25) #include <linux/jiffies.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   26) #include <linux/i2c.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   27) #include <linux/hwmon.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   28) #include <linux/hwmon-sysfs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   29) #include <linux/err.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   30) #include <linux/mutex.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   31) #include <linux/sysfs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   32) #include <linux/dmi.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   33) #include <linux/fs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   34) #include <linux/watchdog.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   35) #include <linux/miscdevice.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   36) #include <linux/uaccess.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   37) #include <linux/kref.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   38) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   39) /* Addresses to scan */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   40) static const unsigned short normal_i2c[] = { 0x73, I2C_CLIENT_END };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   41) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   42) /* Insmod parameters */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   43) static bool nowayout = WATCHDOG_NOWAYOUT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   44) module_param(nowayout, bool, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   45) MODULE_PARM_DESC(nowayout, "Watchdog cannot be stopped once started (default="
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   46) 	__MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   47) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   48) enum chips { fscpos, fscher, fscscy, fschrc, fschmd, fschds, fscsyl };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   49) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   50) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   51)  * The FSCHMD registers and other defines
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   52)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   53) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   54) /* chip identification */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   55) #define FSCHMD_REG_IDENT_0		0x00
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   56) #define FSCHMD_REG_IDENT_1		0x01
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   57) #define FSCHMD_REG_IDENT_2		0x02
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   58) #define FSCHMD_REG_REVISION		0x03
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   59) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   60) /* global control and status */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   61) #define FSCHMD_REG_EVENT_STATE		0x04
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   62) #define FSCHMD_REG_CONTROL		0x05
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   63) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   64) #define FSCHMD_CONTROL_ALERT_LED	0x01
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   65) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   66) /* watchdog */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   67) static const u8 FSCHMD_REG_WDOG_CONTROL[7] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   68) 	0x21, 0x21, 0x21, 0x21, 0x21, 0x28, 0x28 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   69) static const u8 FSCHMD_REG_WDOG_STATE[7] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   70) 	0x23, 0x23, 0x23, 0x23, 0x23, 0x29, 0x29 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   71) static const u8 FSCHMD_REG_WDOG_PRESET[7] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   72) 	0x28, 0x28, 0x28, 0x28, 0x28, 0x2a, 0x2a };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   73) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   74) #define FSCHMD_WDOG_CONTROL_TRIGGER	0x10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   75) #define FSCHMD_WDOG_CONTROL_STARTED	0x10 /* the same as trigger */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   76) #define FSCHMD_WDOG_CONTROL_STOP	0x20
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   77) #define FSCHMD_WDOG_CONTROL_RESOLUTION	0x40
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   78) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   79) #define FSCHMD_WDOG_STATE_CARDRESET	0x02
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   80) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   81) /* voltages, weird order is to keep the same order as the old drivers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   82) static const u8 FSCHMD_REG_VOLT[7][6] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   83) 	{ 0x45, 0x42, 0x48 },				/* pos */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   84) 	{ 0x45, 0x42, 0x48 },				/* her */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   85) 	{ 0x45, 0x42, 0x48 },				/* scy */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   86) 	{ 0x45, 0x42, 0x48 },				/* hrc */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   87) 	{ 0x45, 0x42, 0x48 },				/* hmd */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   88) 	{ 0x21, 0x20, 0x22 },				/* hds */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   89) 	{ 0x21, 0x20, 0x22, 0x23, 0x24, 0x25 },		/* syl */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   90) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   91) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   92) static const int FSCHMD_NO_VOLT_SENSORS[7] = { 3, 3, 3, 3, 3, 3, 6 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   93) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   94) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   95)  * minimum pwm at which the fan is driven (pwm can be increased depending on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   96)  * the temp. Notice that for the scy some fans share there minimum speed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   97)  * Also notice that with the scy the sensor order is different than with the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   98)  * other chips, this order was in the 2.4 driver and kept for consistency.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   99)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  100) static const u8 FSCHMD_REG_FAN_MIN[7][7] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  101) 	{ 0x55, 0x65 },					/* pos */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  102) 	{ 0x55, 0x65, 0xb5 },				/* her */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  103) 	{ 0x65, 0x65, 0x55, 0xa5, 0x55, 0xa5 },		/* scy */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  104) 	{ 0x55, 0x65, 0xa5, 0xb5 },			/* hrc */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  105) 	{ 0x55, 0x65, 0xa5, 0xb5, 0xc5 },		/* hmd */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  106) 	{ 0x55, 0x65, 0xa5, 0xb5, 0xc5 },		/* hds */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  107) 	{ 0x54, 0x64, 0x74, 0x84, 0x94, 0xa4, 0xb4 },	/* syl */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  108) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  109) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  110) /* actual fan speed */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  111) static const u8 FSCHMD_REG_FAN_ACT[7][7] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  112) 	{ 0x0e, 0x6b, 0xab },				/* pos */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  113) 	{ 0x0e, 0x6b, 0xbb },				/* her */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  114) 	{ 0x6b, 0x6c, 0x0e, 0xab, 0x5c, 0xbb },		/* scy */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  115) 	{ 0x0e, 0x6b, 0xab, 0xbb },			/* hrc */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  116) 	{ 0x5b, 0x6b, 0xab, 0xbb, 0xcb },		/* hmd */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  117) 	{ 0x5b, 0x6b, 0xab, 0xbb, 0xcb },		/* hds */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  118) 	{ 0x57, 0x67, 0x77, 0x87, 0x97, 0xa7, 0xb7 },	/* syl */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  119) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  120) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  121) /* fan status registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  122) static const u8 FSCHMD_REG_FAN_STATE[7][7] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  123) 	{ 0x0d, 0x62, 0xa2 },				/* pos */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  124) 	{ 0x0d, 0x62, 0xb2 },				/* her */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  125) 	{ 0x62, 0x61, 0x0d, 0xa2, 0x52, 0xb2 },		/* scy */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  126) 	{ 0x0d, 0x62, 0xa2, 0xb2 },			/* hrc */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  127) 	{ 0x52, 0x62, 0xa2, 0xb2, 0xc2 },		/* hmd */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  128) 	{ 0x52, 0x62, 0xa2, 0xb2, 0xc2 },		/* hds */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  129) 	{ 0x50, 0x60, 0x70, 0x80, 0x90, 0xa0, 0xb0 },	/* syl */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  130) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  131) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  132) /* fan ripple / divider registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  133) static const u8 FSCHMD_REG_FAN_RIPPLE[7][7] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  134) 	{ 0x0f, 0x6f, 0xaf },				/* pos */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  135) 	{ 0x0f, 0x6f, 0xbf },				/* her */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  136) 	{ 0x6f, 0x6f, 0x0f, 0xaf, 0x0f, 0xbf },		/* scy */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  137) 	{ 0x0f, 0x6f, 0xaf, 0xbf },			/* hrc */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  138) 	{ 0x5f, 0x6f, 0xaf, 0xbf, 0xcf },		/* hmd */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  139) 	{ 0x5f, 0x6f, 0xaf, 0xbf, 0xcf },		/* hds */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  140) 	{ 0x56, 0x66, 0x76, 0x86, 0x96, 0xa6, 0xb6 },	/* syl */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  141) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  142) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  143) static const int FSCHMD_NO_FAN_SENSORS[7] = { 3, 3, 6, 4, 5, 5, 7 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  144) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  145) /* Fan status register bitmasks */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  146) #define FSCHMD_FAN_ALARM	0x04 /* called fault by FSC! */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  147) #define FSCHMD_FAN_NOT_PRESENT	0x08
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  148) #define FSCHMD_FAN_DISABLED	0x80
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  149) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  150) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  151) /* actual temperature registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  152) static const u8 FSCHMD_REG_TEMP_ACT[7][11] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  153) 	{ 0x64, 0x32, 0x35 },				/* pos */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  154) 	{ 0x64, 0x32, 0x35 },				/* her */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  155) 	{ 0x64, 0xD0, 0x32, 0x35 },			/* scy */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  156) 	{ 0x64, 0x32, 0x35 },				/* hrc */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  157) 	{ 0x70, 0x80, 0x90, 0xd0, 0xe0 },		/* hmd */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  158) 	{ 0x70, 0x80, 0x90, 0xd0, 0xe0 },		/* hds */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  159) 	{ 0x58, 0x68, 0x78, 0x88, 0x98, 0xa8,		/* syl */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  160) 	  0xb8, 0xc8, 0xd8, 0xe8, 0xf8 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  161) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  162) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  163) /* temperature state registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  164) static const u8 FSCHMD_REG_TEMP_STATE[7][11] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  165) 	{ 0x71, 0x81, 0x91 },				/* pos */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  166) 	{ 0x71, 0x81, 0x91 },				/* her */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  167) 	{ 0x71, 0xd1, 0x81, 0x91 },			/* scy */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  168) 	{ 0x71, 0x81, 0x91 },				/* hrc */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  169) 	{ 0x71, 0x81, 0x91, 0xd1, 0xe1 },		/* hmd */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  170) 	{ 0x71, 0x81, 0x91, 0xd1, 0xe1 },		/* hds */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  171) 	{ 0x59, 0x69, 0x79, 0x89, 0x99, 0xa9,		/* syl */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  172) 	  0xb9, 0xc9, 0xd9, 0xe9, 0xf9 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  173) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  174) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  175) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  176)  * temperature high limit registers, FSC does not document these. Proven to be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  177)  * there with field testing on the fscher and fschrc, already supported / used
