^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) // SPDX-License-Identifier: GPL-2.0-or-later
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) * adm1025.c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) * Copyright (C) 2000 Chen-Yuan Wu <gwu@esoft.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) * Copyright (C) 2003-2009 Jean Delvare <jdelvare@suse.de>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) * The ADM1025 is a sensor chip made by Analog Devices. It reports up to 6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) * voltages (including its own power source) and up to two temperatures
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) * (its own plus up to one external one). Voltages are scaled internally
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) * (which is not the common way) with ratios such that the nominal value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) * of each voltage correspond to a register value of 192 (which means a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13) * resolution of about 0.5% of the nominal value). Temperature values are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) * reported with a 1 deg resolution and a 3 deg accuracy. Complete
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) * datasheet can be obtained from Analog's website at:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) * https://www.onsemi.com/PowerSolutions/product.do?id=ADM1025
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) * This driver also supports the ADM1025A, which differs from the ADM1025
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) * only in that it has "open-drain VID inputs while the ADM1025 has
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20) * on-chip 100k pull-ups on the VID inputs". It doesn't make any
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) * difference for us.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) * This driver also supports the NE1619, a sensor chip made by Philips.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) * That chip is similar to the ADM1025A, with a few differences. The only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) * difference that matters to us is that the NE1619 has only two possible
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) * addresses while the ADM1025A has a third one. Complete datasheet can be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27) * obtained from Philips's website at:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) * http://www.semiconductors.philips.com/pip/NE1619DS.html
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) * Since the ADM1025 was the first chipset supported by this driver, most
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) * comments will refer to this chipset, but are actually general and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) * concern all supported chipsets, unless mentioned otherwise.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) #include <linux/jiffies.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) #include <linux/i2c.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) #include <linux/hwmon.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) #include <linux/hwmon-sysfs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) #include <linux/hwmon-vid.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) #include <linux/err.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) #include <linux/mutex.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) * Addresses to scan
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) * ADM1025 and ADM1025A have three possible addresses: 0x2c, 0x2d and 0x2e.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) * NE1619 has two possible addresses: 0x2c and 0x2d.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54) enum chips { adm1025, ne1619 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) * The ADM1025 registers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) #define ADM1025_REG_MAN_ID 0x3E
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) #define ADM1025_REG_CHIP_ID 0x3F
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62) #define ADM1025_REG_CONFIG 0x40
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) #define ADM1025_REG_STATUS1 0x41
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) #define ADM1025_REG_STATUS2 0x42
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65) #define ADM1025_REG_IN(nr) (0x20 + (nr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) #define ADM1025_REG_IN_MAX(nr) (0x2B + (nr) * 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) #define ADM1025_REG_IN_MIN(nr) (0x2C + (nr) * 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) #define ADM1025_REG_TEMP(nr) (0x26 + (nr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) #define ADM1025_REG_TEMP_HIGH(nr) (0x37 + (nr) * 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) #define ADM1025_REG_TEMP_LOW(nr) (0x38 + (nr) * 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71) #define ADM1025_REG_VID 0x47
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) #define ADM1025_REG_VID4 0x49
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) * Conversions and various macros
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) * The ADM1025 uses signed 8-bit values for temperatures.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79) static const int in_scale[6] = { 2500, 2250, 3300, 5000, 12000, 3300 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) #define IN_FROM_REG(reg, scale) (((reg) * (scale) + 96) / 192)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82) #define IN_TO_REG(val, scale) ((val) <= 0 ? 0 : \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) (val) >= (scale) * 255 / 192 ? 255 : \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) ((val) * 192 + (scale) / 2) / (scale))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) #define TEMP_FROM_REG(reg) ((reg) * 1000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) #define TEMP_TO_REG(val) ((val) <= -127500 ? -128 : \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) (val) >= 126500 ? 127 : \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) (((val) < 0 ? (val) - 500 : \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) (val) + 500) / 1000))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93) * Client data (each client gets its own)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) struct adm1025_data {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) struct i2c_client *client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) const struct attribute_group *groups[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) struct mutex update_lock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) char valid; /* zero until following fields are valid */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) unsigned long last_updated; /* in jiffies */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) u8 in[6]; /* register value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) u8 in_max[6]; /* register value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) u8 in_min[6]; /* register value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) s8 temp[2]; /* register value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) s8 temp_min[2]; /* register value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) s8 temp_max[2]; /* register value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) u16 alarms; /* register values, combined */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) u8 vid; /* register values, combined */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) u8 vrm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) static struct adm1025_data *adm1025_update_device(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) struct adm1025_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) struct i2c_client *client = data->client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) if (time_after(jiffies, data->last_updated + HZ * 2) || !data->valid) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) dev_dbg(&client->dev, "Updating data.