Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    1) // SPDX-License-Identifier: GPL-2.0-or-later
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    3)  * abituguru.c Copyright (c) 2005-2006 Hans de Goede <hdegoede@redhat.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    4)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    5) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    6)  * This driver supports the sensor part of the first and second revision of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    7)  * the custom Abit uGuru chip found on Abit uGuru motherboards. Note: because
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    8)  * of lack of specs the CPU/RAM voltage & frequency control is not supported!
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    9)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   10) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   11) #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   12) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   13) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   14) #include <linux/sched.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   15) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   16) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   17) #include <linux/jiffies.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   18) #include <linux/mutex.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   19) #include <linux/err.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   20) #include <linux/delay.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   21) #include <linux/platform_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   22) #include <linux/hwmon.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   23) #include <linux/hwmon-sysfs.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   24) #include <linux/dmi.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   25) #include <linux/io.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   26) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   27) /* Banks */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   28) #define ABIT_UGURU_ALARM_BANK			0x20 /* 1x 3 bytes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   29) #define ABIT_UGURU_SENSOR_BANK1			0x21 /* 16x volt and temp */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   30) #define ABIT_UGURU_FAN_PWM			0x24 /* 3x 5 bytes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   31) #define ABIT_UGURU_SENSOR_BANK2			0x26 /* fans */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   32) /* max nr of sensors in bank1, a bank1 sensor can be in, temp or nc */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   33) #define ABIT_UGURU_MAX_BANK1_SENSORS		16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   34) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   35)  * Warning if you increase one of the 2 MAX defines below to 10 or higher you
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   36)  * should adjust the belonging _NAMES_LENGTH macro for the 2 digit number!
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   37)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   38) /* max nr of sensors in bank2, currently mb's with max 6 fans are known */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   39) #define ABIT_UGURU_MAX_BANK2_SENSORS		6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   40) /* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   41) #define ABIT_UGURU_MAX_PWMS			5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   42) /* uGuru sensor bank 1 flags */			     /* Alarm if: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   43) #define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE	0x01 /*  temp over warn */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   44) #define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE	0x02 /*  volt over max */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   45) #define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE	0x04 /*  volt under min */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   46) #define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG		0x10 /* temp is over warn */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   47) #define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG		0x20 /* volt is over max */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   48) #define ABIT_UGURU_VOLT_LOW_ALARM_FLAG		0x40 /* volt is under min */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   49) /* uGuru sensor bank 2 flags */			     /* Alarm if: */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   50) #define ABIT_UGURU_FAN_LOW_ALARM_ENABLE		0x01 /*   fan under min */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   51) /* uGuru sensor bank common flags */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   52) #define ABIT_UGURU_BEEP_ENABLE			0x08 /* beep if alarm */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   53) #define ABIT_UGURU_SHUTDOWN_ENABLE		0x80 /* shutdown if alarm */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   54) /* uGuru fan PWM (speed control) flags */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   55) #define ABIT_UGURU_FAN_PWM_ENABLE		0x80 /* enable speed control */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   56) /* Values used for conversion */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   57) #define ABIT_UGURU_FAN_MAX			15300 /* RPM */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   58) /* Bank1 sensor types */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   59) #define ABIT_UGURU_IN_SENSOR			0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   60) #define ABIT_UGURU_TEMP_SENSOR			1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   61) #define ABIT_UGURU_NC				2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   62) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   63)  * In many cases we need to wait for the uGuru to reach a certain status, most
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   64)  * of the time it will reach this status within 30 - 90 ISA reads, and thus we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   65)  * can best busy wait. This define gives the total amount of reads to try.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   66)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   67) #define ABIT_UGURU_WAIT_TIMEOUT			125
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   68) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   69)  * However sometimes older versions of the uGuru seem to be distracted and they
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   70)  * do not respond for a long time. To handle this we sleep before each of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   71)  * last ABIT_UGURU_WAIT_TIMEOUT_SLEEP tries.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   72)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   73) #define ABIT_UGURU_WAIT_TIMEOUT_SLEEP		5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   74) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   75)  * Normally all expected status in abituguru_ready, are reported after the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   76)  * first read, but sometimes not and we need to poll.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   77)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   78) #define ABIT_UGURU_READY_TIMEOUT		5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   79) /* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   80) #define ABIT_UGURU_MAX_RETRIES			3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   81) #define ABIT_UGURU_RETRY_DELAY			(HZ/5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   82) /* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is an error */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   83) #define ABIT_UGURU_MAX_TIMEOUTS			2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   84) /* utility macros */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   85) #define ABIT_UGURU_NAME				"abituguru"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   86) #define ABIT_UGURU_DEBUG(level, format, arg...)		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   87) 	do {						\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   88) 		if (level <= verbose)			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   89) 			pr_debug(format , ## arg);	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   90) 	} while (0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   91) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   92) /* Macros to help calculate the sysfs_names array length */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   93) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   94)  * sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   95)  * in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   96)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   97) #define ABITUGURU_IN_NAMES_LENGTH	(11 + 2 * 9 + 2 * 15 + 2 * 22 + 10 + 14)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   98) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   99)  * sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  100)  * temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  101)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  102) #define ABITUGURU_TEMP_NAMES_LENGTH	(13 + 11 + 12 + 13 + 20 + 12 + 16)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  103) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  104)  * sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  105)  * fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  106)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  107) #define ABITUGURU_FAN_NAMES_LENGTH	(11 + 9 + 11 + 18 + 10 + 14)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  108) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  109)  * sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  110)  * pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  111)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  112) #define ABITUGURU_PWM_NAMES_LENGTH	(12 + 24 + 2 * 21 + 2 * 22)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  113) /* IN_NAMES_LENGTH > TEMP_NAMES_LENGTH so assume all bank1 sensors are in */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  114) #define ABITUGURU_SYSFS_NAMES_LENGTH	( \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  115) 	ABIT_UGURU_MAX_BANK1_SENSORS * ABITUGURU_IN_NAMES_LENGTH + \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  116) 	ABIT_UGURU_MAX_BANK2_SENSORS * ABITUGURU_FAN_NAMES_LENGTH + \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  117) 	ABIT_UGURU_MAX_PWMS * ABITUGURU_PWM_NAMES_LENGTH)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  118) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  119) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  120)  * All the macros below are named identical to the oguru and oguru2 programs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  121)  * reverse engineered by Olle Sandberg, hence the names might not be 100%