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  178)  * in the fscscy 2.4 driver. FSC has confirmed that the fschmd has registers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  179)  * at these addresses, but doesn't want to confirm they are the same as with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  180)  * the fscher??
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  181)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  182) static const u8 FSCHMD_REG_TEMP_LIMIT[7][11] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  183) 	{ 0, 0, 0 },					/* pos */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  184) 	{ 0x76, 0x86, 0x96 },				/* her */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  185) 	{ 0x76, 0xd6, 0x86, 0x96 },			/* scy */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  186) 	{ 0x76, 0x86, 0x96 },				/* hrc */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  187) 	{ 0x76, 0x86, 0x96, 0xd6, 0xe6 },		/* hmd */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  188) 	{ 0x76, 0x86, 0x96, 0xd6, 0xe6 },		/* hds */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  189) 	{ 0x5a, 0x6a, 0x7a, 0x8a, 0x9a, 0xaa,		/* syl */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  190) 	  0xba, 0xca, 0xda, 0xea, 0xfa },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  191) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  192) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  193) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  194)  * These were found through experimenting with an fscher, currently they are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  195)  * not used, but we keep them around for future reference.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  196)  * On the fscsyl AUTOP1 lives at 0x#c (so 0x5c for fan1, 0x6c for fan2, etc),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  197)  * AUTOP2 lives at 0x#e, and 0x#1 is a bitmask defining which temps influence
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  198)  * the fan speed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  199)  * static const u8 FSCHER_REG_TEMP_AUTOP1[] =	{ 0x73, 0x83, 0x93 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  200)  * static const u8 FSCHER_REG_TEMP_AUTOP2[] =	{ 0x75, 0x85, 0x95 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  201)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  202) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  203) static const int FSCHMD_NO_TEMP_SENSORS[7] = { 3, 3, 4, 3, 5, 5, 11 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  204) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  205) /* temp status register bitmasks */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  206) #define FSCHMD_TEMP_WORKING	0x01
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  207) #define FSCHMD_TEMP_ALERT	0x02
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  208) #define FSCHMD_TEMP_DISABLED	0x80
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  209) /* there only really is an alarm if the sensor is working and alert == 1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  210) #define FSCHMD_TEMP_ALARM_MASK \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  211) 	(FSCHMD_TEMP_WORKING | FSCHMD_TEMP_ALERT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  212) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  213) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  214)  * Functions declarations
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  215)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  216) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  217) static int fschmd_probe(struct i2c_client *client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  218) static int fschmd_detect(struct i2c_client *client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  219) 			 struct i2c_board_info *info);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  220) static int fschmd_remove(struct i2c_client *client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  221) static struct fschmd_data *fschmd_update_device(struct device *dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  222) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  223) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  224)  * Driver data (common to all clients)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  225)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  226) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  227) static const struct i2c_device_id fschmd_id[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  228) 	{ "fscpos", fscpos },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  229) 	{ "fscher", fscher },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  230) 	{ "fscscy", fscscy },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  231) 	{ "fschrc", fschrc },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  232) 	{ "fschmd", fschmd },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  233) 	{ "fschds", fschds },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  234) 	{ "fscsyl", fscsyl },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  235) 	{ }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  236) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  237) MODULE_DEVICE_TABLE(i2c, fschmd_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  238) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  239) static struct i2c_driver fschmd_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  240) 	.class		= I2C_CLASS_HWMON,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  241) 	.driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  242) 		.name	= "fschmd",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  243) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  244) 	.probe_new	= fschmd_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  245) 	.remove		= fschmd_remove,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  246) 	.id_table	= fschmd_id,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  247) 	.detect		= fschmd_detect,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  248) 	.address_list	= normal_i2c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  249) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  250) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  251) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  252)  * Client data (each client gets its own)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  253)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  254) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  255) struct fschmd_data {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  256) 	struct i2c_client *client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  257) 	struct device *hwmon_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  258) 	struct mutex update_lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  259) 	struct mutex watchdog_lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  260) 	struct list_head list; /* member of the watchdog_data_list */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  261) 	struct kref kref;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  262) 	struct miscdevice watchdog_miscdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  263) 	enum chips kind;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  264) 	unsigned long watchdog_is_open;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  265) 	char watchdog_expect_close;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  266) 	char watchdog_name[10]; /* must be unique to avoid sysfs conflict */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  267) 	char valid; /* zero until following fields are valid */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  268) 	unsigned long last_updated; /* in jiffies */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  269) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  270) 	/* register values */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  271) 	u8 revision;            /* chip revision */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  272) 	u8 global_control;	/* global control register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  273) 	u8 watchdog_control;    /* watchdog control register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  274) 	u8 watchdog_state;      /* watchdog status register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  275) 	u8 watchdog_preset;     /* watchdog counter preset on trigger val */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  276) 	u8 volt[6];		/* voltage */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  277) 	u8 temp_act[11];	/* temperature */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  278) 	u8 temp_status[11];	/* status of sensor */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  279) 	u8 temp_max[11];	/* high temp limit, notice: undocumented! */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  280) 	u8 fan_act[7];		/* fans revolutions per second */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  281) 	u8 fan_status[7];	/* fan status */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  282) 	u8 fan_min[7];		/* fan min value for rps */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  283) 	u8 fan_ripple[7];	/* divider for rps */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  284) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  285) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  286) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  287)  * Global variables to hold information read from special DMI tables, which are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  288)  * available on FSC machines with an fscher or later chip. There is no need to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  289)  * protect these with a lock as they are only modified from our attach function
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  290)  * which always gets called with the i2c-core lock held and never accessed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  291)  * before the attach function is done with them.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  292)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  293) static int dmi_mult[6] = { 490, 200, 100, 100, 200, 100 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  294) static int dmi_offset[6] = { 0, 0, 0, 0, 0, 0 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  295) static int dmi_vref = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  296) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  297) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  298)  * Somewhat ugly :( global data pointer list with all fschmd devices, so that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  299)  * we can find our device data as when using misc_register there is no other
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  300)  * method to get to ones device data from the open fop.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  301)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  302) static LIST_HEAD(watchdog_data_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  303) /* Note this lock not only protect list access, but also data.kref access */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  304) static DEFINE_MUTEX(watchdog_data_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  305) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  306) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  307)  * Release our data struct when we're detached from the i2c client *and* all
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  308)  * references to our watchdog device are released
