Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    1) // SPDX-License-Identifier: GPL-2.0-or-later
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    3)  * adm1031.c - Part of lm_sensors, Linux kernel modules for hardware
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    4)  *	       monitoring
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    5)  * Based on lm75.c and lm85.c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    6)  * Supports adm1030 / adm1031
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    7)  * Copyright (C) 2004 Alexandre d'Alton <alex@alexdalton.org>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    8)  * Reworked by Jean Delvare <jdelvare@suse.de>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    9)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   10) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   11) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   12) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   13) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   14) #include <linux/jiffies.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   15) #include <linux/i2c.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   16) #include <linux/hwmon.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   17) #include <linux/hwmon-sysfs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   18) #include <linux/err.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   19) #include <linux/mutex.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   20) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   21) /* Following macros takes channel parameter starting from 0 to 2 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   22) #define ADM1031_REG_FAN_SPEED(nr)	(0x08 + (nr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   23) #define ADM1031_REG_FAN_DIV(nr)		(0x20 + (nr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   24) #define ADM1031_REG_PWM			(0x22)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   25) #define ADM1031_REG_FAN_MIN(nr)		(0x10 + (nr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   26) #define ADM1031_REG_FAN_FILTER		(0x23)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   27) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   28) #define ADM1031_REG_TEMP_OFFSET(nr)	(0x0d + (nr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   29) #define ADM1031_REG_TEMP_MAX(nr)	(0x14 + 4 * (nr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   30) #define ADM1031_REG_TEMP_MIN(nr)	(0x15 + 4 * (nr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   31) #define ADM1031_REG_TEMP_CRIT(nr)	(0x16 + 4 * (nr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   32) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   33) #define ADM1031_REG_TEMP(nr)		(0x0a + (nr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   34) #define ADM1031_REG_AUTO_TEMP(nr)	(0x24 + (nr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   35) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   36) #define ADM1031_REG_STATUS(nr)		(0x2 + (nr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   37) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   38) #define ADM1031_REG_CONF1		0x00
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   39) #define ADM1031_REG_CONF2		0x01
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   40) #define ADM1031_REG_EXT_TEMP		0x06
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   41) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   42) #define ADM1031_CONF1_MONITOR_ENABLE	0x01	/* Monitoring enable */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   43) #define ADM1031_CONF1_PWM_INVERT	0x08	/* PWM Invert */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   44) #define ADM1031_CONF1_AUTO_MODE		0x80	/* Auto FAN */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   45) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   46) #define ADM1031_CONF2_PWM1_ENABLE	0x01
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   47) #define ADM1031_CONF2_PWM2_ENABLE	0x02
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   48) #define ADM1031_CONF2_TACH1_ENABLE	0x04
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   49) #define ADM1031_CONF2_TACH2_ENABLE	0x08
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   50) #define ADM1031_CONF2_TEMP_ENABLE(chan)	(0x10 << (chan))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   51) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   52) #define ADM1031_UPDATE_RATE_MASK	0x1c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   53) #define ADM1031_UPDATE_RATE_SHIFT	2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   54) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   55) /* Addresses to scan */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   56) static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   57) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   58) enum chips { adm1030, adm1031 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   59) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   60) typedef u8 auto_chan_table_t[8][2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   61) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   62) /* Each client has this additional data */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   63) struct adm1031_data {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   64) 	struct i2c_client *client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   65) 	const struct attribute_group *groups[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   66) 	struct mutex update_lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   67) 	int chip_type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   68) 	char valid;		/* !=0 if following fields are valid */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   69) 	unsigned long last_updated;	/* In jiffies */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   70) 	unsigned int update_interval;	/* In milliseconds */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   71) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   72) 	 * The chan_select_table contains the possible configurations for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   73) 	 * auto fan control.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   74) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   75) 	const auto_chan_table_t *chan_select_table;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   76) 	u16 alarm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   77) 	u8 conf1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   78) 	u8 conf2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   79) 	u8 fan[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   80) 	u8 fan_div[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   81) 	u8 fan_min[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   82) 	u8 pwm[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   83) 	u8 old_pwm[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   84) 	s8 temp[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   85) 	u8 ext_temp[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   86) 	u8 auto_temp[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   87) 	u8 auto_temp_min[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   88) 	u8 auto_temp_off[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   89) 	u8 auto_temp_max[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   90) 	s8 temp_offset[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   91) 	s8 temp_min[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   92) 	s8 temp_max[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   93) 	s8 temp_crit[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   94) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   95) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   96) static inline u8 adm1031_read_value(struct i2c_client *client, u8 reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   97) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   98) 	return i2c_smbus_read_byte_data(client, reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   99) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  100) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  101) static inline int
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  102) adm1031_write_value(struct i2c_client *client, u8 reg, unsigned int value)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  103) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  104) 	return i2c_smbus_write_byte_data(client, reg, value);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  105) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  106) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  107) static struct adm1031_data *adm1031_update_device(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  108) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  109) 	struct adm1031_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  110) 	struct i2c_client *client = data->client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  111) 	unsigned long next_update;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  112) 	int chan;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  113) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  114) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  115) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  116) 	next_update = data->last_updated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  117) 	  + msecs_to_jiffies(data->update_interval);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  118) 	if (time_after(jiffies, next_update) || !data->valid) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  119) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  120) 		dev_dbg(&client->dev, "Starting adm1031 update\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  121) 		for (chan = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  122) 		     chan < ((data->chip_type == adm1031) ? 