^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) // SPDX-License-Identifier: GPL-2.0-or-later
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * asb100.c - Part of lm_sensors, Linux kernel modules for hardware
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) * monitoring
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) * Copyright (C) 2004 Mark M. Hoffman <mhoffman@lightlink.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) * (derived from w83781d.c)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) * Copyright (C) 1998 - 2003 Frodo Looijaard <frodol@dds.nl>,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) * Philip Edelbrock <phil@netroedge.com>, and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) * Mark Studebaker <mdsxyz123@yahoo.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) * This driver supports the hardware sensor chips: Asus ASB100 and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) * ASB100-A "BACH".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) * ASB100-A supports pwm1, while plain ASB100 does not. There is no known
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) * way for the driver to tell which one is there.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) * Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) * asb100 7 3 1 4 0x31 0x0694 yes no
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) #include <linux/i2c.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) #include <linux/hwmon.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) #include <linux/hwmon-sysfs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) #include <linux/hwmon-vid.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) #include <linux/err.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) #include <linux/jiffies.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) #include <linux/mutex.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) #include "lm75.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) /* I2C addresses to scan */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) static const unsigned short normal_i2c[] = { 0x2d, I2C_CLIENT_END };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) static unsigned short force_subclients[4];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) module_param_array(force_subclients, short, NULL, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45) MODULE_PARM_DESC(force_subclients,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) "List of subclient addresses: {bus, clientaddr, subclientaddr1, subclientaddr2}");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) /* Voltage IN registers 0-6 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) #define ASB100_REG_IN(nr) (0x20 + (nr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) #define ASB100_REG_IN_MAX(nr) (0x2b + (nr * 2))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) #define ASB100_REG_IN_MIN(nr) (0x2c + (nr * 2))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) /* FAN IN registers 1-3 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) #define ASB100_REG_FAN(nr) (0x28 + (nr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) #define ASB100_REG_FAN_MIN(nr) (0x3b + (nr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) /* TEMPERATURE registers 1-4 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) static const u16 asb100_reg_temp[] = {0, 0x27, 0x150, 0x250, 0x17};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) static const u16 asb100_reg_temp_max[] = {0, 0x39, 0x155, 0x255, 0x18};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) static const u16 asb100_reg_temp_hyst[] = {0, 0x3a, 0x153, 0x253, 0x19};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) #define ASB100_REG_TEMP(nr) (asb100_reg_temp[nr])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) #define ASB100_REG_TEMP_MAX(nr) (asb100_reg_temp_max[nr])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) #define ASB100_REG_TEMP_HYST(nr) (asb100_reg_temp_hyst[nr])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) #define ASB100_REG_TEMP2_CONFIG 0x0152
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) #define ASB100_REG_TEMP3_CONFIG 0x0252
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) #define ASB100_REG_CONFIG 0x40
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) #define ASB100_REG_ALARM1 0x41
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) #define ASB100_REG_ALARM2 0x42
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) #define ASB100_REG_SMIM1 0x43
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) #define ASB100_REG_SMIM2 0x44
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) #define ASB100_REG_VID_FANDIV 0x47
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) #define ASB100_REG_I2C_ADDR 0x48
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) #define ASB100_REG_CHIPID 0x49
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) #define ASB100_REG_I2C_SUBADDR 0x4a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) #define ASB100_REG_PIN 0x4b
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) #define ASB100_REG_IRQ 0x4c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) #define ASB100_REG_BANK 0x4e
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) #define ASB100_REG_CHIPMAN 0x4f
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) #define ASB100_REG_WCHIPID 0x58
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) /* bit 7 -> enable, bits 0-3 -> duty cycle */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) #define ASB100_REG_PWM1 0x59
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) * CONVERSIONS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) * Rounding and limit checking is only done on the TO_REG variants.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) /* These constants are a guess, consistent w/ w83781d */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) #define ASB100_IN_MIN 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) #define ASB100_IN_MAX 4080
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) * IN: 1/1000 V (0V to 4.08V)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) * REG: 16mV/bit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) static u8 IN_TO_REG(unsigned val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) unsigned nval = clamp_val(val, ASB100_IN_MIN, ASB100_IN_MAX);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) return (nval + 8) / 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) static unsigned IN_FROM_REG(u8 reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) return reg * 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) static u8 FAN_TO_REG(long rpm, int div)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) if (rpm == -1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) if (rpm == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) return 255;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) rpm = clamp_val(rpm, 1, 1000000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) static int FAN_FROM_REG(u8 val, int div)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) return val == 0 ? -1 : val == 255 ? 0 : 1350000 / (val * div);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) /* These constants are a guess, consistent w/ w83781d */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) #define ASB100_TEMP_MIN -128000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) #define ASB100_TEMP_MAX 127000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) * TEMP: 0.001C/bit (-128C to +127C)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) * REG: 1C/bit, two's complement