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  309)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  310) static void fschmd_release_resources(struct kref *ref)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  311) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  312) 	struct fschmd_data *data = container_of(ref, struct fschmd_data, kref);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  313) 	kfree(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  314) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  315) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  316) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  317)  * Sysfs attr show / store functions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  318)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  319) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  320) static ssize_t in_value_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  321) 			     struct device_attribute *devattr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  322) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  323) 	const int max_reading[3] = { 14200, 6600, 3300 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  324) 	int index = to_sensor_dev_attr(devattr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  325) 	struct fschmd_data *data = fschmd_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  326) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  327) 	if (data->kind == fscher || data->kind >= fschrc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  328) 		return sprintf(buf, "%d\n", (data->volt[index] * dmi_vref *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  329) 			dmi_mult[index]) / 255 + dmi_offset[index]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  330) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  331) 		return sprintf(buf, "%d\n", (data->volt[index] *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  332) 			max_reading[index] + 128) / 255);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  333) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  334) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  335) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  336) #define TEMP_FROM_REG(val)	(((val) - 128) * 1000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  337) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  338) static ssize_t temp_value_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  339) 			       struct device_attribute *devattr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  340) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  341) 	int index = to_sensor_dev_attr(devattr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  342) 	struct fschmd_data *data = fschmd_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  343) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  344) 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_act[index]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  345) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  346) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  347) static ssize_t temp_max_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  348) 			     struct device_attribute *devattr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  349) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  350) 	int index = to_sensor_dev_attr(devattr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  351) 	struct fschmd_data *data = fschmd_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  352) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  353) 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[index]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  354) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  355) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  356) static ssize_t temp_max_store(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  357) 			      struct device_attribute *devattr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  358) 			      const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  359) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  360) 	int index = to_sensor_dev_attr(devattr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  361) 	struct fschmd_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  362) 	long v;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  363) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  364) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  365) 	err = kstrtol(buf, 10, &v);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  366) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  367) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  368) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  369) 	v = clamp_val(v / 1000, -128, 127) + 128;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  370) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  371) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  372) 	i2c_smbus_write_byte_data(to_i2c_client(dev),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  373) 		FSCHMD_REG_TEMP_LIMIT[data->kind][index], v);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  374) 	data->temp_max[index] = v;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  375) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  376) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  377) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  378) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  379) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  380) static ssize_t temp_fault_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  381) 			       struct device_attribute *devattr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  382) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  383) 	int index = to_sensor_dev_attr(devattr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  384) 	struct fschmd_data *data = fschmd_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  385) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  386) 	/* bit 0 set means sensor working ok, so no fault! */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  387) 	if (data->temp_status[index] & FSCHMD_TEMP_WORKING)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  388) 		return sprintf(buf, "0\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  389) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  390) 		return sprintf(buf, "1\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  391) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  392) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  393) static ssize_t temp_alarm_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  394) 			       struct device_attribute *devattr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  395) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  396) 	int index = to_sensor_dev_attr(devattr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  397) 	struct fschmd_data *data = fschmd_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  398) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  399) 	if ((data->temp_status[index] & FSCHMD_TEMP_ALARM_MASK) ==
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  400) 			FSCHMD_TEMP_ALARM_MASK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  401) 		return sprintf(buf, "1\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  402) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  403) 		return sprintf(buf, "0\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  404) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  405) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  406) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  407) #define RPM_FROM_REG(val)	((val) * 60)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  408) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  409) static ssize_t fan_value_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  410) 			      struct device_attribute *devattr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  411) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  412) 	int index = to_sensor_dev_attr(devattr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  413) 	struct fschmd_data *data = fschmd_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  414) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  415) 	return sprintf(buf, "%u\n", RPM_FROM_REG(data->fan_act[index]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  416) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  417) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  418) static ssize_t fan_div_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  419) 			    struct device_attribute *devattr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  420) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  421) 	int index = to_sensor_dev_attr(devattr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  422) 	struct fschmd_data *data = fschmd_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  423) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  424) 	/* bits 2..7 reserved => mask with 3 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  425) 	return sprintf(buf, "%d\n", 1 << (data->fan_ripple[index] & 3));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  426) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  427) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  428) static ssize_t fan_div_store(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  429) 			     struct device_attribute *devattr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  430) 			     const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  431) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  432) 	u8 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  433) 	int index = to_sensor_dev_attr(devattr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  434) 	struct fschmd_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  435) 	/* supported values: 2, 4, 8 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  436) 	unsigned long v;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  437) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  438) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  439) 	err = kstrtoul(buf, 10, &v);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  440) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  441) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  442) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  443) 	switch (v) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  444) 	case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  445) 		v = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  446) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  447) 	case 4:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  448) 		v = 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  449) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  450) 	case 8:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  451) 		v = 3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  452) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  453) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  454) 		dev_err(dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  455) 			"fan_div value %lu not supported. Choose one of 2, 4 or 8!\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  456) 			v);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  457) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  458) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  459) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  460) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  461) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  462) 	reg = i2c_smbus_read_byte_data(to_i2c_client(dev),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  463) 		FSCHMD_REG_FAN_RIPPLE[data->kind][index]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  464) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  465) 	/* bits 2..7 reserved => mask with 0x03 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  466) 	reg &= ~0x03;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  467) 	reg |= v;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  468) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  469) 	i2c_smbus_write_byte_data(to_i2c_client(dev),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  470) 		FSCHMD_REG_FAN_RIPPLE[data->kind][index], reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  471) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  472) 	data->fan_ripple[index] = reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  473) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  474) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  475) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  476) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  477) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  478) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  479) static ssize_t fan_alarm_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  480) 			      struct device_attribute *devattr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  481) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  482) 	int index = to_sensor_dev_attr(devattr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  483) 	struct fschmd_data *data = fschmd_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  484) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  485) 	if (data->fan_status[index] & FSCHMD_FAN_ALARM)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  486) 		return sprintf(buf, "1\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  487) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  488) 		return sprintf(buf, "0\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  489) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  490) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  491) static ssize_t fan_fault_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  492) 			      struct device_attribute *devattr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  493) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  494) 	int index = to_sensor_dev_attr(devattr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  495) 	struct fschmd_data *data = fschmd_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  496) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  497) 	if (data->fan_status[index] & FSCHMD_FAN_NOT_PRESENT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  498) 		return sprintf(buf, "1\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  499) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  500) 		return sprintf(buf, "0\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  501) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  502) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  503) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  504) static ssize_t pwm_auto_point1_pwm_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  505) 					struct device_attribute *devattr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  506) 					char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  507) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  