3 : 2); chan++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  123) 			u8 oldh, newh;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  124) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  125) 			oldh =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  126) 			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  127) 			data->ext_temp[chan] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  128) 			    adm1031_read_value(client, ADM1031_REG_EXT_TEMP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  129) 			newh =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  130) 			    adm1031_read_value(client, ADM1031_REG_TEMP(chan));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  131) 			if (newh != oldh) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  132) 				data->ext_temp[chan] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  133) 				    adm1031_read_value(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  134) 						       ADM1031_REG_EXT_TEMP);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  135) #ifdef DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  136) 				oldh =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  137) 				    adm1031_read_value(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  138) 						       ADM1031_REG_TEMP(chan));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  139) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  140) 				/* oldh is actually newer */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  141) 				if (newh != oldh)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  142) 					dev_warn(&client->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  143) 					  "Remote temperature may be wrong.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  144) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  145) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  146) 			data->temp[chan] = newh;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  147) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  148) 			data->temp_offset[chan] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  149) 			    adm1031_read_value(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  150) 					       ADM1031_REG_TEMP_OFFSET(chan));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  151) 			data->temp_min[chan] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  152) 			    adm1031_read_value(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  153) 					       ADM1031_REG_TEMP_MIN(chan));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  154) 			data->temp_max[chan] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  155) 			    adm1031_read_value(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  156) 					       ADM1031_REG_TEMP_MAX(chan));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  157) 			data->temp_crit[chan] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  158) 			    adm1031_read_value(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  159) 					       ADM1031_REG_TEMP_CRIT(chan));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  160) 			data->auto_temp[chan] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  161) 			    adm1031_read_value(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  162) 					       ADM1031_REG_AUTO_TEMP(chan));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  163) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  164) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  165) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  166) 		data->conf1 = adm1031_read_value(client, ADM1031_REG_CONF1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  167) 		data->conf2 = adm1031_read_value(client, ADM1031_REG_CONF2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  168) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  169) 		data->alarm = adm1031_read_value(client, ADM1031_REG_STATUS(0))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  170) 		    | (adm1031_read_value(client, ADM1031_REG_STATUS(1)) << 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  171) 		if (data->chip_type == adm1030)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  172) 			data->alarm &= 0xc0ff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  173) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  174) 		for (chan = 0; chan < (data->chip_type == adm1030 ? 1 : 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  175) 		     chan++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  176) 			data->fan_div[chan] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  177) 			    adm1031_read_value(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  178) 					       ADM1031_REG_FAN_DIV(chan));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  179) 			data->fan_min[chan] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  180) 			    adm1031_read_value(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  181) 					       ADM1031_REG_FAN_MIN(chan));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  182) 			data->fan[chan] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  183) 			    adm1031_read_value(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  184) 					       ADM1031_REG_FAN_SPEED(chan));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  185) 			data->pwm[chan] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  186) 			  (adm1031_read_value(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  187) 					ADM1031_REG_PWM) >> (4 * chan)) & 0x0f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  188) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  189) 		data->last_updated = jiffies;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  190) 		data->valid = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  191) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  192) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  193) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  194) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  195) 	return data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  196) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  197) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  198) #define TEMP_TO_REG(val)		(((val) < 0 ? ((val - 500) / 1000) : \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  199) 					((val + 500) / 1000)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  200) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  201) #define TEMP_FROM_REG(val)		((val) * 1000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  202) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  203) #define TEMP_FROM_REG_EXT(val, ext)	(TEMP_FROM_REG(val) + (ext) * 125)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  204) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  205) #define TEMP_OFFSET_TO_REG(val)		(TEMP_TO_REG(val) & 0x8f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  206) #define TEMP_OFFSET_FROM_REG(val)	TEMP_FROM_REG((val) < 0 ? \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  207) 						      (val) | 0x70 : (val))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  208) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  209) #define FAN_FROM_REG(reg, div)		((reg) ? \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  210) 					 (11250 * 60) / ((reg) * (div)) : 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  211) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  212) static int FAN_TO_REG(int reg, int div)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  213) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  214) 	int tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  215) 	tmp = FAN_FROM_REG(clamp_val(reg, 0, 65535), div);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  216) 	return tmp > 255 ? 255 : tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  217) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  218) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  219) #define FAN_DIV_FROM_REG(reg)		(1<<(((reg)&0xc0)>>6))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  220) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  221) #define PWM_TO_REG(val)			(clamp_val((val), 0, 255) >> 4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  222) #define PWM_FROM_REG(val)		((val) << 4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  223) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  224) #define FAN_CHAN_FROM_REG(reg)		(((reg) >> 5) & 7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  225) #define FAN_CHAN_TO_REG(val, reg)	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  226) 	(((reg) & 0x1F) | (((val) << 5) & 0xe0))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  227) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  228) #define AUTO_TEMP_MIN_TO_REG(val, reg)	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  229) 	((((val) / 500) & 0xf8) | ((reg) & 0x7))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  230) #define AUTO_TEMP_RANGE_FROM_REG(reg)	(5000 * (1 << ((reg) & 0x7)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  231) #define AUTO_TEMP_MIN_FROM_REG(reg)	(1000 * ((((reg) >> 3) & 0x1f) << 2))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  232) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  233) #define AUTO_TEMP_MIN_FROM_REG_DEG(reg)	((((reg) >> 3) & 0x1f) << 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  234) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  235) #define AUTO_TEMP_OFF_FROM_REG(reg)		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  236) 	(AUTO_TEMP_MIN_FROM_REG(reg) - 5000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  237) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  238) #define AUTO_TEMP_MAX_FROM_REG(reg)		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  239) 	(AUTO_TEMP_RANGE_FROM_REG(reg) +	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  240) 	AUTO_TEMP_MIN_FROM_REG(reg))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  241) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  242) static int AUTO_TEMP_MAX_TO_REG(int val, int reg, int pwm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  243) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  244) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  245) 	int range = val - AUTO_TEMP_MIN_FROM_REG(reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  246) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  247) 	range = ((val - AUTO_TEMP_MIN_FROM_REG(reg))*10)/(16 - pwm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  248) 	ret = ((reg & 0xf8) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  249) 	       (range < 10000 ? 0 :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  250) 		range < 20000 ? 1 :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  251) 		range < 40000 ? 2 : range < 80000 ? 3 : 4));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  252) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  253) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  254) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  255) /* FAN auto control */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  256) #define GET_FAN_AUTO_BITFIELD(data, idx)	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  257) 	(*(data)->chan_select_table)[FAN_CHAN_FROM_REG((data)->conf1)][idx % 2]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  258) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  259) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  260)  * The tables below contains the possible values for the auto fan