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) static u8 TEMP_TO_REG(long temp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) int ntemp = clamp_val(temp, ASB100_TEMP_MIN, ASB100_TEMP_MAX);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) ntemp += (ntemp < 0 ? -500 : 500);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) return (u8)(ntemp / 1000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) static int TEMP_FROM_REG(u8 reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) return (s8)reg * 1000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) * PWM: 0 - 255 per sensors documentation
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) * REG: (6.25% duty cycle per bit)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) static u8 ASB100_PWM_TO_REG(int pwm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) pwm = clamp_val(pwm, 0, 255);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) return (u8)(pwm / 16);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) static int ASB100_PWM_FROM_REG(u8 reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) return reg * 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) #define DIV_FROM_REG(val) (1 << (val))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) * FAN DIV: 1, 2, 4, or 8 (defaults to 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) * REG: 0, 1, 2, or 3 (respectively) (defaults to 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) static u8 DIV_TO_REG(long val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) return val == 8 ? 3 : val == 4 ? 2 : val == 1 ? 0 : 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) * For each registered client, we need to keep some data in memory. That
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) * data is pointed to by client->data. The structure itself is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) * dynamically allocated, at the same time the client itself is allocated.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) struct asb100_data {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) struct device *hwmon_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) struct mutex lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) struct mutex update_lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) unsigned long last_updated; /* In jiffies */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) /* array of 2 pointers to subclients */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) struct i2c_client *lm75[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) char valid; /* !=0 if following fields are valid */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) u8 in[7]; /* Register value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) u8 in_max[7]; /* Register value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) u8 in_min[7]; /* Register value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) u8 fan[3]; /* Register value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) u8 fan_min[3]; /* Register value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) u16 temp[4]; /* Register value (0 and 3 are u8 only) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) u16 temp_max[4]; /* Register value (0 and 3 are u8 only) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) u16 temp_hyst[4]; /* Register value (0 and 3 are u8 only) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) u8 fan_div[3]; /* Register encoding, right justified */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) u8 pwm; /* Register encoding */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) u8 vid; /* Register encoding, combined */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) u32 alarms; /* Register encoding, combined */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) u8 vrm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) static int asb100_read_value(struct i2c_client *client, u16 reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) static void asb100_write_value(struct i2c_client *client, u16 reg, u16 val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) static int asb100_probe(struct i2c_client *client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) static int asb100_detect(struct i2c_client *client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) struct i2c_board_info *info);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) static int asb100_remove(struct i2c_client *client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) static struct asb100_data *asb100_update_device(struct device *dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) static void asb100_init_client(struct i2c_client *client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) static const struct i2c_device_id asb100_id[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) { "asb100", 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) { }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) MODULE_DEVICE_TABLE(i2c, asb100_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) static struct i2c_driver asb100_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) .class = I2C_CLASS_HWMON,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) .driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) .name = "asb100",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) .probe_new = asb100_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) .remove = asb100_remove,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) .id_table = asb100_id,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) .detect = asb100_detect,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) .address_list = normal_i2c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) /* 7 Voltages */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) #define show_in_reg(reg) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) char *buf) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) int nr = to_sensor_dev_attr(attr)->index; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) struct asb100_data *data = asb100_update_device(dev); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) show_in_reg(in)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) show_in_reg(in_min)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) show_in_reg(in_max)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) #define set_in_reg(REG, reg) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) static ssize_t set_in_##reg(struct device *dev, struct device_attribute *attr, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) const char *buf, size_t count) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) int nr = to_sensor_dev_attr(attr)->index; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) struct i2c_client *client = to_i2c_client(dev); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) struct asb100_data *data = i2c_get_clientdata(client); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) unsigned long val; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) int err = kstrtoul(buf, 10, &val); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) if (err) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) return err; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) mutex_lock(&data->update_lock); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) data->in_##reg[nr] = IN_TO_REG(val); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) asb100_write_value(client, ASB100_REG_IN_##REG(nr), \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) data->in_##reg[nr]); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) mutex_unlock(&data->update_lock); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) return count; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) set_in_reg(MIN, min)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) set_in_reg(MAX, max)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) #define sysfs_in(offset) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) show_in, NULL, offset); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) show_in_min, set_in_min, offset); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) show_in_max, set_in_max, offset)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) sysfs_in(0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) sysfs_in(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) sysfs_in(2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) sysfs_in(3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) sysfs_in(4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) sysfs_in(5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) sysfs_in(6);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) /* 3 Fans */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) struct asb100_data *data = asb100_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) DIV_FROM_REG(data->fan_div[nr])));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) struct asb100_data *data = asb100_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) DIV_FROM_REG(data->fan_div[nr])));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) struct asb100_data *data = asb100_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) return sprintf(buf, "%d\n", DIV_FROM_REG(data->fan_div[nr]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) struct i2c_client *client = to_i2c_client(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) struct asb100_data *data = i2c_get_clientdata(client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) unsigned long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) err = kstrtoul(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) * Note: we save and restore the fan minimum here, because its value is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) * determined in part by the fan divisor. This follows the principle of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) * least surprise; the user doesn't expect the fan minimum to change just
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) * because the divisor changed.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) static ssize_t set_fan_div(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) struct i2c_client *client = to_i2c_client(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) struct asb100_data *data = i2c_get_clientdata(client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) unsigned long min;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) int reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) unsigned long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) err = kstrtoul(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) min = FAN_FROM_REG(data->fan_min[nr],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) DIV_FROM_REG(data->fan_div[nr]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) data->fan_div[nr] = DIV_TO_REG(val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) switch (nr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) case 0: /* fan 1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) reg = (reg & 0xcf) | (data->fan_div[0] << 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) case 1: /* fan 2 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) reg = asb100_read_value(client, ASB100_REG_VID_FANDIV);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) reg = (reg & 0x3f) | (data->fan_div[1] << 6);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) asb100_write_value(client, ASB100_REG_VID_FANDIV, reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) case 2: /* fan 3 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) reg = asb100_read_value(client, ASB100_REG_PIN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) reg = (reg & 0x3f) | (data->fan_div[2] << 6);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) asb100_write_value(client, ASB100_REG_PIN, reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) data->fan_min[nr] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) asb100_write_value(client, ASB100_REG_FAN_MIN(nr), data->fan_min[nr]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) #define sysfs_fan(offset) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) show_fan, NULL, offset - 1); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) show_fan_min, set_fan_min, offset - 1); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) static SENSOR_DEVICE_ATTR(fan##offset##_div, S_IRUGO | S_IWUSR, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) show_fan_div, set_fan_div, offset - 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) sysfs_fan(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) sysfs_fan(2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) sysfs_fan(3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) /* 4 Temp. Sensors */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) static int sprintf_temp_from_reg(u16 reg, char *buf, int nr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) switch (nr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) case 1: case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) ret = sprintf(buf, "%d\n", LM75_TEMP_FROM_REG(reg));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) case 0: case 3: default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) ret = sprintf(buf, "%d\n", TEMP_FROM_REG(reg));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) #define show_temp_reg(reg) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) char *buf) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) int nr = to_sensor_dev_attr(attr)->index; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) struct asb100_data *data = asb100_update_device(dev); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) return sprintf_temp_from_reg(data->reg[nr], buf, nr); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) show_temp_reg(temp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) show_temp_reg(temp_max);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) show_temp_reg(temp_hyst);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) #define set_temp_reg(REG, reg) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) static ssize_t set_##reg(struct device *dev, struct device_attribute *attr, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) const char *buf, size_t count) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) int nr = to_sensor_dev_attr(attr)->index; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) struct i2c_client *client = to_i2c_client(dev); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) struct asb100_data *data = i2c_get_clientdata(client); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) long val; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) int err = kstrtol(buf, 10, &val); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) if (err) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) return err; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) mutex_lock(&data->update_lock); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) switch (nr) { \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) case 1: case 2: \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) data->reg[nr] = LM75_TEMP_TO_REG(val); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) break; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) case 0: case 3: default: \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) data->reg[nr] = TEMP_TO_REG(val); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) break; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) } \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) asb100_write_value(client, ASB100_REG_TEMP_##REG(nr+1), \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) data->reg[nr]); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) mutex_unlock(&data->update_lock); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) return count; \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) set_temp_reg(MAX, temp_max);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) set_temp_reg(HYST, temp_hyst);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) #define sysfs_temp(num) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) static SENSOR_DEVICE_ATTR(temp##num##_input, S_IRUGO, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) show_temp, NULL, num - 1); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) static SENSOR_DEVICE_ATTR(temp##num##_max, S_IRUGO | S_IWUSR, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) show_temp_max, set_temp_max, num - 1); \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) static SENSOR_DEVICE_ATTR(temp##num##_max_hyst, S_IRUGO | S_IWUSR, \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) show_temp_hyst, set_temp_hyst, num - 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) sysfs_temp(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) sysfs_temp(2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) sysfs_temp(3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) sysfs_temp(4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) /* VID */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) static ssize_t cpu0_vid_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) struct asb100_data *data = asb100_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) static DEVICE_ATTR_RO(cpu0_vid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) /* VRM */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) static ssize_t vrm_show(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) struct asb100_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) return sprintf(buf, "%d\n", data->vrm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) static ssize_t vrm_store(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) struct asb100_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) unsigned long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) err = kstrtoul(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) if (val > 255)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) data->vrm = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) /* Alarms */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) static DEVICE_ATTR_RW(vrm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) struct asb100_data *data = asb100_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) return sprintf(buf, "%u\n", data->alarms);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) static DEVICE_ATTR_RO(alarms);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) int bitnr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) struct asb100_data *data = asb100_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) /* 1 PWM */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) static ssize_t pwm1_show(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) struct asb100_data *data = asb100_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) return sprintf(buf, "%d\n", ASB100_PWM_FROM_REG(data->pwm & 0x0f));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) static ssize_t pwm1_store(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) struct i2c_client *client = to_i2c_client(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) struct asb100_data *data = i2c_get_clientdata(client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) unsigned long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) err = kstrtoul(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) data->pwm &= 0x80; /* keep the enable bit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) data->pwm |= (0x0f & ASB100_PWM_TO_REG(val));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) static ssize_t pwm1_enable_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) struct asb100_data *data = asb100_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) return sprintf(buf, "%d\n", (data->pwm & 0x80) ? 1 : 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) static ssize_t pwm1_enable_store(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574) struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) struct i2c_client *client = to_i2c_client(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) struct asb100_data *data = i2c_get_clientdata(client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) unsigned long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) err = kstrtoul(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) data->pwm &= 0x0f; /* keep the duty cycle bits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) data->pwm |= (val ? 0x80 : 0x00);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) asb100_write_value(client, ASB100_REG_PWM1, data->pwm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591) return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) static DEVICE_ATTR_RW(pwm1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) static DEVICE_ATTR_RW(pwm1_enable);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) static struct attribute *asb100_attributes[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) &sensor_dev_attr_in0_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) &sensor_dev_attr_in0_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600) &sensor_dev_attr_in0_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) &sensor_dev_attr_in1_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) &sensor_dev_attr_in1_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603) &sensor_dev_attr_in1_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) &sensor_dev_attr_in2_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) &sensor_dev_attr_in2_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) &sensor_dev_attr_in2_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) &sensor_dev_attr_in3_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) &sensor_dev_attr_in3_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) &sensor_dev_attr_in3_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) &sensor_dev_attr_in4_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611) &sensor_dev_attr_in4_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) &sensor_dev_attr_in4_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) &sensor_dev_attr_in5_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614) &sensor_dev_attr_in5_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615) &sensor_dev_attr_in5_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616) &sensor_dev_attr_in6_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) &sensor_dev_attr_in6_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618) &sensor_dev_attr_in6_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620) &sensor_dev_attr_fan1_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621) &sensor_dev_attr_fan1_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622) &sensor_dev_attr_fan1_div.