508) 	int index = to_sensor_dev_attr(devattr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  509) 	struct fschmd_data *data = fschmd_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  510) 	int val = data->fan_min[index];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  511) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  512) 	/* 0 = allow turning off (except on the syl), 1-255 = 50-100% */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  513) 	if (val || data->kind == fscsyl)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  514) 		val = val / 2 + 128;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  515) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  516) 	return sprintf(buf, "%d\n", val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  517) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  518) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  519) static ssize_t pwm_auto_point1_pwm_store(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  520) 					 struct device_attribute *devattr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  521) 					 const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  522) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  523) 	int index = to_sensor_dev_attr(devattr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  524) 	struct fschmd_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  525) 	unsigned long v;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  526) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  527) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  528) 	err = kstrtoul(buf, 10, &v);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  529) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  530) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  531) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  532) 	/* reg: 0 = allow turning off (except on the syl), 1-255 = 50-100% */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  533) 	if (v || data->kind == fscsyl) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  534) 		v = clamp_val(v, 128, 255);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  535) 		v = (v - 128) * 2 + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  536) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  537) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  538) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  539) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  540) 	i2c_smbus_write_byte_data(to_i2c_client(dev),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  541) 		FSCHMD_REG_FAN_MIN[data->kind][index], v);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  542) 	data->fan_min[index] = v;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  543) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  544) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  545) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  546) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  547) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  548) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  549) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  550) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  551)  * The FSC hwmon family has the ability to force an attached alert led to flash
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  552)  * from software, we export this as an alert_led sysfs attr
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  553)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  554) static ssize_t alert_led_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  555) 	struct device_attribute *devattr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  556) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  557) 	struct fschmd_data *data = fschmd_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  558) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  559) 	if (data->global_control & FSCHMD_CONTROL_ALERT_LED)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  560) 		return sprintf(buf, "1\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  561) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  562) 		return sprintf(buf, "0\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  563) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  564) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  565) static ssize_t alert_led_store(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  566) 	struct device_attribute *devattr, const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  567) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  568) 	u8 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  569) 	struct fschmd_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  570) 	unsigned long v;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  571) 	int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  572) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  573) 	err = kstrtoul(buf, 10, &v);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  574) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  575) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  576) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  577) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  578) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  579) 	reg = i2c_smbus_read_byte_data(to_i2c_client(dev), FSCHMD_REG_CONTROL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  580) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  581) 	if (v)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  582) 		reg |= FSCHMD_CONTROL_ALERT_LED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  583) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  584) 		reg &= ~FSCHMD_CONTROL_ALERT_LED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  585) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  586) 	i2c_smbus_write_byte_data(to_i2c_client(dev), FSCHMD_REG_CONTROL, reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  587) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  588) 	data->global_control = reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  589) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  590) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  591) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  592) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  593) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  594) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  595) static DEVICE_ATTR_RW(alert_led);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  596) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  597) static struct sensor_device_attribute fschmd_attr[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  598) 	SENSOR_ATTR_RO(in0_input, in_value, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  599) 	SENSOR_ATTR_RO(in1_input, in_value, 1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  600) 	SENSOR_ATTR_RO(in2_input, in_value, 2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  601) 	SENSOR_ATTR_RO(in3_input, in_value, 3),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  602) 	SENSOR_ATTR_RO(in4_input, in_value, 4),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  603) 	SENSOR_ATTR_RO(in5_input, in_value, 5),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  604) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  605) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  606) static struct sensor_device_attribute fschmd_temp_attr[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  607) 	SENSOR_ATTR_RO(temp1_input, temp_value, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  608) 	SENSOR_ATTR_RW(temp1_max, temp_max, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  609) 	SENSOR_ATTR_RO(temp1_fault, temp_fault, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  610) 	SENSOR_ATTR_RO(temp1_alarm, temp_alarm, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  611) 	SENSOR_ATTR_RO(temp2_input, temp_value, 1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  612) 	SENSOR_ATTR_RW(temp2_max, temp_max, 1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  613) 	SENSOR_ATTR_RO(temp2_fault, temp_fault, 1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  614) 	SENSOR_ATTR_RO(temp2_alarm, temp_alarm, 1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  615) 	SENSOR_ATTR_RO(temp3_input, temp_value, 2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  616) 	SENSOR_ATTR_RW(temp3_max, temp_max, 2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  617) 	SENSOR_ATTR_RO(temp3_fault, temp_fault, 2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  618) 	SENSOR_ATTR_RO(temp3_alarm, temp_alarm, 2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  619) 	SENSOR_ATTR_RO(temp4_input, temp_value, 3),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  620) 	SENSOR_ATTR_RW(temp4_max, temp_max, 3),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  621) 	SENSOR_ATTR_RO(temp4_fault, temp_fault, 3),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  622) 	SENSOR_ATTR_RO(temp4_alarm, temp_alarm, 3),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  623) 	SENSOR_ATTR_RO(temp5_input, temp_value, 4),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  624) 	SENSOR_ATTR_RW(temp5_max, temp_max, 4),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  625) 	SENSOR_ATTR_RO(temp5_fault, temp_fault, 4),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  626) 	SENSOR_ATTR_RO(temp5_alarm, temp_alarm, 4),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  627) 	SENSOR_ATTR_RO(temp6_input, temp_value, 5),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  628) 	SENSOR_ATTR_RW(temp6_max, temp_max, 5),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  629) 	SENSOR_ATTR_RO(temp6_fault, temp_fault, 5),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  630) 	SENSOR_ATTR_RO(temp6_alarm, temp_alarm, 5),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  631) 	SENSOR_ATTR_RO(temp7_input, temp_value, 6),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  632) 	SENSOR_ATTR_RW(temp7_max, temp_max, 6),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  633) 	SENSOR_ATTR_RO(temp7_fault, temp_fault, 6),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  634) 	SENSOR_ATTR_RO(temp7_alarm, temp_alarm, 6),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  635) 	SENSOR_ATTR_RO(temp8_input, temp_value, 7),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  636) 	SENSOR_ATTR_RW(temp8_max, temp_max, 7),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  637) 	SENSOR_ATTR_RO(temp8_fault, temp_fault, 7),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  638) 	SENSOR_ATTR_RO(temp8_alarm, temp_alarm, 7),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  639) 	SENSOR_ATTR_RO(temp9_input, temp_value, 8),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  640) 	SENSOR_ATTR_RW(temp9_max, temp_max, 8),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  641) 	SENSOR_ATTR_RO(temp9_fault, temp_fault, 8),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  642) 	SENSOR_ATTR_RO(temp9_alarm, temp_alarm, 8),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  643) 	SENSOR_ATTR_RO(temp10_input, temp_value, 9),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  644) 	SENSOR_ATTR_RW(temp10_max, temp_max, 9),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  645) 	SENSOR_ATTR_RO(temp10_fault, temp_fault, 9),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  646) 	SENSOR_ATTR_RO(temp10_alarm, temp_alarm, 9),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  647) 	SENSOR_ATTR_RO(temp11_input, temp_value, 10),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  648) 	SENSOR_ATTR_RW(temp11_max, temp_max, 10),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  649) 	SENSOR_ATTR_RO(temp11_fault, temp_fault, 10),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  650) 	SENSOR_ATTR_RO(temp11_alarm, temp_alarm, 10),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  651) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  652) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  653) static struct sensor_device_attribute fschmd_fan_attr[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  654) 	SENSOR_ATTR_RO(fan1_input, fan_value, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  655) 	SENSOR_ATTR_RW(fan1_div, fan_div, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  656) 	SENSOR_ATTR_RO(fan1_alarm, fan_alarm, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  657) 	SENSOR_ATTR_RO(fan1_fault, fan_fault, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  658) 	SENSOR_ATTR_RW(pwm1_auto_point1_pwm, pwm_auto_point1_pwm, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  659) 	SENSOR_ATTR_RO(fan2_input, fan_value, 1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  660) 	SENSOR_ATTR_RW(fan2_div, fan_div, 1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  661) 	SENSOR_ATTR_RO(fan2_alarm, fan_alarm, 1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  662) 	SENSOR_ATTR_RO(fan2_fault, fan_fault, 1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  663) 	SENSOR_ATTR_RW(pwm2_auto_point1_pwm, pwm_auto_point1_pwm, 1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  664) 	SENSOR_ATTR_RO(fan3_input, fan_value, 2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  665) 	SENSOR_ATTR_RW(fan3_div, fan_div, 2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  666) 	SENSOR_ATTR_RO(fan3_alarm, fan_alarm, 2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  667) 	