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  261)  * control bitfields. the index in the table is the register value.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  262)  * MSb is the auto fan control enable bit, so the four first entries
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  263)  * in the table disables auto fan control when both bitfields are zero.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  264)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  265) static const auto_chan_table_t auto_channel_select_table_adm1031 = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  266) 	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  267) 	{ 2 /* 0b010 */ , 4 /* 0b100 */ },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  268) 	{ 2 /* 0b010 */ , 2 /* 0b010 */ },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  269) 	{ 4 /* 0b100 */ , 4 /* 0b100 */ },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  270) 	{ 7 /* 0b111 */ , 7 /* 0b111 */ },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  271) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  272) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  273) static const auto_chan_table_t auto_channel_select_table_adm1030 = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  274) 	{ 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  275) 	{ 2 /* 0b10 */		, 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  276) 	{ 0xff /* invalid */	, 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  277) 	{ 0xff /* invalid */	, 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  278) 	{ 3 /* 0b11 */		, 0 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  279) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  280) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  281) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  282)  * That function checks if a bitfield is valid and returns the other bitfield
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  283)  * nearest match if no exact match where found.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  284)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  285) static int
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  286) get_fan_auto_nearest(struct adm1031_data *data, int chan, u8 val, u8 reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  287) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  288) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  289) 	int first_match = -1, exact_match = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  290) 	u8 other_reg_val =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  291) 	    (*data->chan_select_table)[FAN_CHAN_FROM_REG(reg)][chan ? 0 : 1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  292) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  293) 	if (val == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  294) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  295) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  296) 	for (i = 0; i < 8; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  297) 		if ((val == (*data->chan_select_table)[i][chan]) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  298) 		    ((*data->chan_select_table)[i][chan ? 0 : 1] ==
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  299) 		     other_reg_val)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  300) 			/* We found an exact match */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  301) 			exact_match = i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  302) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  303) 		} else if (val == (*data->chan_select_table)[i][chan] &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  304) 			   first_match == -1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  305) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  306) 			 * Save the first match in case of an exact match has
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  307) 			 * not been found
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  308) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  309) 			first_match = i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  310) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  311) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  312) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  313) 	if (exact_match >= 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  314) 		return exact_match;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  315) 	else if (first_match >= 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  316) 		return first_match;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  317) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  318) 	return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  319) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  320) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  321) static ssize_t fan_auto_channel_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  322) 				     struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  323) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  324) 	int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  325) 	struct adm1031_data *data = adm1031_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  326) 	return sprintf(buf, "%d\n", GET_FAN_AUTO_BITFIELD(data, nr));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  327) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  328) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  329) static ssize_t
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  330) fan_auto_channel_store(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  331) 		       const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  332) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  333) 	struct adm1031_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  334) 	struct i2c_client *client = data->client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  335) 	int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  336) 	long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  337) 	u8 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  338) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  339) 	u8 old_fan_mode;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  340) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  341) 	ret = kstrtol(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  342) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  343) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  344) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  345) 	old_fan_mode = data->conf1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  346) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  347) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  348) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  349) 	ret = get_fan_auto_nearest(data, nr, val, data->conf1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  350) 	if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  351) 		mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  352) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  353) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  354) 	reg = ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  355) 	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  356) 	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) ^
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  357) 	    (old_fan_mode & ADM1031_CONF1_AUTO_MODE)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  358) 		if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  359) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  360) 			 * Switch to Auto Fan Mode
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  361) 			 * Save PWM registers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  362) 			 * Set PWM registers to 33% Both
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  363) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  364) 			data->old_pwm[0] = data->pwm[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  365) 			data->old_pwm[1] = data->pwm[1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  366) 			adm1031_write_value(client, ADM1031_REG_PWM, 0x55);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  367) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  368) 			/* Switch to Manual Mode */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  369) 			data->pwm[0] = data->old_pwm[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  370) 			data->pwm[1] = data->old_pwm[1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  371) 			/* Restore PWM registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  372) 			adm1031_write_value(client, ADM1031_REG_PWM,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  373) 					    data->pwm[0] | (data->pwm[1] << 4));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  374) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  375) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  376) 	data->conf1 = FAN_CHAN_TO_REG(reg, data->conf1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  377) 	adm1031_write_value(client, ADM1031_REG_CONF1, data->conf1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  378) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  379) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  380) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  381) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  382) static SENSOR_DEVICE_ATTR_RW(auto_fan1_channel, fan_auto_channel, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  383) static SENSOR_DEVICE_ATTR_RW(auto_fan2_channel, fan_auto_channel, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  384) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  385) /* Auto Temps */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  386) static ssize_t auto_temp_off_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  387) 				  struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  388) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  389) 	int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  390) 	struct adm1031_data *data = adm1031_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  391) 	return sprintf(buf, "%d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  392) 		       AUTO_TEMP_OFF_FROM_REG(data->auto_temp[nr]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  393) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  394) static ssize_t auto_temp_min_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  395) 				  struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  396) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  397) 	int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  398) 	struct adm1031_data *data = adm1031_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  399) 	return sprintf(buf, "%d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  400) 		       AUTO_TEMP_MIN_FROM_REG(data->auto_temp[nr]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  401) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  402) static ssize_t