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  122)  * logical. I could come up with better names, but I prefer keeping the names
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  123)  * identical so that this driver can be compared with his work more easily.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  124)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  125) /* Two i/o-ports are used by uGuru */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  126) #define ABIT_UGURU_BASE				0x00E0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  127) /* Used to tell uGuru what to read and to read the actual data */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  128) #define ABIT_UGURU_CMD				0x00
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  129) /* Mostly used to check if uGuru is busy */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  130) #define ABIT_UGURU_DATA				0x04
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  131) #define ABIT_UGURU_REGION_LENGTH		5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  132) /* uGuru status' */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  133) #define ABIT_UGURU_STATUS_WRITE			0x00 /* Ready to be written */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  134) #define ABIT_UGURU_STATUS_READ			0x01 /* Ready to be read */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  135) #define ABIT_UGURU_STATUS_INPUT			0x08 /* More input */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  136) #define ABIT_UGURU_STATUS_READY			0x09 /* Ready to be written */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  137) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  138) /* Constants */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  139) /* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  140) static const int abituguru_bank1_max_value[2] = { 3494, 255000 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  141) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  142)  * Min / Max allowed values for sensor2 (fan) alarm threshold, these values
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  143)  * correspond to 300-3000 RPM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  144)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  145) static const u8 abituguru_bank2_min_threshold = 5;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  146) static const u8 abituguru_bank2_max_threshold = 50;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  147) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  148)  * Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  149)  * are temperature trip points.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  150)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  151) static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  152) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  153)  * Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  154)  * special case the minimum allowed pwm% setting for this is 30% (77) on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  155)  * some MB's this special case is handled in the code!
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  156)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  157) static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  158) static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  159) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  160) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  161) /* Insmod parameters */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  162) static bool force;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  163) module_param(force, bool, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  164) MODULE_PARM_DESC(force, "Set to one to force detection.");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  165) static int bank1_types[ABIT_UGURU_MAX_BANK1_SENSORS] = { -1, -1, -1, -1, -1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  166) 	-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  167) module_param_array(bank1_types, int, NULL, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  168) MODULE_PARM_DESC(bank1_types, "Bank1 sensortype autodetection override:\n"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  169) 	"   -1 autodetect\n"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  170) 	"    0 volt sensor\n"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  171) 	"    1 temp sensor\n"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  172) 	"    2 not connected");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  173) static int fan_sensors;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  174) module_param(fan_sensors, int, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  175) MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  176) 	"(0 = autodetect)");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  177) static int pwms;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  178) module_param(pwms, int, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  179) MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  180) 	"(0 = autodetect)");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  181) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  182) /* Default verbose is 2, since this driver is still in the testing phase */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  183) static int verbose = 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  184) module_param(verbose, int, 0644);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  185) MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  186) 	"   0 normal output\n"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  187) 	"   1 + verbose error reporting\n"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  188) 	"   2 + sensors type probing info\n"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  189) 	"   3 + retryable error reporting");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  190) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  191) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  192) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  193)  * For the Abit uGuru, we need to keep some data in memory.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  194)  * The structure is dynamically allocated, at the same time when a new
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  195)  * abituguru device is allocated.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  196)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  197) struct abituguru_data {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  198) 	struct device *hwmon_dev;	/* hwmon registered device */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  199) 	struct mutex update_lock;	/* protect access to data and uGuru */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  200) 	unsigned long last_updated;	/* In jiffies */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  201) 	unsigned short addr;		/* uguru base address */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  202) 	char uguru_ready;		/* is the uguru in ready state? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  203) 	unsigned char update_timeouts;	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  204) 					 * number of update timeouts since last
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  205) 					 * successful update
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  206) 					 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  207) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  208) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  209) 	 * The sysfs attr and their names are generated automatically, for bank1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  210) 	 * we cannot use a predefined array because we don't know beforehand
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  211) 	 * of a sensor is a volt or a temp sensor, for bank2 and the pwms its
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  212) 	 * easier todo things the same way.  For in sensors we have 9 (temp 7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  213) 	 * sysfs entries per sensor, for bank2 and pwms 6.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  214) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  215) 	struct sensor_device_attribute_2 sysfs_attr[