SENSOR_ATTR_RO(fan3_fault, fan_fault, 2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  668) 	SENSOR_ATTR_RW(pwm3_auto_point1_pwm, pwm_auto_point1_pwm, 2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  669) 	SENSOR_ATTR_RO(fan4_input, fan_value, 3),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  670) 	SENSOR_ATTR_RW(fan4_div, fan_div, 3),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  671) 	SENSOR_ATTR_RO(fan4_alarm, fan_alarm, 3),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  672) 	SENSOR_ATTR_RO(fan4_fault, fan_fault, 3),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  673) 	SENSOR_ATTR_RW(pwm4_auto_point1_pwm, pwm_auto_point1_pwm, 3),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  674) 	SENSOR_ATTR_RO(fan5_input, fan_value, 4),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  675) 	SENSOR_ATTR_RW(fan5_div, fan_div, 4),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  676) 	SENSOR_ATTR_RO(fan5_alarm, fan_alarm, 4),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  677) 	SENSOR_ATTR_RO(fan5_fault, fan_fault, 4),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  678) 	SENSOR_ATTR_RW(pwm5_auto_point1_pwm, pwm_auto_point1_pwm, 4),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  679) 	SENSOR_ATTR_RO(fan6_input, fan_value, 5),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  680) 	SENSOR_ATTR_RW(fan6_div, fan_div, 5),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  681) 	SENSOR_ATTR_RO(fan6_alarm, fan_alarm, 5),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  682) 	SENSOR_ATTR_RO(fan6_fault, fan_fault, 5),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  683) 	SENSOR_ATTR_RW(pwm6_auto_point1_pwm, pwm_auto_point1_pwm, 5),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  684) 	SENSOR_ATTR_RO(fan7_input, fan_value, 6),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  685) 	SENSOR_ATTR_RW(fan7_div, fan_div, 6),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  686) 	SENSOR_ATTR_RO(fan7_alarm, fan_alarm, 6),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  687) 	SENSOR_ATTR_RO(fan7_fault, fan_fault, 6),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  688) 	SENSOR_ATTR_RW(pwm7_auto_point1_pwm, pwm_auto_point1_pwm, 6),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  689) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  690) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  691) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  692) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  693)  * Watchdog routines
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  694)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  695) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  696) static int watchdog_set_timeout(struct fschmd_data *data, int timeout)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  697) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  698) 	int ret, resolution;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  699) 	int kind = data->kind + 1; /* 0-x array index -> 1-x module param */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  700) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  701) 	/* 2 second or 60 second resolution? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  702) 	if (timeout <= 510 || kind == fscpos || kind == fscscy)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  703) 		resolution = 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  704) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  705) 		resolution = 60;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  706) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  707) 	if (timeout < resolution || timeout > (resolution * 255))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  708) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  709) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  710) 	mutex_lock(&data->watchdog_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  711) 	if (!data->client) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  712) 		ret = -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  713) 		goto leave;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  714) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  715) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  716) 	if (resolution == 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  717) 		data->watchdog_control &= ~FSCHMD_WDOG_CONTROL_RESOLUTION;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  718) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  719) 		data->watchdog_control |= FSCHMD_WDOG_CONTROL_RESOLUTION;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  720) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  721) 	data->watchdog_preset = DIV_ROUND_UP(timeout, resolution);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  722) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  723) 	/* Write new timeout value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  724) 	i2c_smbus_write_byte_data(data->client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  725) 		FSCHMD_REG_WDOG_PRESET[data->kind], data->watchdog_preset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  726) 	/* Write new control register, do not trigger! */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  727) 	i2c_smbus_write_byte_data(data->client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  728) 		FSCHMD_REG_WDOG_CONTROL[data->kind],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  729) 		data->watchdog_control & ~FSCHMD_WDOG_CONTROL_TRIGGER);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  730) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  731) 	ret = data->watchdog_preset * resolution;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  732) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  733) leave:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  734) 	mutex_unlock(&data->watchdog_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  735) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  736) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  737) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  738) static int watchdog_get_timeout(struct fschmd_data *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  739) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  740) 	int timeout;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  741) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  742) 	mutex_lock(&data->watchdog_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  743) 	if (data->watchdog_control & FSCHMD_WDOG_CONTROL_RESOLUTION)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  744) 		timeout = data->watchdog_preset * 60;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  745) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  746) 		timeout = data->watchdog_preset * 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  747) 	mutex_unlock(&data->watchdog_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  748) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  749) 	return timeout;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  750) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  751) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  752) static int watchdog_trigger(struct fschmd_data *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  753) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  754) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  755) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  756) 	mutex_lock(&data->watchdog_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  757) 	if (!data->client) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  758) 		ret = -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  759) 		goto leave;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  760) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  761) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  762) 	data->watchdog_control |= FSCHMD_WDOG_CONTROL_TRIGGER;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  763) 	i2c_smbus_write_byte_data(data->client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  764) 				  FSCHMD_REG_WDOG_CONTROL[data->kind],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  765) 				  data->watchdog_control);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  766) leave:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  767) 	mutex_unlock(&data->watchdog_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  768) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  769) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  770) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  771) static int watchdog_stop(struct fschmd_data *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  772) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  773) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  774) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  775) 	mutex_lock(&data->watchdog_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  776) 	if (!data->client) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  777) 		ret = -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  778) 		goto leave;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  779) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  780) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  781) 	data->watchdog_control &= ~FSCHMD_WDOG_CONTROL_STARTED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  782) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  783) 	 * Don't store the stop flag in our watchdog control register copy, as
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  784) 	 * its a write only bit (read always returns 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  785) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  786) 	i2c_smbus_write_byte_data(data->client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  787) 		FSCHMD_REG_WDOG_CONTROL[data->kind],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  788) 		data->watchdog_control | FSCHMD_WDOG_CONTROL_STOP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  789) leave:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  790) 	mutex_unlock(&data->watchdog_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  791) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  792) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  793) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  794) static int watchdog_open(struct inode *inode, struct file *filp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  795) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  796) 	struct fschmd_data *pos, *data = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  797) 	int watchdog_is_open;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  798) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  799) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  800) 	 * We get called from drivers/char/misc.c with misc_mtx hold, and we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  801) 	 * call misc_register() from fschmd_probe() with watchdog_data_mutex
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  802) 	 * hold, as misc_register() takes the misc_mtx lock, this is a possible
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  803) 	 * deadlock, so we use mutex_trylock here.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  804) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  805) 	if (!mutex_trylock(&watchdog_data_mutex))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  806) 		return -ERESTARTSYS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  807) 	list_for_each_entry(pos, &watchdog_data_list, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  808) 		if (pos->watchdog_miscdev.minor == iminor(inode)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  809) 			data = pos;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  810) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  811) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  812) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  813) 	/* Note we can never not have found data, so we don't check for this */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  814) 	watchdog_is_open = test_and_set_bit(0, &data->watchdog_is_open);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  815) 	if (!watchdog_is_open)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  816) 		kref_get(&data->kref);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  817) 	mutex_unlock(&watchdog_data_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  818) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  819) 	if (watchdog_is_open)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  820) 		return -EBUSY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  821) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  822) 	/* Start the watchdog */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  823) 	watchdog_trigger(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  824) 	filp->private_data = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  825) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  826) 	return stream_open(inode, filp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  827) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  828) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  829) static int watchdog_release(struct inode *inode, struct file *filp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  830) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  831) 	struct fschmd_data *data = filp->private_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  832) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  833) 	if (data->watchdog_expect_close) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  834) 		watchdog_stop(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  835) 		data->watchdog_expect_close = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  836) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  837) 		watchdog_trigger(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  838) 		dev_crit(&data->client->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  839) 			"unexpected close, not stopping watchdog!