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623) &sensor_dev_attr_fan2_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624) &sensor_dev_attr_fan2_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625) &sensor_dev_attr_fan2_div.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626) &sensor_dev_attr_fan3_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627) &sensor_dev_attr_fan3_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628) &sensor_dev_attr_fan3_div.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630) &sensor_dev_attr_temp1_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631) &sensor_dev_attr_temp1_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632) &sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633) &sensor_dev_attr_temp2_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634) &sensor_dev_attr_temp2_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635) &sensor_dev_attr_temp2_max_hyst.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636) &sensor_dev_attr_temp3_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637) &sensor_dev_attr_temp3_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638) &sensor_dev_attr_temp3_max_hyst.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639) &sensor_dev_attr_temp4_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640) &sensor_dev_attr_temp4_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641) &sensor_dev_attr_temp4_max_hyst.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643) &sensor_dev_attr_in0_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644) &sensor_dev_attr_in1_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 645) &sensor_dev_attr_in2_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 646) &sensor_dev_attr_in3_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 647) &sensor_dev_attr_in4_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 648) &sensor_dev_attr_fan1_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 649) &sensor_dev_attr_fan2_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 650) &sensor_dev_attr_fan3_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 651) &sensor_dev_attr_temp1_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 652) &sensor_dev_attr_temp2_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 653) &sensor_dev_attr_temp3_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 654)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 655) &dev_attr_cpu0_vid.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 656) &dev_attr_vrm.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 657) &dev_attr_alarms.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 658) &dev_attr_pwm1.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 659) &dev_attr_pwm1_enable.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 660)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 661) NULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 662) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 663)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 664) static const struct attribute_group asb100_group = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 665) .attrs = asb100_attributes,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 666) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 667)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 668) static int asb100_detect_subclients(struct i2c_client *client)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 669) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 670) int i, id, err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 671) int address = client->addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 672) unsigned short sc_addr[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 673) struct asb100_data *data = i2c_get_clientdata(client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 674) struct i2c_adapter *adapter = client->adapter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 675)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 676) id = i2c_adapter_id(adapter);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 677)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 678) if (force_subclients[0] == id && force_subclients[1] == address) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 679) for (i = 2; i <= 3; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 680) if (force_subclients[i] < 0x48 ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 681) force_subclients[i] > 0x4f) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 682) dev_err(&client->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 683) "invalid subclient address %d; must be 0x48-0x4f\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 684) force_subclients[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 685) err = -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 686) goto ERROR_SC_2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 687) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 688) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 689) asb100_write_value(client, ASB100_REG_I2C_SUBADDR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 690) (force_subclients[2] & 0x07) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 691) ((force_subclients[3] & 0x07) << 4));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 692) sc_addr[0] = force_subclients[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 693) sc_addr[1] = force_subclients[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 694) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 695) int val = asb100_read_value(client, ASB100_REG_I2C_SUBADDR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 696) sc_addr[0] = 0x48 + (val & 0x07);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 697) sc_addr[1] = 0x48 + ((val >> 4) & 0x07);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 698) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 699)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 700) if (sc_addr[0] == sc_addr[1]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 701) dev_err(&client->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 702) "duplicate addresses 0x%x for subclients\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 703) sc_addr[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 704) err = -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 705) goto ERROR_SC_2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 706) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 707)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 708) data->lm75[0] = i2c_new_dummy_device(adapter, sc_addr[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 709) if (IS_ERR(data->lm75[0])) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 710) dev_err(&client->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 711) "subclient %d registration at address 0x%x failed.