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  216) 		ABIT_UGURU_MAX_BANK1_SENSORS * 9 +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  217) 		ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  218) 	/* Buffer to store the dynamically generated sysfs names */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  219) 	char sysfs_names[ABITUGURU_SYSFS_NAMES_LENGTH];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  220) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  221) 	/* Bank 1 data */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  222) 	/* number of and addresses of [0] in, [1] temp sensors */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  223) 	u8 bank1_sensors[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  224) 	u8 bank1_address[2][ABIT_UGURU_MAX_BANK1_SENSORS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  225) 	u8 bank1_value[ABIT_UGURU_MAX_BANK1_SENSORS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  226) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  227) 	 * This array holds 3 entries per sensor for the bank 1 sensor settings
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  228) 	 * (flags, min, max for voltage / flags, warn, shutdown for temp).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  229) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  230) 	u8 bank1_settings[ABIT_UGURU_MAX_BANK1_SENSORS][3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  231) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  232) 	 * Maximum value for each sensor used for scaling in mV/millidegrees
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  233) 	 * Celsius.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  234) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  235) 	int bank1_max_value[ABIT_UGURU_MAX_BANK1_SENSORS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  236) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  237) 	/* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  238) 	u8 bank2_sensors; /* actual number of bank2 sensors found */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  239) 	u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  240) 	u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  241) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  242) 	/* Alarms 2 bytes for bank1, 1 byte for bank2 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  243) 	u8 alarms[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  244) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  245) 	/* Fan PWM (speed control) 5 bytes per PWM */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  246) 	u8 pwms; /* actual number of pwms found */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  247) 	u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  248) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  249) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  250) static const char *never_happen = "This should never happen.";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  251) static const char *report_this =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  252) 	"Please report this to the abituguru maintainer (see MAINTAINERS)";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  253) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  254) /* wait till the uguru is in the specified state */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  255) static int abituguru_wait(struct abituguru_data *data, u8 state)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  256) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  257) 	int timeout = ABIT_UGURU_WAIT_TIMEOUT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  258) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  259) 	while (inb_p(data->addr + ABIT_UGURU_DATA) != state) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  260) 		timeout--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  261) 		if (timeout == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  262) 			return -EBUSY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  263) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  264) 		 * sleep a bit before our last few tries, see the comment on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  265) 		 * this where ABIT_UGURU_WAIT_TIMEOUT_SLEEP is defined.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  266) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  267) 		if (timeout <= ABIT_UGURU_WAIT_TIMEOUT_SLEEP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  268) 			msleep(0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  269) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  270) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  271) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  272) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  273) /* Put the uguru in ready for input state */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  274) static int abituguru_ready(struct abituguru_data *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  275) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  276) 	int timeout = ABIT_UGURU_READY_TIMEOUT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  277) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  278) 	if (data->uguru_ready)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  279) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  280) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  281) 	/* Reset? / Prepare for next read/write cycle */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  282) 	outb(0x00, data->addr + ABIT_UGURU_DATA);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  283) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  284) 	/* Wait till the uguru is ready */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  285) 	if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  286) 		ABIT_UGURU_DEBUG(1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  287) 			"timeout exceeded waiting for ready state\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  288) 		return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  289) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  290) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  291) 	/* Cmd port MUST be read now and should contain 0xAC */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  292) 	while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  293) 		timeout--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  294) 		if (timeout == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  295) 			ABIT_UGURU_DEBUG(1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  296) 			   "CMD reg does not hold 0xAC after ready command\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  297) 			return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  298) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  299) 		msleep(0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  300) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  301) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  302) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  303) 	 * After this the ABIT_UGURU_DATA port should contain
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  304) 	 * ABIT_UGURU_STATUS_INPUT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  305) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  306) 	timeout = ABIT_UGURU_READY_TIMEOUT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  307) 	while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  308) 		timeout--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  309) 		if (timeout == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  310) 			ABIT_UGURU_DEBUG(1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  311) 				"state != more input after ready command\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  312) 			return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  313) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  314) 		msleep(0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  315) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  316) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  317) 	data->uguru_ready = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  318) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  319) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  320) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  321) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  322)  * Send the bank and then sensor address to the uGuru for the next read/write
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  323)  * cycle. This function gets called as the first part of a read/write by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  324)  * abituguru_read and abituguru_write. This function should never be
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  325)  * called by any other function.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  326)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  327) static int abituguru_send_address(struct abituguru_data *data,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  328) 	u8 bank_addr, u8 sensor_addr, int retries)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  329) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  330) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  331) 	 * assume the caller does error handling itself if it has not requested
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  332) 	 * any retries, and thus be quiet.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  333) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  334) 	int report_errors = retries;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  335) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  336) 	for (;;) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  337) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  338) 		 * Make sure the uguru is ready and then send the bank address,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  339) 		 * after this the uguru is no longer "ready".