\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  840) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  841) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  842) 	clear_bit(0, &data->watchdog_is_open);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  843) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  844) 	mutex_lock(&watchdog_data_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  845) 	kref_put(&data->kref, fschmd_release_resources);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  846) 	mutex_unlock(&watchdog_data_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  847) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  848) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  849) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  850) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  851) static ssize_t watchdog_write(struct file *filp, const char __user *buf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  852) 	size_t count, loff_t *offset)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  853) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  854) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  855) 	struct fschmd_data *data = filp->private_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  856) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  857) 	if (count) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  858) 		if (!nowayout) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  859) 			size_t i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  860) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  861) 			/* Clear it in case it was set with a previous write */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  862) 			data->watchdog_expect_close = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  863) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  864) 			for (i = 0; i != count; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  865) 				char c;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  866) 				if (get_user(c, buf + i))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  867) 					return -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  868) 				if (c == 'V')
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  869) 					data->watchdog_expect_close = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  870) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  871) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  872) 		ret = watchdog_trigger(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  873) 		if (ret < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  874) 			return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  875) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  876) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  877) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  878) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  879) static long watchdog_ioctl(struct file *filp, unsigned int cmd,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  880) 			   unsigned long arg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  881) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  882) 	struct watchdog_info ident = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  883) 		.options = WDIOF_KEEPALIVEPING | WDIOF_SETTIMEOUT |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  884) 				WDIOF_CARDRESET,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  885) 		.identity = "FSC watchdog"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  886) 	};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  887) 	int i, ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  888) 	struct fschmd_data *data = filp->private_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  889) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  890) 	switch (cmd) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  891) 	case WDIOC_GETSUPPORT:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  892) 		ident.firmware_version = data->revision;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  893) 		if (!nowayout)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  894) 			ident.options |= WDIOF_MAGICCLOSE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  895) 		if (copy_to_user((void __user *)arg, &ident, sizeof(ident)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  896) 			ret = -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  897) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  898) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  899) 	case WDIOC_GETSTATUS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  900) 		ret = put_user(0, (int __user *)arg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  901) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  902) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  903) 	case WDIOC_GETBOOTSTATUS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  904) 		if (data->watchdog_state & FSCHMD_WDOG_STATE_CARDRESET)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  905) 			ret = put_user(WDIOF_CARDRESET, (int __user *)arg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  906) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  907) 			ret = put_user(0, (int __user *)arg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  908) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  909) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  910) 	case WDIOC_KEEPALIVE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  911) 		ret = watchdog_trigger(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  912) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  913) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  914) 	case WDIOC_GETTIMEOUT:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  915) 		i = watchdog_get_timeout(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  916) 		ret = put_user(i, (int __user *)arg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  917) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  918) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  919) 	case WDIOC_SETTIMEOUT:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  920) 		if (get_user(i, (int __user *)arg)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  921) 			ret = -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  922) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  923) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  924) 		ret = watchdog_set_timeout(data, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  925) 		if (ret > 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  926) 			ret = put_user(ret, (int __user *)arg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  927) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  928) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  929) 	case WDIOC_SETOPTIONS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  930) 		if (get_user(i, (int __user *)arg)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  931) 			ret = -EFAULT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  932) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  933) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  934) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  935) 		if (i & WDIOS_DISABLECARD)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  936) 			ret = watchdog_stop(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  937) 		else if (i & WDIOS_ENABLECARD)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  938) 			ret = watchdog_trigger(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  939) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  940) 			ret = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  941) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  942) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  943) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  944) 		ret = -ENOTTY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  945) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  946) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  947) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  948) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  949) static const struct file_operations watchdog_fops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  950) 	.owner = THIS_MODULE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  951) 	.llseek = no_llseek,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  952) 	.open = watchdog_open,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  953) 	.release = watchdog_release,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  954) 	.write = watchdog_write,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  955) 	.unlocked_ioctl = watchdog_ioctl,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  956) 	.compat_ioctl = compat_ptr_ioctl,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  957) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  958) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  959) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  960) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  961)  * Detect, register, unregister and update device functions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  962)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  963) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  964) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  965)  * DMI decode routine to read voltage scaling factors from special DMI tables,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  966)  * which are available on FSC machines with an fscher or later chip.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  967)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  968) static void fschmd_dmi_decode(const struct dmi_header *header, void *dummy)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  969) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  970) 	int i, mult[3] = { 0 }, offset[3] = { 0 }, vref = 0, found = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  971) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  972) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  973) 	 * dmi code ugliness, we get passed the address of the contents of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  974) 	 * a complete DMI record, but in the form of a dmi_header pointer, in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  975) 	 * reality this address holds header->length bytes of which the header
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  976) 	 * are the first 4 bytes
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  977) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  978) 	u8 *dmi_data = (u8 *)header;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  979) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  980) 	/* We are looking for OEM-specific type 185 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  981) 	if (header->type != 185)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  982) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  983) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  984) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  985) 	 * we are looking for what Siemens calls "subtype" 19, the subtype
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  986) 	 * is stored in byte 5 of the dmi block
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  987) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  988) 	if (header->length < 5 || dmi_data[4] != 19)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  989) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  990) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  991) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  992) 	 * After the subtype comes 1 unknown byte and then blocks of 5 bytes,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  993) 	 * consisting of what Siemens calls an "Entity" number, followed by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  994) 	 * 2 16-bit words in LSB first order