\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 712) 1, sc_addr[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 713) err = PTR_ERR(data->lm75[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 714) goto ERROR_SC_2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 715) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 716)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 717) data->lm75[1] = i2c_new_dummy_device(adapter, sc_addr[1]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 718) if (IS_ERR(data->lm75[1])) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 719) dev_err(&client->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 720) "subclient %d registration at address 0x%x failed.\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 721) 2, sc_addr[1]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 722) err = PTR_ERR(data->lm75[1]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 723) goto ERROR_SC_3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 724) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 725)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 726) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 727)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 728) /* Undo inits in case of errors */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 729) ERROR_SC_3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 730) i2c_unregister_device(data->lm75[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 731) ERROR_SC_2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 732) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 733) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 734)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 735) /* Return 0 if detection is successful, -ENODEV otherwise */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 736) static int asb100_detect(struct i2c_client *client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 737) struct i2c_board_info *info)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 738) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 739) struct i2c_adapter *adapter = client->adapter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 740) int val1, val2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 741)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 742) if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 743) pr_debug("detect failed, smbus byte data not supported!\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 744) return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 745) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 746)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 747) val1 = i2c_smbus_read_byte_data(client, ASB100_REG_BANK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 748) val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 749)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 750) /* If we're in bank 0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 751) if ((!(val1 & 0x07)) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 752) /* Check for ASB100 ID (low byte) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 753) (((!(val1 & 0x80)) && (val2 != 0x94)) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 754) /* Check for ASB100 ID (high byte ) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 755) ((val1 & 0x80) && (val2 != 0x06)))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 756) pr_debug("detect failed, bad chip id 0x%02x!\n", val2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 757) return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 758) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 759)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 760) /* Put it now into bank 0 and Vendor ID High Byte */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 761) i2c_smbus_write_byte_data(client, ASB100_REG_BANK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 762) (i2c_smbus_read_byte_data(client, ASB100_REG_BANK) & 0x78)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 763) | 0x80);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 764)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 765) /* Determine the chip type. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 766) val1 = i2c_smbus_read_byte_data(client, ASB100_REG_WCHIPID);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 767) val2 = i2c_smbus_read_byte_data(client, ASB100_REG_CHIPMAN);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 768)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 769) if (val1 != 0x31 || val2 != 0x06)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 770) return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 771)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 772) strlcpy(info->type, "asb100", I2C_NAME_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 773)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 774) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 775) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 776)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 777) static int asb100_probe(struct i2c_client *client)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 778) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 779) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 780) struct asb100_data *data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 781)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 782) data = devm_kzalloc(&client->dev, sizeof(struct asb100_data),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 783) GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 784) if (!data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 785) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 786)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 787) i2c_set_clientdata(client, data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 788) mutex_init(&data->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 789) mutex_init(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 790)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 791) /* Attach secondary lm75 clients */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 792) err = asb100_detect_subclients(client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 793) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 794) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 795)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 796) /* Initialize the chip */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 797) asb100_init_client(client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 798)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 799) /* A few vars need to be filled upon startup */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 800) data->fan_min[0] = asb100_read_value(client, ASB100_REG_FAN_MIN(0));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 801) data->fan_min[1] = asb100_read_value(client, ASB100_REG_FAN_MIN(1));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 802) data->fan_min[2] = asb100_read_value(client, ASB100_REG_FAN_MIN(2));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 803)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 804) /* Register sysfs hooks */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 805) err = sysfs_create_group(&client->dev.kobj, &asb100_group);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 806) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 807) goto ERROR3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 808)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 809) data->hwmon_dev = hwmon_device_register(&client->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 