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  403) auto_temp_min_store(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  404) 		    const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  405) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  406) 	struct adm1031_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  407) 	struct i2c_client *client = data->client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  408) 	int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  409) 	long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  410) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  411) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  412) 	ret = kstrtol(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  413) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  414) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  415) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  416) 	val = clamp_val(val, 0, 127000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  417) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  418) 	data->auto_temp[nr] = AUTO_TEMP_MIN_TO_REG(val, data->auto_temp[nr]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  419) 	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  420) 			    data->auto_temp[nr]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  421) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  422) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  423) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  424) static ssize_t auto_temp_max_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  425) 				  struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  426) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  427) 	int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  428) 	struct adm1031_data *data = adm1031_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  429) 	return sprintf(buf, "%d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  430) 		       AUTO_TEMP_MAX_FROM_REG(data->auto_temp[nr]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  431) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  432) static ssize_t
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  433) auto_temp_max_store(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  434) 		    const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  435) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  436) 	struct adm1031_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  437) 	struct i2c_client *client = data->client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  438) 	int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  439) 	long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  440) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  441) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  442) 	ret = kstrtol(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  443) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  444) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  445) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  446) 	val = clamp_val(val, 0, 127000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  447) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  448) 	data->temp_max[nr] = AUTO_TEMP_MAX_TO_REG(val, data->auto_temp[nr],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  449) 						  data->pwm[nr]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  450) 	adm1031_write_value(client, ADM1031_REG_AUTO_TEMP(nr),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  451) 			    data->temp_max[nr]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  452) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  453) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  454) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  455) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  456) static SENSOR_DEVICE_ATTR_RO(auto_temp1_off, auto_temp_off, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  457) static SENSOR_DEVICE_ATTR_RW(auto_temp1_min, auto_temp_min, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  458) static SENSOR_DEVICE_ATTR_RW(auto_temp1_max, auto_temp_max, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  459) static SENSOR_DEVICE_ATTR_RO(auto_temp2_off, auto_temp_off, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  460) static SENSOR_DEVICE_ATTR_RW(auto_temp2_min, auto_temp_min, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  461) static SENSOR_DEVICE_ATTR_RW(auto_temp2_max, auto_temp_max, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  462) static SENSOR_DEVICE_ATTR_RO(auto_temp3_off, auto_temp_off, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  463) static SENSOR_DEVICE_ATTR_RW(auto_temp3_min, auto_temp_min, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  464) static SENSOR_DEVICE_ATTR_RW(auto_temp3_max, auto_temp_max, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  465) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  466) /* pwm */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  467) static ssize_t pwm_show(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  468) 			char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  469) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  470) 	int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  471) 	struct adm1031_data *data = adm1031_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  472) 	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  473) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  474) static ssize_t pwm_store(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  475) 			 const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  476) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  477) 	struct adm1031_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  478) 	struct i2c_client *client = data->client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  479) 	int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  480) 	long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  481) 	int ret, reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  482) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  483) 	ret = kstrtol(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  484) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  485) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  486) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  487) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  488) 	if ((data->conf1 & ADM1031_CONF1_AUTO_MODE) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  489) 	    (((val>>4) & 0xf) != 5)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  490) 		/* In automatic mode, the only PWM accepted is 33% */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  491) 		mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  492) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  493) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  494) 	data->pwm[nr] = PWM_TO_REG(val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  495) 	reg = adm1031_read_value(client, ADM1031_REG_PWM);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  496) 	adm1031_write_value(client, ADM1031_REG_PWM,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  497) 			    nr ? ((data->pwm[nr] << 4) & 0xf0) | (reg & 0xf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  498) 			    : (data->pwm[nr] & 0xf) | (reg & 0xf0));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  499) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  500) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  501) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  502) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  503) static SENSOR_DEVICE_ATTR_RW(pwm1, pwm, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  504) static SENSOR_DEVICE_ATTR_RW(pwm2, pwm, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  505) static SENSOR_DEVICE_ATTR_RW(auto_fan1_min_pwm, pwm, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  506) static SENSOR_DEVICE_ATTR_RW(auto_fan2_min_pwm, pwm, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  507) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  508) /* Fans */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  509) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  510) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  511)  * That function checks the cases where the fan reading is not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  512)  * relevant.  It is used to provide 0 as fan reading when the fan is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  513)  * not supposed to run
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  514)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  515) static int trust_fan_readings(struct adm1031_data *data, int chan)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  516) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  517) 	int res = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  518) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  519) 	if (data->conf1 & ADM1031_CONF1_AUTO_MODE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  520) 		switch (data->conf1 & 0x60) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  521) 		case 0x00:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  522) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  523) 			 * remote temp1 controls fan1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  524) 			 * remote temp2 controls fan2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  525) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  526) 			res = data->temp[chan+1] >=