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  995) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  996) 	for (i = 6; (i + 4) < header->length; i += 5) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  997) 		/* entity 1 - 3: voltage multiplier and offset */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  998) 		if (dmi_data[i] >= 1 && dmi_data[i] <= 3) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  999) 			/* Our in sensors order and the DMI order differ */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) 			const int shuffle[3] = { 1, 0, 2 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) 			int in = shuffle[dmi_data[i] - 1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) 			/* Check for twice the same entity */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) 			if (found & (1 << in))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005) 				return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) 			mult[in] = dmi_data[i + 1] | (dmi_data[i + 2] << 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008) 			offset[in] = dmi_data[i + 3] | (dmi_data[i + 4] << 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) 			found |= 1 << in;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) 		/* entity 7: reference voltage */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014) 		if (dmi_data[i] == 7) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) 			/* Check for twice the same entity */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016) 			if (found & 0x08)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017) 				return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019) 			vref = dmi_data[i + 1] | (dmi_data[i + 2] << 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021) 			found |= 0x08;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) 	if (found == 0x0F) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) 		for (i = 0; i < 3; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027) 			dmi_mult[i] = mult[i] * 10;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) 			dmi_offset[i] = offset[i] * 10;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031) 		 * According to the docs there should be separate dmi entries
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032) 		 * for the mult's and offsets of in3-5 of the syl, but on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033) 		 * my test machine these are not present
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035) 		dmi_mult[3] = dmi_mult[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036) 		dmi_mult[4] = dmi_mult[1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037) 		dmi_mult[5] = dmi_mult[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038) 		dmi_offset[3] = dmi_offset[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039) 		dmi_offset[4] = dmi_offset[1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040) 		dmi_offset[5] = dmi_offset[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041) 		dmi_vref = vref;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045) static int fschmd_detect(struct i2c_client *client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046) 			 struct i2c_board_info *info)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048) 	enum chips kind;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049) 	struct i2c_adapter *adapter = client->adapter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050) 	char id[4];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052) 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055) 	/* Detect & Identify the chip */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056) 	id[0] = i2c_smbus_read_byte_data(client, FSCHMD_REG_IDENT_0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057) 	id[1] = i2c_smbus_read_byte_data(client, FSCHMD_REG_IDENT_1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058) 	id[2] = i2c_smbus_read_byte_data(client, FSCHMD_REG_IDENT_2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) 	id[3] = '\0';
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) 	if (!strcmp(id, "PEG"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) 		kind = fscpos;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) 	else if (!strcmp(id, "HER"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) 		kind = fscher;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) 	else if (!strcmp(id, "SCY"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) 		kind = fscscy;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) 	else if (!strcmp(id, "HRC"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) 		kind = fschrc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) 	else if (!strcmp(id, "HMD"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) 		kind = fschmd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) 	else if (!strcmp(id, "HDS"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) 		kind = fschds;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) 	else if (!strcmp(id, "SYL"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) 		kind = fscsyl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078) 	strlcpy(info->type, fschmd_id[kind].name, I2C_NAME_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) static int fschmd_probe(struct i2c_client *client)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) 	struct fschmd_data *data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086) 	const char * const names[7] = { "Poseidon", "Hermes", "Scylla",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) 				"Heracles", "Heimdall", "Hades", "Syleus" };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088) 	const int watchdog_minors[] = { WATCHDOG_MINOR, 212, 213, 214, 215 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) 	int i, err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090) 	enum chips kind = i2c_match_id(fschmd_id, client)->driver_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) 	data = kzalloc(sizeof(struct fschmd_data), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) 	if (!data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096) 	i2c_set_clientdata(client, data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097) 	mutex_init(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098) 	mutex_init(&data->watchdog_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099) 	INIT_LIST_HEAD(&data->list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100) 	kref_init(&data->kref);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102) 	 * Store client pointer in our data struct for watchdog usage
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103) 	 * (where the client is found through a data ptr instead of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104) 	 * otherway around)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106) 	data->client = client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) 	data->kind = kind;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109) 	if (kind == fscpos) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111) 		 * The Poseidon has hardwired temp limits, fill these
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112) 		 * in for the alarm resetting code
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114) 		data->temp_max[0] = 70 + 128;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115) 		data->temp_max[1] = 50 + 128;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116) 		data->temp_max[2] = 50 + 128;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119) 	/* Read the special DMI table for fscher and newer chips */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) 	if ((kind == fscher || kind >= fschrc) && dmi_vref == -1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) 		dmi_walk(fschmd_dmi_decode, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122) 		if (dmi_vref == -1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123) 			dev_warn(&client->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124) 				"Couldn't get voltage scaling factors from "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125) 				"BIOS DMI table, using builtin defaults\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126) 			dmi_vref = 33;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130) 	/* Read in some never changing registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131) 	data->revision = i2c_smbus_read_byte_data(client, FSCHMD_REG_REVISION);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132) 	data->global_control = i2c_smbus_read_byte_data(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133) 					FSCHMD_REG_CONTROL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134) 	data->watchdog_control = i2c_smbus_read_byte_data(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135) 					FSCHMD_REG_WDOG_CONTROL[data->kind]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136) 	data->watchdog_state = i2c_smbus_read_byte_data(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137) 					FSCHMD_REG_WDOG_STATE[data->kind]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138) 	data->watchdog_preset = i2c_smbus_read_byte_data(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139) 					FSCHMD_REG_WDOG_PRESET[data->kind]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141) 	err = device_create_file(&client->dev, &dev_attr_alert_led);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143) 		goto exit_detach;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145) 	for (i = 0; i < FSCHMD_NO_VOLT_SENSORS[data->kind]; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146) 		err = device_create_file(&client->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147) 					&fschmd_attr[i].dev_attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148) 		if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149) 			goto exit_detach;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152) 	for (i = 0; i < (FSCHMD_NO_TEMP_SENSORS[data->kind] * 4); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153) 		/* Poseidon doesn't have TEMP_LIMIT registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154) 		if (kind == fscpos && fschmd_temp_attr[i].dev_attr.show ==
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155) 				temp_max_show)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158) 		if (kind == fscsyl) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159) 			if (i % 4 == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160) 				data->temp_status[i / 4] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161) 					i2c_smbus_read_byte_data(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1162) 						FSCHMD_REG_TEMP_STATE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1163) 						[data->kind][i / 4]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1164) 			if (data->temp_status[i / 4] & FSCHMD_TEMP_DISABLED)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1165) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1166) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1167) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1168) 		err = device_create_file(&client->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1169) 					&fschmd_temp_attr[i].dev_attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1170) 		if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1171) 			goto exit_detach;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1172) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1173) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1174) 	for (i = 0; i < (FSCHMD_NO_FAN_SENSORS[data->kind] * 5); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1175) 		/* Poseidon doesn't have a FAN_MIN register for its 3rd fan */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1176) 		if (kind == fscpos &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1177) 				!strcmp(fschmd_fan_attr[i].dev_attr.attr.name,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1178) 					"pwm3_auto_point1_pwm"))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1179) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1180) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1181) 		if (kind == fscsyl) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1182) 			if (i % 5 == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1183) 				data->fan_status[i / 5] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1184) 					i2c_smbus_read_byte_data(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1185) 						FSCHMD_REG_FAN_STATE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1186) 						[data->kind][i / 5]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1187) 			if (data->fan_status[i / 5] & FSCHMD_FAN_DISABLED)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1188) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1189) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1190) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1191) 		err = device_create_file(&client->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1192) 					&fschmd_fan_attr[i].dev_attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1193) 		if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1194) 			goto exit_detach;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1195) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1196) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1197) 	data->hwmon_dev = hwmon_device_register(&client->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1198) 	if (IS_ERR(data->hwmon_dev)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1199) 		err = PTR_ERR(data->hwmon_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1200) 		data->hwmon_dev = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1201) 		goto exit_detach;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1202) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1203) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1204) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1205) 	 * We take the data_mutex lock early so that watchdog_open() cannot
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1206) 	 * run when misc_register() has completed, but we've not yet added