810) if (IS_ERR(data->hwmon_dev)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 811) err = PTR_ERR(data->hwmon_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 812) goto ERROR4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 813) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 814)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 815) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 816)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 817) ERROR4:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 818) sysfs_remove_group(&client->dev.kobj, &asb100_group);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 819) ERROR3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 820) i2c_unregister_device(data->lm75[1]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 821) i2c_unregister_device(data->lm75[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 822) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 823) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 824)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 825) static int asb100_remove(struct i2c_client *client)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 826) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 827) struct asb100_data *data = i2c_get_clientdata(client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 828)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 829) hwmon_device_unregister(data->hwmon_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 830) sysfs_remove_group(&client->dev.kobj, &asb100_group);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 831)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 832) i2c_unregister_device(data->lm75[1]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 833) i2c_unregister_device(data->lm75[0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 834)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 835) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 836) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 837)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 838) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 839) * The SMBus locks itself, usually, but nothing may access the chip between
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 840) * bank switches.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 841) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 842) static int asb100_read_value(struct i2c_client *client, u16 reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 843) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 844) struct asb100_data *data = i2c_get_clientdata(client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 845) struct i2c_client *cl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 846) int res, bank;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 847)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 848) mutex_lock(&data->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 849)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 850) bank = (reg >> 8) & 0x0f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 851) if (bank > 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 852) /* switch banks */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 853) i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 854)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 855) if (bank == 0 || bank > 2) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 856) res = i2c_smbus_read_byte_data(client, reg & 0xff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 857) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 858) /* switch to subclient */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 859) cl = data->lm75[bank - 1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 860)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 861) /* convert from ISA to LM75 I2C addresses */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 862) switch (reg & 0xff) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 863) case 0x50: /* TEMP */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 864) res = i2c_smbus_read_word_swapped(cl, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 865) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 866) case 0x52: /* CONFIG */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 867) res = i2c_smbus_read_byte_data(cl, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 868) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 869) case 0x53: /* HYST */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 870) res = i2c_smbus_read_word_swapped(cl, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 871) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 872) case 0x55: /* MAX */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 873) default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 874) res = i2c_smbus_read_word_swapped(cl, 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 875) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 876) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 877) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 878)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 879) if (bank > 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 880) i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 881)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 882) mutex_unlock(&data->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 883)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 884) return res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 885) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 886)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 887) static void asb100_write_value(struct i2c_client *client, u16 reg, u16 value)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 888) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 889) struct asb100_data *data = i2c_get_clientdata(client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 890) struct i2c_client *cl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 891) int bank;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 892)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 893) mutex_lock(&data->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 894)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 895) bank = (reg >> 8) & 0x0f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 896) if (bank > 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 897) /* switch banks */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 898) i2c_smbus_write_byte_data(client, ASB100_REG_BANK, bank);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 899)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 900) if (bank == 0 || bank > 2) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 901) i2c_smbus_write_byte_data(client, reg & 0xff, value & 0xff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 902) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 903) /* switch to subclient */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 904) cl = data->lm75[bank - 1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 905)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 906) /* convert from ISA to LM75 I2C addresses */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 907) switch (reg & 0xff) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 908) case 0x52: /* CONFIG */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 909) i2c_smbus_write_byte_data(cl, 