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) for (i = 0; i < 6; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) data->in[i] = i2c_smbus_read_byte_data(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) ADM1025_REG_IN(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) data->in_min[i] = i2c_smbus_read_byte_data(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) ADM1025_REG_IN_MIN(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) data->in_max[i] = i2c_smbus_read_byte_data(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) ADM1025_REG_IN_MAX(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) for (i = 0; i < 2; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) data->temp[i] = i2c_smbus_read_byte_data(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) ADM1025_REG_TEMP(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) data->temp_min[i] = i2c_smbus_read_byte_data(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) ADM1025_REG_TEMP_LOW(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) data->temp_max[i] = i2c_smbus_read_byte_data(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) ADM1025_REG_TEMP_HIGH(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) data->alarms = i2c_smbus_read_byte_data(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) ADM1025_REG_STATUS1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) | (i2c_smbus_read_byte_data(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) ADM1025_REG_STATUS2) << 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) data->vid = (i2c_smbus_read_byte_data(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) ADM1025_REG_VID) & 0x0f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) | ((i2c_smbus_read_byte_data(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) ADM1025_REG_VID4) & 0x01) << 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) data->last_updated = jiffies;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) data->valid = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) return data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) * Sysfs stuff
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) static ssize_t
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) in_show(struct device *dev, struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) int index = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) struct adm1025_data *data = adm1025_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) return sprintf(buf, "%u\n", IN_FROM_REG(data->in[index],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) in_scale[index]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) static ssize_t
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) in_min_show(struct device *dev, struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) int index = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) struct adm1025_data *data = adm1025_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) return sprintf(buf, "%u\n", IN_FROM_REG(data->in_min[index],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) in_scale[index]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) static ssize_t
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) in_max_show(struct device *dev, struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) int index = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) struct adm1025_data *data = adm1025_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) return sprintf(buf, "%u\n", IN_FROM_REG(data->in_max[index],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) in_scale[index]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) static ssize_t
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) temp_show(struct device *dev, struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) int index = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) struct adm1025_data *data = adm1025_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp[index]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) static ssize_t
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) temp_min_show(struct device *dev, struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) int index = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) struct adm1025_data *data = adm1025_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[index]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) static ssize_t
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) temp_max_show(struct device *dev, struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) int index = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) struct adm1025_data *data = adm1025_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[index]));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) static ssize_t in_min_store(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) int index = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) struct adm1025_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) struct i2c_client *client = data->client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) err = kstrtol(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) data->in_min[index] = IN_TO_REG(val, in_scale[index]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) i2c_smbus_write_byte_data(client, ADM1025_REG_IN_MIN(index),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) data->in_min[index]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) static ssize_t in_max_store(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) int index = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) struct adm1025_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) struct i2c_client *client = data->client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) err = kstrtol(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) data->in_max[index] = IN_TO_REG(val, in_scale[index]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) i2c_smbus_write_byte_data(client, ADM1025_REG_IN_MAX(index),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) data->in_max[index]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) static SENSOR_DEVICE_ATTR_RO(in0_input, in, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) static SENSOR_DEVICE_ATTR_RW(in0_min, in_min, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) static SENSOR_DEVICE_ATTR_RW(in0_max, in_max, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) static SENSOR_DEVICE_ATTR_RO(in1_input, in, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) static SENSOR_DEVICE_ATTR_RW(in1_min, in_min, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) static SENSOR_DEVICE_ATTR_RW(in1_max, in_max, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) static SENSOR_DEVICE_ATTR_RO(in2_input, in, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) static SENSOR_DEVICE_ATTR_RW(in2_min, in_min, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) static SENSOR_DEVICE_ATTR_RW(in2_max, in_max, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) static SENSOR_DEVICE_ATTR_RO(in3_input, in, 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) static SENSOR_DEVICE_ATTR_RW(in3_min, in_min, 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) static SENSOR_DEVICE_ATTR_RW(in3_max, in_max, 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) static SENSOR_DEVICE_ATTR_RO(in4_input, in, 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) static SENSOR_DEVICE_ATTR_RW(in4_min, in_min, 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) static SENSOR_DEVICE_ATTR_RW(in4_max, in_max, 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) static SENSOR_DEVICE_ATTR_RO(in5_input, in, 5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) static SENSOR_DEVICE_ATTR_RW(in5_min, in_min, 5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) static SENSOR_DEVICE_ATTR_RW(in5_max, in_max, 5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) static ssize_t