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  527) 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[chan+1]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  528) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  529) 		case 0x20:	/* remote temp1 controls both fans */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  530) 			res =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  531) 			    data->temp[1] >=
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  532) 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  533) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  534) 		case 0x40:	/* remote temp2 controls both fans */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  535) 			res =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  536) 			    data->temp[2] >=
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  537) 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  538) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  539) 		case 0x60:	/* max controls both fans */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  540) 			res =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  541) 			    data->temp[0] >=
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  542) 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[0])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  543) 			    || data->temp[1] >=
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  544) 			    AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[1])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  545) 			    || (data->chip_type == adm1031
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  546) 				&& data->temp[2] >=
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  547) 				AUTO_TEMP_MIN_FROM_REG_DEG(data->auto_temp[2]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  548) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  549) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  550) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  551) 		res = data->pwm[chan] > 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  552) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  553) 	return res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  554) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  555) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  556) static ssize_t fan_show(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  557) 			char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  558) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  559) 	int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  560) 	struct adm1031_data *data = adm1031_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  561) 	int value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  562) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  563) 	value = trust_fan_readings(data, nr) ? FAN_FROM_REG(data->fan[nr],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  564) 				 FAN_DIV_FROM_REG(data->fan_div[nr])) : 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  565) 	return sprintf(buf, "%d\n", value);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  566) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  567) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  568) static ssize_t fan_div_show(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  569) 			    char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  570) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  571) 	int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  572) 	struct adm1031_data *data = adm1031_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  573) 	return sprintf(buf, "%d\n", FAN_DIV_FROM_REG(data->fan_div[nr]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  574) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  575) static ssize_t fan_min_show(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  576) 			    char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  577) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  578) 	int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  579) 	struct adm1031_data *data = adm1031_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  580) 	return sprintf(buf, "%d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  581) 		       FAN_FROM_REG(data->fan_min[nr],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  582) 				    FAN_DIV_FROM_REG(data->fan_div[nr])));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  583) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  584) static ssize_t fan_min_store(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  585) 			     struct device_attribute *attr, const char *buf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  586) 			     size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  587) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  588) 	struct adm1031_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  589) 	struct i2c_client *client = data->client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  590) 	int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  591) 	long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  592) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  593) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  594) 	ret = kstrtol(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  595) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  596) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  597) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  598) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  599) 	if (val) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  600) 		data->fan_min[nr] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  601) 			FAN_TO_REG(val, FAN_DIV_FROM_REG(data->fan_div[nr]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  602) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  603) 		data->fan_min[nr] = 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  604) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  605) 	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr), data->fan_min[nr]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  606) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  607) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  608) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  609) static ssize_t fan_div_store(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  610) 			     struct device_attribute *attr, const char *buf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  611) 			     size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  612) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  613) 	struct adm1031_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  614) 	struct i2c_client *client = data->client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  615) 	int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  616) 	long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  617) 	u8 tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  618) 	int old_div;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  619) 	int new_min;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  620) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  621) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  622) 	ret = kstrtol(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  623) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  624) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  625) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  626) 	tmp = val == 8 ? 0xc0 :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  627) 	      val == 4 ? 0x80 :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  628) 	      val == 2 ? 0x40 :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  629) 	      val == 1 ? 0x00 :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  630) 	      0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  631) 	if (tmp == 0xff)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  632) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  633) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  634) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  635) 	/* Get fresh readings */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  636) 	data->fan_div[nr] = adm1031_read_value(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  637) 					       ADM1031_REG_FAN_DIV(nr));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  638) 	data->fan_min[nr] = adm1031_read_value(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  639) 					       ADM1031_REG_FAN_MIN(nr));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  640) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  641) 	/* Write the new clock divider and fan min */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  642) 	old_div = FAN_DIV_FROM_REG(data->fan_div[nr]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  643) 	data->fan_div[nr] = tmp | (0x3f & data->fan_div[nr]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  644) 	new_min = data->fan_min[nr] * old_div / val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  645) 	data->fan_min[nr] = new_min > 0xff ? 