1, value & 0xff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 910) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 911) case 0x53: /* HYST */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 912) i2c_smbus_write_word_swapped(cl, 2, value);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 913) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 914) case 0x55: /* MAX */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 915) i2c_smbus_write_word_swapped(cl, 3, value);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 916) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 917) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 918) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 919)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 920) if (bank > 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 921) i2c_smbus_write_byte_data(client, ASB100_REG_BANK, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 922)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 923) mutex_unlock(&data->lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 924) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 925)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 926) static void asb100_init_client(struct i2c_client *client)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 927) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 928) struct asb100_data *data = i2c_get_clientdata(client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 929)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 930) data->vrm = vid_which_vrm();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 931)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 932) /* Start monitoring */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 933) asb100_write_value(client, ASB100_REG_CONFIG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 934) (asb100_read_value(client, ASB100_REG_CONFIG) & 0xf7) | 0x01);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 935) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 936)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 937) static struct asb100_data *asb100_update_device(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 938) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 939) struct i2c_client *client = to_i2c_client(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 940) struct asb100_data *data = i2c_get_clientdata(client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 941) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 942)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 943) mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 944)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 945) if (time_after(jiffies, data->last_updated + HZ + HZ / 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 946) || !data->valid) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 947)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 948) dev_dbg(&client->dev, "starting device update...\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 949)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 950) /* 7 voltage inputs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 951) for (i = 0; i < 7; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 952) data->in[i] = asb100_read_value(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 953) ASB100_REG_IN(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 954) data->in_min[i] = asb100_read_value(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 955) ASB100_REG_IN_MIN(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 956) data->in_max[i] = asb100_read_value(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 957) ASB100_REG_IN_MAX(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 958) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 959)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 960) /* 3 fan inputs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 961) for (i = 0; i < 3; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 962) data->fan[i] = asb100_read_value(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 963) ASB100_REG_FAN(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 964) data->fan_min[i] = asb100_read_value(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 965) ASB100_REG_FAN_MIN(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 966) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 967)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 968) /* 4 temperature inputs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 969) for (i = 1; i <= 4; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 970) data->temp[i-1] = asb100_read_value(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 971) ASB100_REG_TEMP(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 972) data->temp_max[i-1] = asb100_read_value(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 973) ASB100_REG_TEMP_MAX(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 974) data->temp_hyst[i-1] = asb100_read_value(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 975) ASB100_REG_TEMP_HYST(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 976) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 977)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 978) /* VID and fan divisors */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 979) i = asb100_read_value(client, ASB100_REG_VID_FANDIV);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 980) data->vid = i & 0x0f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 981) data->vid |= (asb100_read_value(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 982) ASB100_REG_CHIPID) & 0x01) << 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 983) data->fan_div[0] = (i >> 4) & 0x03;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 984) data->fan_div[1] = (i >> 6) & 0x03;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 985) data->fan_div[2] = (asb100_read_value(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 986) ASB100_REG_PIN) >> 6) & 0x03;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 987)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 988) /* PWM */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 989) data->pwm = asb100_read_value(client, ASB100_REG_PWM1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 990)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 991) /* alarms */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 992) data->alarms = asb100_read_value(client, ASB100_REG_ALARM1) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 993) (asb100_read_value(client, ASB100_REG_ALARM2) << 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 994)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 995) data->last_updated = jiffies;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 996) data->valid = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 997)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 998) dev_dbg(&client->dev, "... device update complete\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 999) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) return data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) module_i2c_driver(asb100_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008) MODULE_AUTHOR("Mark M. Hoffman <mhoffman@lightlink.com>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) MODULE_DESCRIPTION("ASB100 Bach driver");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) MODULE_LICENSE("GPL");