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  340) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  341) 		if (abituguru_ready(data) != 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  342) 			return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  343) 		outb(bank_addr, data->addr + ABIT_UGURU_DATA);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  344) 		data->uguru_ready = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  345) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  346) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  347) 		 * Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  348) 		 * and send the sensor addr
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  349) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  350) 		if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  351) 			if (retries) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  352) 				ABIT_UGURU_DEBUG(3, "timeout exceeded "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  353) 					"waiting for more input state, %d "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  354) 					"tries remaining\n", retries);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  355) 				set_current_state(TASK_UNINTERRUPTIBLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  356) 				schedule_timeout(ABIT_UGURU_RETRY_DELAY);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  357) 				retries--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  358) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  359) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  360) 			if (report_errors)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  361) 				ABIT_UGURU_DEBUG(1, "timeout exceeded "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  362) 					"waiting for more input state "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  363) 					"(bank: %d)\n", (int)bank_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  364) 			return -EBUSY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  365) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  366) 		outb(sensor_addr, data->addr + ABIT_UGURU_CMD);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  367) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  368) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  369) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  370) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  371) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  372)  * Read count bytes from sensor sensor_addr in bank bank_addr and store the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  373)  * result in buf, retry the send address part of the read retries times.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  374)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  375) static int abituguru_read(struct abituguru_data *data,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  376) 	u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  377) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  378) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  379) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  380) 	/* Send the address */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  381) 	i = abituguru_send_address(data, bank_addr, sensor_addr, retries);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  382) 	if (i)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  383) 		return i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  384) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  385) 	/* And read the data */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  386) 	for (i = 0; i < count; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  387) 		if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  388) 			ABIT_UGURU_DEBUG(retries ? 1 : 3,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  389) 				"timeout exceeded waiting for "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  390) 				"read state (bank: %d, sensor: %d)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  391) 				(int)bank_addr, (int)sensor_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  392) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  393) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  394) 		buf[i] = inb(data->addr + ABIT_UGURU_CMD);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  395) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  396) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  397) 	/* Last put the chip back in ready state */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  398) 	abituguru_ready(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  399) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  400) 	return i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  401) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  402) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  403) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  404)  * Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  405)  * address part of the write is always retried ABIT_UGURU_MAX_RETRIES times.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  406)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  407) static int abituguru_write(struct abituguru_data *data,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  408) 	u8 bank_addr, u8 sensor_addr, u8 *buf, int count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  409) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  410) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  411) 	 * We use the ready timeout as we have to wait for 0xAC just like the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  412) 	 * ready function
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  413) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  414) 	int i, timeout = ABIT_UGURU_READY_TIMEOUT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  415) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  416) 	/* Send the address */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  417) 	i = abituguru_send_address(data, bank_addr, sensor_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  418) 		ABIT_UGURU_MAX_RETRIES);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  419) 	if (i)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  420) 		return i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  421) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  422) 	/* And write the data */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  423) 	for (i = 0; i < count; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  424) 		if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  425) 			ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  426) 				"write state (bank: %d, sensor: %d)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  427) 				(int)bank_addr, (int)sensor_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  428) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  429) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  430) 		outb(buf[i], data->addr + ABIT_UGURU_CMD);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  431) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  432) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  433) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  434) 	 * Now we need to wait till the chip is ready to be read again,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  435) 	 * so that we can read 0xAC as confirmation that our write has
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  436) 	 * succeeded.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  437) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  438) 	if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  439) 		ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  440) 			"after write (bank: %d, sensor: %d)\n", (int)bank_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  441) 			(int)sensor_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  442) 		return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  443) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  444) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  445) 	/* Cmd port MUST be read now and should contain 0xAC */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  446) 	while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  447) 		timeout--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  448) 		if (timeout == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  449) 			ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  450) 				"write (bank: %d, sensor: %d)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  451) 				(int)bank_addr, (int)sensor_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  452) 			return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  453) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  454) 		msleep(0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  455) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  456) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  457) 	/* Last put the chip back in ready state */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  458) 	abituguru_ready(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  459) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  460) 	return i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  461) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  462) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  463) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  464)  * Detect sensor type. Temp and Volt sensors are enabled with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  465)  * different masks and will ignore enable masks not meant for them.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  466)  * This enables us to test what kind of sensor we're dealing with.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  467)  * By setting the alarm thresholds so that we will always get an
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  468)  * alarm for sensor type X and then enabling the sensor as sensor type
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  469)  * X, if we then get an alarm it is a sensor of type X.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  470)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  471) static int
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  472) abituguru_detect_bank1_sensor_type(struct abituguru_data *data,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  473) 				   u8 sensor_addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  474) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  475) 	u8 val, test_flag, buf[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  476) 	int i, ret = -ENODEV; /* error is the most common used retval :| */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  477) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  478) 	/* If overriden by the user return the user selected type */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  479) 	if (bank1_types[sensor_addr] >= ABIT_UGURU_IN_SENSOR &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  480) 			bank1_types[sensor_addr] <= ABIT_UGURU_NC) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  481) 		ABIT_UGURU_DEBUG(2, "assuming sensor type %d for bank1 sensor "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  482) 			"%d because of \"bank1_types\" module param\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  483) 			bank1_types[sensor_addr], (int)sensor_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  484) 		return bank1_types[sensor_addr];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  485) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  486) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  487) 	/* First read the sensor and the current settings */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  488) 	if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  489) 			1, ABIT_UGURU_MAX_RETRIES) != 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  490) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  491) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  492) 	/* Test val is sane / usable for sensor type detection. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  493) 	if ((val < 10u) || (val > 250u)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  494) 		pr_warn("bank1-sensor: %d reading (%d) too close to limits, "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  495) 			"unable to determine sensor type, skipping sensor\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  496) 			(int)sensor_addr, (int)val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  497) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  498) 		 * assume no sensor is there for sensors for which we can't
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  499) 		 * determine the sensor type because their reading is too close