0xff : new_min;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  646) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  647) 	adm1031_write_value(client, ADM1031_REG_FAN_DIV(nr),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  648) 			    data->fan_div[nr]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  649) 	adm1031_write_value(client, ADM1031_REG_FAN_MIN(nr),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  650) 			    data->fan_min[nr]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  651) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  652) 	/* Invalidate the cache: fan speed is no longer valid */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  653) 	data->valid = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  654) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  655) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  656) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  657) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  658) static SENSOR_DEVICE_ATTR_RO(fan1_input, fan, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  659) static SENSOR_DEVICE_ATTR_RW(fan1_min, fan_min, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  660) static SENSOR_DEVICE_ATTR_RW(fan1_div, fan_div, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  661) static SENSOR_DEVICE_ATTR_RO(fan2_input, fan, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  662) static SENSOR_DEVICE_ATTR_RW(fan2_min, fan_min, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  663) static SENSOR_DEVICE_ATTR_RW(fan2_div, fan_div, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  664) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  665) /* Temps */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  666) static ssize_t temp_show(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  667) 			 char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  668) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  669) 	int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  670) 	struct adm1031_data *data = adm1031_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  671) 	int ext;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  672) 	ext = nr == 0 ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  673) 	    ((data->ext_temp[nr] >> 6) & 0x3) * 2 :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  674) 	    (((data->ext_temp[nr] >> ((nr - 1) * 3)) & 7));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  675) 	return sprintf(buf, "%d\n", TEMP_FROM_REG_EXT(data->temp[nr], ext));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  676) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  677) static ssize_t temp_offset_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  678) 				struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  679) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  680) 	int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  681) 	struct adm1031_data *data = adm1031_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  682) 	return sprintf(buf, "%d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  683) 		       TEMP_OFFSET_FROM_REG(data->temp_offset[nr]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  684) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  685) static ssize_t temp_min_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  686) 			     struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  687) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  688) 	int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  689) 	struct adm1031_data *data = adm1031_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  690) 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  691) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  692) static ssize_t temp_max_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  693) 			     struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  694) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  695) 	int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  696) 	struct adm1031_data *data = adm1031_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  697) 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  698) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  699) static ssize_t temp_crit_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  700) 			      struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  701) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  702) 	int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  703) 	struct adm1031_data *data = adm1031_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  704) 	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_crit[nr]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  705) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  706) static ssize_t temp_offset_store(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  707) 				 struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  708) 				 const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  709) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  710) 	struct adm1031_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  711) 	struct i2c_client *client = data->client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  712) 	int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  713) 	long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  714) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  715) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  716) 	ret = kstrtol(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  717) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  718) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  719) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  720) 	val = clamp_val(val, -15000, 15000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  721) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  722) 	data->temp_offset[nr] = TEMP_OFFSET_TO_REG(val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  723) 	adm1031_write_value(client, ADM1031_REG_TEMP_OFFSET(nr),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  724) 			    data->temp_offset[nr]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  725) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  726) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  727) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  728) static ssize_t temp_min_store(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  729) 			      struct device_attribute *attr, const char *buf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  730) 			      size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  731) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  732) 	struct adm1031_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  733) 	struct i2c_client *client = data->client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  734) 	int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  735) 	long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  736) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  737) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  738) 	ret = kstrtol(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  739) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  740) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  741) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  742) 	val = clamp_val(val, -55000, 127000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  743) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  744) 	data->temp_min[nr] = TEMP_TO_REG(val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  745) 	adm1031_write_value(client, ADM1031_REG_TEMP_MIN(nr),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  746) 			    data->temp_min[nr]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  747) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  748) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  749) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  750) static ssize_t temp_max_store(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  751) 			      struct device_attribute *attr, const char *buf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  752) 			      size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  753) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  754) 	struct adm1031_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  755) 	struct i2c_client *client = data->client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  756) 	int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  757) 	long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  758) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  759) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  760) 	ret = kstrtol(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  761) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  762) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  763) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  764) 	val = clamp_val(val, -55000, 127000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  765) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  766) 	data->temp_max[nr] = TEMP_TO_REG(val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  767) 	adm1031_write_value(client, ADM1031_REG_TEMP_MAX(nr),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  768) 			    data->temp_max[nr]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  769) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  770) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  771) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  772) static ssize_t temp_crit_store(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  773) 			       struct device_attribute *attr, const char *buf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  774) 			       size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  775) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  776) 	struct adm1031_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  777) 	struct i2c_client *client = data->client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  778) 	int nr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  779) 	long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  780) 	int ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  781) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  782) 	ret = kstrtol(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  783) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  784) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  785) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  786) 	val = clamp_val(val, -55000, 127000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  787) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  788) 	data->temp_crit[nr] = TEMP_TO_REG(val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  789) 	adm1031_write_value(client, ADM1031_REG_TEMP_CRIT(nr),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  790) 			    data->temp_crit[nr]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  791) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  792) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  793) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  794) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  795) static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  796) static SENSOR_DEVICE_ATTR_RW(temp1_offset, temp_offset, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  797) static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  798) static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  799) static SENSOR_DEVICE_ATTR_RW(temp1_crit, temp_crit, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  800) static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  801) static SENSOR_DEVICE_ATTR_RW(temp2_offset, temp_offset, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  