temp_min_store(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) struct device_attribute *attr, const char *buf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) int index = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) struct adm1025_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) struct i2c_client *client = data->client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) err = kstrtol(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) data->temp_min[index] = TEMP_TO_REG(val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) i2c_smbus_write_byte_data(client, ADM1025_REG_TEMP_LOW(index),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) data->temp_min[index]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) static ssize_t temp_max_store(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) struct device_attribute *attr, const char *buf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) int index = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) struct adm1025_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) struct i2c_client *client = data->client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) err = kstrtol(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) data->temp_max[index] = TEMP_TO_REG(val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) i2c_smbus_write_byte_data(client, ADM1025_REG_TEMP_HIGH(index),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) data->temp_max[index]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) static SENSOR_DEVICE_ATTR_RO(temp1_input, temp, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) static SENSOR_DEVICE_ATTR_RW(temp1_min, temp_min, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) static SENSOR_DEVICE_ATTR_RW(temp1_max, temp_max, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) static SENSOR_DEVICE_ATTR_RO(temp2_input, temp, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) static SENSOR_DEVICE_ATTR_RW(temp2_min, temp_min, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) static SENSOR_DEVICE_ATTR_RW(temp2_max, temp_max, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) static ssize_t
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) alarms_show(struct device *dev, struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) struct adm1025_data *data = adm1025_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) return sprintf(buf, "%u\n", data->alarms);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) static DEVICE_ATTR_RO(alarms);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) static ssize_t
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) alarm_show(struct device *dev, struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) int bitnr = to_sensor_dev_attr(attr)->index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) struct adm1025_data *data = adm1025_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) static SENSOR_DEVICE_ATTR_RO(in0_alarm, alarm, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) static SENSOR_DEVICE_ATTR_RO(in1_alarm, alarm, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) static SENSOR_DEVICE_ATTR_RO(in2_alarm, alarm, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) static SENSOR_DEVICE_ATTR_RO(in3_alarm, alarm, 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) static SENSOR_DEVICE_ATTR_RO(in4_alarm, alarm, 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) static SENSOR_DEVICE_ATTR_RO(in5_alarm, alarm, 9);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) static SENSOR_DEVICE_ATTR_RO(temp1_alarm, alarm, 5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348) static SENSOR_DEVICE_ATTR_RO(temp2_alarm, alarm, 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) static SENSOR_DEVICE_ATTR_RO(temp1_fault, alarm, 14);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) static ssize_t
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352) cpu0_vid_show(struct device *dev, struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) struct adm1025_data *data = adm1025_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355) return sprintf(buf, "%u\n", vid_from_reg(data->vid, data->vrm));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) static DEVICE_ATTR_RO(cpu0_vid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) static ssize_t
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360) vrm_show(struct device *dev, struct device_attribute *attr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) struct adm1025_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) return sprintf(buf, "%u\n", data->vrm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365) static ssize_t vrm_store(struct device *dev, struct device_attribute *attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) struct adm1025_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369) unsigned long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) int err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) err = kstrtoul(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374) return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) if (val > 255)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379) data->vrm = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382) static DEVICE_ATTR_RW(vrm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) * Real code
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) static struct attribute *adm1025_attributes[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) &sensor_dev_attr_in0_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390) &sensor_dev_attr_in1_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) &sensor_dev_attr_in2_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) &sensor_dev_attr_in3_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) &sensor_dev_attr_in5_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394) &sensor_dev_attr_in0_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) &sensor_dev_attr_in1_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) &sensor_dev_attr_in2_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) &sensor_dev_attr_in3_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) &sensor_dev_attr_in5_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) &sensor_dev_attr_in0_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400) &sensor_dev_attr_in1_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) &sensor_dev_attr_in2_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) &sensor_dev_attr_in3_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) &sensor_dev_attr_in5_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404) &sensor_dev_attr_in0_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) &sensor_dev_attr_in1_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) &sensor_dev_attr_in2_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) &sensor_dev_attr_in3_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) &sensor_dev_attr_in5_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) &sensor_dev_attr_temp1_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) &sensor_dev_attr_temp2_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) &sensor_dev_attr_temp1_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412) &sensor_dev_attr_temp2_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) &sensor_dev_attr_temp1_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) &sensor_dev_attr_temp2_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) &sensor_dev_attr_temp1_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) &sensor_dev_attr_temp2_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) &sensor_dev_attr_temp1_fault.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) &dev_attr_alarms.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419) &dev_attr_cpu0_vid.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) &dev_attr_vrm.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) NULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) static const struct attribute_group adm1025_group = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) .attrs = adm1025_attributes,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) static struct attribute *adm1025_attributes_in4[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) &sensor_dev_attr_in4_input.