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  500) 		 * to their limits, this usually means no sensor is there.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  501) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  502) 		return ABIT_UGURU_NC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  503) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  504) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  505) 	ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  506) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  507) 	 * Volt sensor test, enable volt low alarm, set min value ridiculously
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  508) 	 * high, or vica versa if the reading is very high. If its a volt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  509) 	 * sensor this should always give us an alarm.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  510) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  511) 	if (val <= 240u) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  512) 		buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  513) 		buf[1] = 245;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  514) 		buf[2] = 250;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  515) 		test_flag = ABIT_UGURU_VOLT_LOW_ALARM_FLAG;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  516) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  517) 		buf[0] = ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  518) 		buf[1] = 5;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  519) 		buf[2] = 10;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  520) 		test_flag = ABIT_UGURU_VOLT_HIGH_ALARM_FLAG;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  521) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  522) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  523) 	if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  524) 			buf, 3) != 3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  525) 		goto abituguru_detect_bank1_sensor_type_exit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  526) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  527) 	 * Now we need 20 ms to give the uguru time to read the sensors
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  528) 	 * and raise a voltage alarm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  529) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  530) 	set_current_state(TASK_UNINTERRUPTIBLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  531) 	schedule_timeout(HZ/50);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  532) 	/* Check for alarm and check the alarm is a volt low alarm. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  533) 	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  534) 			ABIT_UGURU_MAX_RETRIES) != 3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  535) 		goto abituguru_detect_bank1_sensor_type_exit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  536) 	if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  537) 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  538) 				sensor_addr, buf, 3,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  539) 				ABIT_UGURU_MAX_RETRIES) != 3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  540) 			goto abituguru_detect_bank1_sensor_type_exit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  541) 		if (buf[0] & test_flag) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  542) 			ABIT_UGURU_DEBUG(2, "  found volt sensor\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  543) 			ret = ABIT_UGURU_IN_SENSOR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  544) 			goto abituguru_detect_bank1_sensor_type_exit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  545) 		} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  546) 			ABIT_UGURU_DEBUG(2, "  alarm raised during volt "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  547) 				"sensor test, but volt range flag not set\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  548) 	} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  549) 		ABIT_UGURU_DEBUG(2, "  alarm not raised during volt sensor "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  550) 			"test\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  551) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  552) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  553) 	 * Temp sensor test, enable sensor as a temp sensor, set beep value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  554) 	 * ridiculously low (but not too low, otherwise uguru ignores it).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  555) 	 * If its a temp sensor this should always give us an alarm.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  556) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  557) 	buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  558) 	buf[1] = 5;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  559) 	buf[2] = 10;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  560) 	if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  561) 			buf, 3) != 3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  562) 		goto abituguru_detect_bank1_sensor_type_exit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  563) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  564) 	 * Now we need 50 ms to give the uguru time to read the sensors
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  565) 	 * and raise a temp alarm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  566) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  567) 	set_current_state(TASK_UNINTERRUPTIBLE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  568) 	schedule_timeout(HZ/20);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  569) 	/* Check for alarm and check the alarm is a temp high alarm. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  570) 	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  571) 			ABIT_UGURU_MAX_RETRIES) != 3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  572) 		goto abituguru_detect_bank1_sensor_type_exit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  573) 	if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  574) 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  575) 				sensor_addr, buf, 3,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  576) 				ABIT_UGURU_MAX_RETRIES) != 3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  577) 			goto abituguru_detect_bank1_sensor_type_exit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  578) 		if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  579) 			ABIT_UGURU_DEBUG(2, "  found temp sensor\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  580) 			ret = ABIT_UGURU_TEMP_SENSOR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  581) 			goto abituguru_detect_bank1_sensor_type_exit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  582) 		} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  583) 			ABIT_UGURU_DEBUG(2, "  alarm raised during temp "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  584) 				"sensor test, but temp high flag not set\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  585) 	} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  586) 		ABIT_UGURU_DEBUG(2, "  alarm not raised during temp sensor "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  587) 			"test\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  588) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  589) 	ret = ABIT_UGURU_NC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  590) abituguru_detect_bank1_sensor_type_exit:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  591) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  592) 	 * Restore original settings, failing here is really BAD, it has been
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  593) 	 * reported that some BIOS-es hang when entering the uGuru menu with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  594) 	 * invalid settings present in the uGuru, so we try this 3 times.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  595) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  596) 	for (i = 0; i < 3; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  597) 		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  598) 				sensor_addr, data->bank1_settings[sensor_addr],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  599) 				3) == 3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  600) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  601) 	if (i == 3) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  602) 		pr_err("Fatal error could not restore original settings. %s %s\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  603) 		       never_happen, report_this);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  604) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  605) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  606) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  607) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  608) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  609) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  610)  * These functions try to find out how many sensors there are in bank2 and how
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  611)  * many pwms there are. The purpose of this is to make sure that we don't give
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  612)  * the user the possibility to change settings for non-existent sensors / pwm.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  613)  * The uGuru will happily read / write whatever memory happens to be after the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  614)  * memory storing the PWM settings when reading/writing to a PWM which is not
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  615)  * there. Notice even if we detect a PWM which doesn't exist we normally won't
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  616)  * write to it, unless the user tries to change the settings.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  617)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  618)  * Although the uGuru allows reading (settings) from non existing bank2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  619)  * sensors, my version of the uGuru does seem to stop writing to them, the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  620)  * write function above aborts in this case with:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  621)  * "CMD reg does not hold 0xAC after write"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  622)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  623)  * Notice these 2 tests are non destructive iow read-only tests, otherwise
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  624)  * they would defeat their purpose. Although for the bank2_sensors detection a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  625)  * read/write test would be feasible because of the reaction above, I've
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  626)  * however opted to stay on the safe side.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  627)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  628) static void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  629) abituguru_detect_no_bank2_sensors(struct abituguru_data *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  630) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  631) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  632) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  633) 	if (fan_sensors > 0 && fan_sensors <= ABIT_UGURU_MAX_BANK2_SENSORS) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  634) 		data->bank2_sensors = fan_sensors;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  635) 		ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  636) 			"\"fan_sensors\" module param\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  637) 			(int)data->bank2_sensors);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  638) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  639) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  640) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  641) 	ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  642) 	for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  643) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  644) 		 * 0x89 are the known used bits:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  645) 		 * -0x80 enable shutdown
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  646) 		 * -0x08 enable beep
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  647) 		 * -0x01 enable alarm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  648) 		 * All other bits should be 0, but on some motherboards
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  649) 		 * 0x40 (bit 6) is also high for some of the fans??