802) static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  803) static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  804) static SENSOR_DEVICE_ATTR_RW(temp2_crit, temp_crit, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  805) static SENSOR_DEVICE_ATTR_RO(temp3_input, temp, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  806) static SENSOR_DEVICE_ATTR_RW(temp3_offset, temp_offset, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  807) static SENSOR_DEVICE_ATTR_RW(temp3_min, temp_min, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  808) static SENSOR_DEVICE_ATTR_RW(temp3_max, temp_max, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  809) static SENSOR_DEVICE_ATTR_RW(temp3_crit, temp_crit, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  810) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  811) /* Alarms */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  812) static ssize_t alarms_show(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  813) 			   char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  814) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  815) 	struct adm1031_data *data = adm1031_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  816) 	return sprintf(buf, "%d\n", data->alarm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  817) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  818) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  819) static DEVICE_ATTR_RO(alarms);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  820) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  821) static ssize_t alarm_show(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  822) 			  char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  823) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  824) 	int bitnr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  825) 	struct adm1031_data *data = adm1031_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  826) 	return sprintf(buf, "%d\n", (data->alarm >> bitnr) & 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  827) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  828) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  829) static SENSOR_DEVICE_ATTR_RO(fan1_alarm, alarm, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  830) static SENSOR_DEVICE_ATTR_RO(fan1_fault, alarm, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  831) static SENSOR_DEVICE_ATTR_RO(temp2_max_alarm, alarm, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  832) static SENSOR_DEVICE_ATTR_RO(temp2_min_alarm, alarm, 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  833) static SENSOR_DEVICE_ATTR_RO(temp2_crit_alarm, alarm, 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  834) static SENSOR_DEVICE_ATTR_RO(temp2_fault, alarm, 5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  835) static SENSOR_DEVICE_ATTR_RO(temp1_max_alarm, alarm, 6);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  836) static SENSOR_DEVICE_ATTR_RO(temp1_min_alarm, alarm, 7);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  837) static SENSOR_DEVICE_ATTR_RO(fan2_alarm, alarm, 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  838) static SENSOR_DEVICE_ATTR_RO(fan2_fault, alarm, 9);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  839) static SENSOR_DEVICE_ATTR_RO(temp3_max_alarm, alarm, 10);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  840) static SENSOR_DEVICE_ATTR_RO(temp3_min_alarm, alarm, 11);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  841) static SENSOR_DEVICE_ATTR_RO(temp3_crit_alarm, alarm, 12);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  842) static SENSOR_DEVICE_ATTR_RO(temp3_fault, alarm, 13);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  843) static SENSOR_DEVICE_ATTR_RO(temp1_crit_alarm, alarm, 14);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  844) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  845) /* Update Interval */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  846) static const unsigned int update_intervals[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  847) 	16000, 8000, 4000, 2000, 1000, 500, 250, 125,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  848) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  849) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  850) static ssize_t update_interval_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  851) 				    struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  852) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  853) 	struct adm1031_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  854) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  855) 	return sprintf(buf, "%u\n", data->update_interval);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  856) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  857) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  858) static ssize_t update_interval_store(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  859) 				     struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  860) 				     const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  861) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  862) 	struct adm1031_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  863) 	struct i2c_client *client = data->client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  864) 	unsigned long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  865) 	int i, err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  866) 	u8 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  867) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  868) 	err = kstrtoul(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  869) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  870) 		return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  871) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  872) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  873) 	 * Find the nearest update interval from the table.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  874) 	 * Use it to determine the matching update rate.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  875) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  876) 	for (i = 0; i < ARRAY_SIZE(update_intervals) - 1; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  877) 		if (val >= update_intervals[i])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  878) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  879) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  880) 	/* if not found, we point to the last entry (lowest update interval) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  881) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  882) 	/* set the new update rate while preserving other settings */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  883) 	reg = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  884) 	reg &= ~ADM1031_UPDATE_RATE_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  885) 	reg |= i << ADM1031_UPDATE_RATE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  886) 	adm1031_write_value(client, ADM1031_REG_FAN_FILTER, reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  887) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  888) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  889) 	data->update_interval = update_intervals[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  890) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  891) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  892) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  893) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  894) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  895) static DEVICE_ATTR_RW(update_interval);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  896) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  897) static struct attribute *adm1031_attributes[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  898) 	&sensor_dev_attr_fan1_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  899) 	&sensor_dev_attr_fan1_div.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  900) 	&sensor_dev_attr_fan1_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  901) 	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  902) 	&sensor_dev_attr_fan1_fault.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  903) 	&sensor_dev_attr_pwm1.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  904) 	&sensor_dev_attr_auto_fan1_channel.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  905) 	&sensor_dev_attr_temp1_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  906) 	&sensor_dev_attr_temp1_offset.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  907) 	&sensor_dev_attr_temp1_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  908) 	&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  909) 	&sensor_dev_attr_temp1_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  910) 	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  911) 	&sensor_dev_attr_temp1_crit.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  912) 	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  913) 	&sensor_dev_attr_temp2_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  914) 	&sensor_dev_attr_temp2_offset.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  915) 	&sensor_dev_attr_temp2_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  916) 	&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  917) 	&sensor_dev_attr_temp2_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  918) 	&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  919) 	&sensor_dev_attr_temp2_crit.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  920) 	&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  921) 	&sensor_dev_attr_temp2_fault.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  922) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  923) 	&sensor_dev_attr_auto_temp1_off.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  924) 	&sensor_dev_attr_auto_temp1_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  925) 	&sensor_dev_attr_auto_temp1_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  926) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  927) 	&sensor_dev_attr_auto_temp2_off.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  928) 	&sensor_dev_attr_auto_temp2_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  929) 	&sensor_dev_attr_auto_temp2_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  930) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  931) 	&sensor_dev_attr_auto_fan1_min_pwm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  932) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  933) 	&dev_attr_update_interval.