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1207) 	 * our data to the watchdog_data_list (and set the default timeout)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1208) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1209) 	mutex_lock(&watchdog_data_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1210) 	for (i = 0; i < ARRAY_SIZE(watchdog_minors); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1211) 		/* Register our watchdog part */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1212) 		snprintf(data->watchdog_name, sizeof(data->watchdog_name),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1213) 			"watchdog%c", (i == 0) ? '\0' : ('0' + i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1214) 		data->watchdog_miscdev.name = data->watchdog_name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1215) 		data->watchdog_miscdev.fops = &watchdog_fops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1216) 		data->watchdog_miscdev.minor = watchdog_minors[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1217) 		err = misc_register(&data->watchdog_miscdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1218) 		if (err == -EBUSY)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1219) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1220) 		if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1221) 			data->watchdog_miscdev.minor = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1222) 			dev_err(&client->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1223) 				"Registering watchdog chardev: %d\n", err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1224) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1225) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1226) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1227) 		list_add(&data->list, &watchdog_data_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1228) 		watchdog_set_timeout(data, 60);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1229) 		dev_info(&client->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1230) 			"Registered watchdog chardev major 10, minor: %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1231) 			watchdog_minors[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1232) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1233) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1234) 	if (i == ARRAY_SIZE(watchdog_minors)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1235) 		data->watchdog_miscdev.minor = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1236) 		dev_warn(&client->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1237) 			 "Couldn't register watchdog chardev (due to no free minor)\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1238) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1239) 	mutex_unlock(&watchdog_data_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1240) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1241) 	dev_info(&client->dev, "Detected FSC %s chip, revision: %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1242) 		names[data->kind], (int) data->revision);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1243) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1244) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1245) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1246) exit_detach:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1247) 	fschmd_remove(client); /* will also free data for us */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1248) 	return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1249) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1250) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1251) static int fschmd_remove(struct i2c_client *client)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1252) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1253) 	struct fschmd_data *data = i2c_get_clientdata(client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1254) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1255) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1256) 	/* Unregister the watchdog (if registered) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1257) 	if (data->watchdog_miscdev.minor) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1258) 		misc_deregister(&data->watchdog_miscdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1259) 		if (data->watchdog_is_open) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1260) 			dev_warn(&client->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1261) 				"i2c client detached with watchdog open! "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1262) 				"Stopping watchdog.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1263) 			watchdog_stop(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1264) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1265) 		mutex_lock(&watchdog_data_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1266) 		list_del(&data->list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1267) 		mutex_unlock(&watchdog_data_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1268) 		/* Tell the watchdog code the client is gone */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1269) 		mutex_lock(&data->watchdog_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1270) 		data->client = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1271) 		mutex_unlock(&data->watchdog_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1272) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1273) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1274) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1275) 	 * Check if registered in case we're called from fschmd_detect
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1276) 	 * to cleanup after an error
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1277) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1278) 	if (data->hwmon_dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1279) 		hwmon_device_unregister(data->hwmon_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1280) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1281) 	device_remove_file(&client->dev, &dev_attr_alert_led);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1282) 	for (i = 0; i < (FSCHMD_NO_VOLT_SENSORS[data->kind]); i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1283) 		device_remove_file(&client->dev, &fschmd_attr[i].dev_attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1284) 	for (i = 0; i < (FSCHMD_NO_TEMP_SENSORS[data->kind] * 4); i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1285) 		device_remove_file(&client->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1286) 					&fschmd_temp_attr[i].dev_attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1287) 	for (i = 0; i < (FSCHMD_NO_FAN_SENSORS[data->kind] * 5); i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1288) 		device_remove_file(&client->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1289) 					&fschmd_fan_attr[i].dev_attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1290) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1291) 	mutex_lock(&watchdog_data_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1292) 	kref_put(&data->kref, fschmd_release_resources);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1293) 	mutex_unlock(&watchdog_data_mutex);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1294) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1295) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1296) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1297) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1298) static struct fschmd_data *fschmd_update_device(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1299) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1300) 	struct i2c_client *client = to_i2c_client(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1301) 	struct fschmd_data *data = i2c_get_clientdata(client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1302) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1303) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1304) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1305) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1306) 	if (time_after(jiffies, data->last_updated + 2 * HZ) || !data->valid) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1307) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1308) 		for (i = 0; i < FSCHMD_NO_TEMP_SENSORS[data->kind]; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1309) 			data->temp_act[i] = i2c_smbus_read_byte_data(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1310) 					FSCHMD_REG_TEMP_ACT[data->kind][i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1311) 			data->temp_status[i] = i2c_smbus_read_byte_data(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1312) 					FSCHMD_REG_TEMP_STATE[data->kind][i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1313) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1314) 			/* The fscpos doesn't have TEMP_LIMIT registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1315) 			if (FSCHMD_REG_TEMP_LIMIT[data->kind][i])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1316) 				data->temp_max[i] = i2c_smbus_read_byte_data(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1317) 					client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1318) 					FSCHMD_REG_TEMP_LIMIT[data->kind][i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1319) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1320) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1321) 			 * reset alarm if the alarm condition is gone,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1322) 			 * the chip doesn't do this itself
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1323) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1324) 			if ((data->temp_status[i] & FSCHMD_TEMP_ALARM_MASK) ==
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1325) 					FSCHMD_TEMP_ALARM_MASK &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1326) 					data->temp_act[i] < data->temp_max[i])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1327) 				i2c_smbus_write_byte_data(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1328) 					FSCHMD_REG_TEMP_STATE[data->kind][i],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1329) 					data->temp_status[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1330) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1331) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1332) 		for (i = 0; i < FSCHMD_NO_FAN_SENSORS[data->kind]; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1333) 			data->fan_act[i] = i2c_smbus_read_byte_data(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1334) 					FSCHMD_REG_FAN_ACT[data->kind][i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1335) 			data->fan_status[i] = i2c_smbus_read_byte_data(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1336) 					FSCHMD_REG_FAN_STATE[data->kind][i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1337) 			data->fan_ripple[i] = i2c_smbus_read_byte_data(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1338) 					FSCHMD_REG_FAN_RIPPLE[data->kind][i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1339) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1340) 			/* The fscpos third fan doesn't have a fan_min */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1341) 			if (FSCHMD_REG_FAN_MIN[data->kind][i])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1342) 				data->fan_min[i] = i2c_smbus_read_byte_data(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1343) 					client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1344) 					FSCHMD_REG_FAN_MIN[data->kind][i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1345) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1346) 			/* reset fan status if speed is back to > 0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1347) 			if ((data->fan_status[i] & FSCHMD_FAN_ALARM) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1348) 					data->fan_act[i])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1349) 				i2c_smbus_write_byte_data(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1350) 					FSCHMD_REG_FAN_STATE[data->kind][i],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1351) 					data->fan_status[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1352) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1353) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1354) 		for (i = 0; i < FSCHMD_NO_VOLT_SENSORS[data->kind]; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1355) 			data->volt[i] = i2c_smbus_read_byte_data(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1356) 					       FSCHMD_REG_VOLT[data->kind][i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1357) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1358) 		data->last_updated = jiffies;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1359) 		data->valid = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1360) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1361) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1362) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1363) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1364) 	return data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1365) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1366) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1367) module_i2c_driver(fschmd_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1368) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1369) MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1370) MODULE_DESCRIPTION("FSC Poseidon, Hermes, Scylla, Heracles, Heimdall, Hades "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1371) 			"and Syleus driver");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1372) MODULE_LICENSE("GPL");