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  650) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  651) 		if (data->bank2_settings[i][0] & ~0xC9) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  652) 			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  653) 				"to be a fan sensor: settings[0] = %02X\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  654) 				i, (unsigned int)data->bank2_settings[i][0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  655) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  656) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  657) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  658) 		/* check if the threshold is within the allowed range */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  659) 		if (data->bank2_settings[i][1] <
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  660) 				abituguru_bank2_min_threshold) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  661) 			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  662) 				"to be a fan sensor: the threshold (%d) is "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  663) 				"below the minimum (%d)\n", i,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  664) 				(int)data->bank2_settings[i][1],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  665) 				(int)abituguru_bank2_min_threshold);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  666) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  667) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  668) 		if (data->bank2_settings[i][1] >
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  669) 				abituguru_bank2_max_threshold) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  670) 			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  671) 				"to be a fan sensor: the threshold (%d) is "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  672) 				"above the maximum (%d)\n", i,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  673) 				(int)data->bank2_settings[i][1],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  674) 				(int)abituguru_bank2_max_threshold);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  675) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  676) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  677) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  678) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  679) 	data->bank2_sensors = i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  680) 	ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  681) 		(int)data->bank2_sensors);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  682) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  683) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  684) static void
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  685) abituguru_detect_no_pwms(struct abituguru_data *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  686) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  687) 	int i, j;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  688) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  689) 	if (pwms > 0 && pwms <= ABIT_UGURU_MAX_PWMS) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  690) 		data->pwms = pwms;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  691) 		ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  692) 			"\"pwms\" module param\n", (int)data->pwms);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  693) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  694) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  695) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  696) 	ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  697) 	for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  698) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  699) 		 * 0x80 is the enable bit and the low
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  700) 		 * nibble is which temp sensor to use,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  701) 		 * the other bits should be 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  702) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  703) 		if (data->pwm_settings[i][0] & ~0x8F) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  704) 			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  705) 				"to be a pwm channel: settings[0] = %02X\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  706) 				i, (unsigned int)data->pwm_settings[i][0]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  707) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  708) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  709) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  710) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  711) 		 * the low nibble must correspond to one of the temp sensors
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  712) 		 * we've found
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  713) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  714) 		for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  715) 				j++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  716) 			if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] ==
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  717) 					(data->pwm_settings[i][0] & 0x0F))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  718) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  719) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  720) 		if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  721) 			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  722) 				"to be a pwm channel: %d is not a valid temp "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  723) 				"sensor address\n", i,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  724) 				data->pwm_settings[i][0] & 0x0F);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  725) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  726) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  727) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  728) 		/* check if all other settings are within the allowed range */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  729) 		for (j = 1; j < 5; j++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  730) 			u8 min;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  731) 			/* special case pwm1 min pwm% */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  732) 			if ((i == 0) && ((j == 1) || (j == 2)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  733) 				min = 77;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  734) 			else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  735) 				min = abituguru_pwm_min[j];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  736) 			if (data->pwm_settings[i][j] < min) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  737) 				ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  738) 					"not seem to be a pwm channel: "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  739) 					"setting %d (%d) is below the minimum "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  740) 					"value (%d)\n", i, j,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  741) 					(int)data->pwm_settings[i][j],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  742) 					(int)min);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  743) 				goto abituguru_detect_no_pwms_exit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  744) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  745) 			if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  746) 				ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  747) 					"not seem to be a pwm channel: "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  748) 					"setting %d (%d) is above the maximum "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  749) 					"value (%d)\n", i, j,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  750) 					(int)data->pwm_settings[i][j],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  751) 					(int)abituguru_pwm_max[j]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  752) 				goto abituguru_detect_no_pwms_exit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  753) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  754) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  755) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  756) 		/* check that min temp < max temp and min pwm < max pwm */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  757) 		if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  758) 			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  759) 				"to be a pwm channel: min pwm (%d) >= "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  760) 				"max pwm (%d)\n", i,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  761) 				(int)data->pwm_settings[i][1],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  762) 				(int)data->pwm_settings[i][2]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  763) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  764) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  765) 		if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  766) 			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  767) 				"to be a pwm channel: min temp (%d) >= "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  768) 				"max temp (%d)\n", i,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  769) 				(int)data->pwm_settings[i][3],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  770) 				(int)data->pwm_settings[i][4]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  771) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  772) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  773) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  774) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  775) abituguru_detect_no_pwms_exit:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  776) 	data->pwms = i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  777) 	ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  778) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  779) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  780) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  781)  * Following are the sysfs callback functions. These functions expect:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  782)  * sensor_device_attribute_2->index:   sensor address/offset in the bank