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) &sensor_dev_attr_in4_min.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) &sensor_dev_attr_in4_max.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) &sensor_dev_attr_in4_alarm.dev_attr.attr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) NULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) static const struct attribute_group adm1025_group_in4 = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437) .attrs = adm1025_attributes_in4,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) /* Return 0 if detection is successful, -ENODEV otherwise */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) static int adm1025_detect(struct i2c_client *client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) struct i2c_board_info *info)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) struct i2c_adapter *adapter = client->adapter;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) const char *name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) u8 man_id, chip_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449) return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) /* Check for unused bits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) if ((i2c_smbus_read_byte_data(client, ADM1025_REG_CONFIG) & 0x80)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453) || (i2c_smbus_read_byte_data(client, ADM1025_REG_STATUS1) & 0xC0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) || (i2c_smbus_read_byte_data(client, ADM1025_REG_STATUS2) & 0xBC)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) dev_dbg(&adapter->dev, "ADM1025 detection failed at 0x%02x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) client->addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) /* Identification */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) chip_id = i2c_smbus_read_byte_data(client, ADM1025_REG_CHIP_ID);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462) if ((chip_id & 0xF0) != 0x20)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) man_id = i2c_smbus_read_byte_data(client, ADM1025_REG_MAN_ID);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) if (man_id == 0x41)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) name = "adm1025";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) else if (man_id == 0xA1 && client->addr != 0x2E)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) name = "ne1619";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) strlcpy(info->type, name, I2C_NAME_SIZE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) static void adm1025_init_client(struct i2c_client *client)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) u8 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) struct adm1025_data *data = i2c_get_clientdata(client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) data->vrm = vid_which_vrm();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) * Set high limits
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) * Usually we avoid setting limits on driver init, but it happens
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) * that the ADM1025 comes with stupid default limits (all registers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) * set to 0). In case the chip has not gone through any limit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) * setting yet, we better set the high limits to the max so that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) * no alarm triggers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) for (i = 0; i < 6; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) reg = i2c_smbus_read_byte_data(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) ADM1025_REG_IN_MAX(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) if (reg == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) i2c_smbus_write_byte_data(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) ADM1025_REG_IN_MAX(i),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) 0xFF);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) for (i = 0; i < 2; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) reg = i2c_smbus_read_byte_data(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) ADM1025_REG_TEMP_HIGH(i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) if (reg == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) i2c_smbus_write_byte_data(client,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) ADM1025_REG_TEMP_HIGH(i),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) 0x7F);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) * Start the conversions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) reg = i2c_smbus_read_byte_data(client, ADM1025_REG_CONFIG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) if (!(reg & 0x01))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) i2c_smbus_write_byte_data(client, ADM1025_REG_CONFIG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517) (reg&0x7E)|0x01);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) static int adm1025_probe(struct i2c_client *client)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522) struct device *dev = &client->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) struct device *hwmon_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) struct adm1025_data *data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525) u8 config;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) data = devm_kzalloc(dev, sizeof(struct adm1025_data), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) if (!data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) i2c_set_clientdata(client, data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) data->client = client;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533) mutex_init(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) /* Initialize the ADM1025 chip */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) adm1025_init_client(client);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538) /* sysfs hooks */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) data->groups[0] = &adm1025_group;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) /* Pin 11 is either in4 (+12V) or VID4 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) config = i2c_smbus_read_byte_data(client, ADM1025_REG_CONFIG);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) if (!(config & 0x20))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) data->groups[1] = &adm1025_group_in4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) data, data->groups);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) return PTR_ERR_OR_ZERO(hwmon_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) static const struct i2c_device_id adm1025_id[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) { "adm1025", adm1025 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) { "ne1619", ne1619 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) { }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) MODULE_DEVICE_TABLE(i2c, adm1025_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557) static struct i2c_driver adm1025_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) .class = I2C_CLASS_HWMON,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) .driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) .name = "adm1025",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) .probe_new = adm1025_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) .id_table = adm1025_id,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) .detect = adm1025_detect,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) .address_list = normal_i2c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568) module_i2c_driver(adm1025_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) MODULE_DESCRIPTION("ADM1025 driver");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) MODULE_LICENSE("GPL");