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  934) 	&dev_attr_alarms.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  935) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  936) 	NULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  937) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  938) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  939) static const struct attribute_group adm1031_group = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  940) 	.attrs = adm1031_attributes,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  941) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  942) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  943) static struct attribute *adm1031_attributes_opt[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  944) 	&sensor_dev_attr_fan2_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  945) 	&sensor_dev_attr_fan2_div.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  946) 	&sensor_dev_attr_fan2_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  947) 	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  948) 	&sensor_dev_attr_fan2_fault.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  949) 	&sensor_dev_attr_pwm2.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  950) 	&sensor_dev_attr_auto_fan2_channel.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  951) 	&sensor_dev_attr_temp3_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  952) 	&sensor_dev_attr_temp3_offset.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  953) 	&sensor_dev_attr_temp3_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  954) 	&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  955) 	&sensor_dev_attr_temp3_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  956) 	&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  957) 	&sensor_dev_attr_temp3_crit.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  958) 	&sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  959) 	&sensor_dev_attr_temp3_fault.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  960) 	&sensor_dev_attr_auto_temp3_off.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  961) 	&sensor_dev_attr_auto_temp3_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  962) 	&sensor_dev_attr_auto_temp3_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  963) 	&sensor_dev_attr_auto_fan2_min_pwm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  964) 	NULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  965) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  966) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  967) static const struct attribute_group adm1031_group_opt = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  968) 	.attrs = adm1031_attributes_opt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  969) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  970) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  971) /* Return 0 if detection is successful, -ENODEV otherwise */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  972) static int adm1031_detect(struct i2c_client *client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  973) 			  struct i2c_board_info *info)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  974) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  975) 	struct i2c_adapter *adapter = client->adapter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  976) 	const char *name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  977) 	int id, co;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  978) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  979) 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  980) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  981) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  982) 	id = i2c_smbus_read_byte_data(client, 0x3d);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  983) 	co = i2c_smbus_read_byte_data(client, 0x3e);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  984) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  985) 	if (!((id == 0x31 || id == 0x30) && co == 0x41))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  986) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  987) 	name = (id == 0x30) ? "adm1030" : "adm1031";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  988) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  989) 	strlcpy(info->type, name, I2C_NAME_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  990) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  991) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  992) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  993) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  994) static void adm1031_init_client(struct i2c_client *client)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  995) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  996) 	unsigned int read_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  997) 	unsigned int mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  998) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  999) 	struct adm1031_data *data = i2c_get_clientdata(client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) 	mask = (ADM1031_CONF2_PWM1_ENABLE | ADM1031_CONF2_TACH1_ENABLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) 	if (data->chip_type == adm1031) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) 		mask |= (ADM1031_CONF2_PWM2_ENABLE |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) 			ADM1031_CONF2_TACH2_ENABLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) 	/* Initialize the ADM1031 chip (enables fan speed reading ) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) 	read_val = adm1031_read_value(client, ADM1031_REG_CONF2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008) 	if ((read_val | mask) != read_val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) 		adm1031_write_value(client, ADM1031_REG_CONF2, read_val | mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011) 	read_val = adm1031_read_value(client, ADM1031_REG_CONF1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012) 	if ((read_val | ADM1031_CONF1_MONITOR_ENABLE) != read_val) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) 		adm1031_write_value(client, ADM1031_REG_CONF1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014) 				    read_val | ADM1031_CONF1_MONITOR_ENABLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017) 	/* Read the chip's update rate */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018) 	mask = ADM1031_UPDATE_RATE_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019) 	read_val = adm1031_read_value(client, ADM1031_REG_FAN_FILTER);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020) 	i = (read_val & mask) >> ADM1031_UPDATE_RATE_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021) 	/* Save it as update interval */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022) 	data->update_interval = update_intervals[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) static const struct i2c_device_id adm1031_id[];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027) static int adm1031_probe(struct i2c_client *client)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029) 	struct device *dev = &client->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030) 	struct device *hwmon_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031) 	struct adm1031_data *data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033) 	data = devm_kzalloc(dev, sizeof(struct adm1031_data), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) 	if (!data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037) 	i2c_set_clientdata(client, data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038) 	data->client = client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039) 	data->chip_type = i2c_match_id(adm1031_id, client)->driver_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040) 	mutex_init(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042) 	if (data->chip_type == adm1030)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043) 		data->chan_select_table = &auto_channel_select_table_adm1030;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045) 		data->chan_select_table = &auto_channel_select_table_adm1031;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047) 	/* Initialize the ADM1031 chip */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048) 	adm1031_init_client(client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050) 	/* sysfs hooks */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051) 	data->groups[0] = &adm1031_group;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052) 	if (data->chip_type == adm1031)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053) 		data->groups[1] = &adm1031_group_opt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055) 	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056) 							   data, data->groups);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057) 	return PTR_ERR_OR_ZERO(hwmon_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060) static const struct i2c_device_id adm1031_id[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) 	{ "adm1030", adm1030 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) 	{ "adm1031", adm1031 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) 	{ }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) MODULE_DEVICE_TABLE(i2c, adm1031_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) static struct i2c_driver adm1031_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) 	.class		= I2C_CLASS_HWMON,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) 	.driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) 		.name = "adm1031",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) 	.probe_new	= adm1031_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) 	.id_table	= adm1031_id,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) 	.detect		= adm1031_detect,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) 	.address_list	= normal_i2c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078) module_i2c_driver(adm1031_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) MODULE_AUTHOR("Alexandre d'Alton <alex@alexdalton.org>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) MODULE_DESCRIPTION("ADM1031/ADM1030 driver");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) MODULE_LICENSE("GPL");