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  783)  * sensor_device_attribute_2->nr:      register offset, bitmask or NA.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  784)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  785) static struct abituguru_data *abituguru_update_device(struct device *dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  786) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  787) static ssize_t show_bank1_value(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  788) 	struct device_attribute *devattr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  789) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  790) 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  791) 	struct abituguru_data *data = abituguru_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  792) 	if (!data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  793) 		return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  794) 	return sprintf(buf, "%d\n", (data->bank1_value[attr->index] *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  795) 		data->bank1_max_value[attr->index] + 128) / 255);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  796) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  797) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  798) static ssize_t show_bank1_setting(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  799) 	struct device_attribute *devattr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  800) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  801) 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  802) 	struct abituguru_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  803) 	return sprintf(buf, "%d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  804) 		(data->bank1_settings[attr->index][attr->nr] *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  805) 		data->bank1_max_value[attr->index] + 128) / 255);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  806) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  807) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  808) static ssize_t show_bank2_value(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  809) 	struct device_attribute *devattr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  810) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  811) 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  812) 	struct abituguru_data *data = abituguru_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  813) 	if (!data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  814) 		return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  815) 	return sprintf(buf, "%d\n", (data->bank2_value[attr->index] *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  816) 		ABIT_UGURU_FAN_MAX + 128) / 255);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  817) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  818) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  819) static ssize_t show_bank2_setting(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  820) 	struct device_attribute *devattr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  821) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  822) 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  823) 	struct abituguru_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  824) 	return sprintf(buf, "%d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  825) 		(data->bank2_settings[attr->index][attr->nr] *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  826) 		ABIT_UGURU_FAN_MAX + 128) / 255);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  827) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  828) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  829) static ssize_t store_bank1_setting(struct device *dev, struct device_attribute
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  830) 	*devattr, const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  831) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  832) 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  833) 	struct abituguru_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  834) 	unsigned long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  835) 	ssize_t ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  836) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  837) 	ret = kstrtoul(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  838) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  839) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  840) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  841) 	ret = count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  842) 	val = (val * 255 + data->bank1_max_value[attr->index] / 2) /
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  843) 		data->bank1_max_value[attr->index];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  844) 	if (val > 255)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  845) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  846) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  847) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  848) 	if (data->bank1_settings[attr->index][attr->nr] != val) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  849) 		u8 orig_val = data->bank1_settings[attr->index][attr->nr];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  850) 		data->bank1_settings[attr->index][attr->nr] = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  851) 		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  852) 				attr->index, data->bank1_settings[attr->index],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  853) 				3) <= attr->nr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  854) 			data->bank1_settings[attr->index][attr->nr] = orig_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  855) 			ret = -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  856) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  857) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  858) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  859) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  860) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  861) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  862) static ssize_t store_bank2_setting(struct device *dev, struct device_attribute
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  863) 	*devattr, const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  864) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  865) 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  866) 	struct abituguru_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  867) 	unsigned long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  868) 	ssize_t ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  869) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  870) 	ret = kstrtoul(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  871) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  872) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  873) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  874) 	ret = count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  875) 	val = (val * 255 + ABIT_UGURU_FAN_MAX / 2) / ABIT_UGURU_FAN_MAX;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  876) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  877) 	/* this check can be done before taking the lock */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  878) 	if (val < abituguru_bank2_min_threshold ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  879) 			val > abituguru_bank2_max_threshold)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  880) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  881) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  882) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  883) 	if (data->bank2_settings[attr->index][attr->nr] != val) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  884) 		u8 orig_val = data->bank2_settings[attr->index][attr->nr];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  885) 		data->bank2_settings[attr->index][attr->nr] = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  886) 		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  887) 				attr->index, data->bank2_settings[attr->index],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  888) 				2) <= attr->nr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  889) 			data->bank2_settings[attr->index][attr->nr] = orig_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  890) 			ret = -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  891) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  892) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  893) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  894) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  895) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  896) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  897) static ssize_t show_bank1_alarm(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  898) 	struct device_attribute *devattr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  899) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  900) 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  901) 	struct abituguru_data *data = abituguru_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  902) 	if (!data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  903) 		return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  904) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  905) 	 * See if the alarm bit for this sensor is set, and if the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  906) 	 * alarm matches the type of alarm we're looking for (for volt
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  907) 	 * it can be either low or high). The type is stored in a few
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  908) 	 * readonly bits in the settings part of the relevant sensor.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  909) 	 * The bitmask of the type is passed to us in attr->nr.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  910) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  911) 	if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  912) 			(data->bank1_settings[attr->index][0] & attr->nr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  913) 		return sprintf(buf, "1\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  914) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  915) 		return sprintf(buf, "0\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  916) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  917) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  918) static ssize_t show_bank2_alarm(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  919) 	struct device_attribute *devattr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  920) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  921) 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  922) 	struct abituguru_data *data = abituguru_update_device(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  923) 	if (!data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  924) 		return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  925) 	if (data->alarms[2] & (0x01 << attr->index))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  926) 		return sprintf(buf, "1\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  927) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  928) 		return sprintf(buf, "0\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  929) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  930) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  931) static ssize_t show_bank1_mask(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  932) 	struct device_attribute *devattr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  933) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  934) 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  935) 	struct abituguru_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  936) 	if (data->bank1_settings[attr->index][0] & attr->nr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  937) 		return sprintf(buf, "1\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  938) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  939) 		return sprintf(buf, "0\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  940) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  941) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  942) static ssize_t show_bank2_mask(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  943) 	struct device_attribute *devattr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  944) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  945) 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  946) 	struct abituguru_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  947) 	if (data->bank2_settings[attr->index][0] & attr->nr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  948) 		return sprintf(buf, "1\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  949) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  950) 		return sprintf(buf, "0\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  951) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  952) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  953) static ssize_t store_bank1_mask(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  954) 	struct device_attribute *devattr, const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  955) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  956) 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  957) 	struct abituguru_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  958) 	ssize_t ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  959) 	u8 orig_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  960) 	unsigned long mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  961) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  962) 	ret = kstrtoul(buf, 10, &mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  963) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  964) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  965) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  966) 	ret = count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  967) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  968) 	orig_val = data->bank1_settings[attr->index][0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  969) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  970) 	if (mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  971) 		data->bank1_settings[attr->index][0] |= attr->nr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  972) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  973) 		data->bank1_settings[attr->index][0] &= ~attr->nr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  974) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  975) 	if ((data->bank1_settings[attr->index][0] != orig_val) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  976) 			(abituguru_write(data,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  977) 			ABIT_UGURU_SENSOR_BANK1 + 2, attr->index,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  978) 			data->bank1_settings[attr->index], 3) < 1)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  979) 		data->bank1_settings[attr->index][0] = orig_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  980) 		ret = -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  981) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  982) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  983) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  984) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  985) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  986) static ssize_t store_bank2_mask(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  987) 	struct device_attribute *devattr, const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  988) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  989) 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  990) 	struct abituguru_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  991) 	ssize_t ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  992) 	u8 orig_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  993) 	unsigned long mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  994) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  995) 	ret = kstrtoul(buf, 10, &mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  996) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  997) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  998) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  999) 	ret = count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) 	orig_val = data->bank2_settings[attr->index][0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) 	if (mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) 		data->bank2_settings[attr->index][0] |= attr->nr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) 		data->bank2_settings[attr->index][0] &= ~attr->nr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008) 	if ((data->bank2_settings[attr->index][0] != orig_val) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) 			(abituguru_write(data,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) 			ABIT_UGURU_SENSOR_BANK2 + 2, attr->index,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011) 			data->bank2_settings[attr->index], 2) < 1)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012) 		data->bank2_settings[attr->index][0] = orig_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) 		ret = -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019) /* Fan PWM (speed control) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020) static ssize_t show_pwm_setting(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021) 	struct device_attribute *devattr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) 	struct abituguru_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) 	return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) 		abituguru_pwm_settings_multiplier[attr->nr]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029) static ssize_t store_pwm_setting(struct device *dev, struct device_attribute
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030) 	*devattr, const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032) 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033) 	struct abituguru_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) 	u8 min;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035) 	unsigned long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036) 	ssize_t ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038) 	ret = kstrtoul(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042) 	ret = count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043) 	val = (val + abituguru_pwm_settings_multiplier[attr->nr] / 2) /
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044) 				abituguru_pwm_settings_multiplier[attr->nr];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046) 	/* special case pwm1 min pwm% */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047) 	if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048) 		min = 77;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050) 		min = abituguru_pwm_min[attr->nr];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052) 	/* this check can be done before taking the lock */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053) 	if (val < min || val > abituguru_pwm_max[attr->nr])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057) 	/* this check needs to be done after taking the lock */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058) 	if ((attr->nr & 1) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) 			(val >= data->pwm_settings[attr->index][attr->nr + 1]))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060) 		ret = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) 	else if (!(attr->nr & 1) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) 			(val <= data->pwm_settings[attr->index][attr->nr - 1]))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) 		ret = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) 	else if (data->pwm_settings[attr->index][attr->nr] != val) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) 		u8 orig_val = data->pwm_settings[attr->index][attr->nr];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) 		data->pwm_settings[attr->index][attr->nr] = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) 		if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) 				attr->index, data->pwm_settings[attr->index],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) 				5) <= attr->nr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) 			data->pwm_settings[attr->index][attr->nr] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) 				orig_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) 			ret = -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) static ssize_t show_pwm_sensor(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) 	struct device_attribute *devattr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) 	struct abituguru_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086) 	 * We need to walk to the temp sensor addresses to find what
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) 	 * the userspace id of the configured temp sensor is.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) 	for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090) 		if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] ==
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) 				(data->pwm_settings[attr->index][0] & 0x0F))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) 			return sprintf(buf, "%d\n", i+1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) 	return -ENXIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097) static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098) 	*devattr, const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100) 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101) 	struct abituguru_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102) 	ssize_t ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103) 	unsigned long val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104) 	u8 orig_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105) 	u8 address;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) 	ret = kstrtoul(buf, 10, &val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111) 	if (val == 0 || val > data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114) 	val -= 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115) 	ret = count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) 	orig_val = data->pwm_settings[attr->index][0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118) 	address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119) 	data->pwm_settings[attr->index][0] &= 0xF0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) 	data->pwm_settings[attr->index][0] |= address;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) 	if (data->pwm_settings[attr->index][0] != orig_val) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122) 		if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, attr->index,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123) 				    data->pwm_settings[attr->index], 5) < 1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124) 			data->pwm_settings[attr->index][0] = orig_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125) 			ret = -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132) static ssize_t show_pwm_enable(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133) 	struct device_attribute *devattr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135) 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136) 	struct abituguru_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137) 	int res = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138) 	if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139) 		res = 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140) 	return sprintf(buf, "%d\n", res);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143) static ssize_t store_pwm_enable(struct device *dev, struct device_attribute
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144) 	*devattr, const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146) 	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147) 	struct abituguru_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148) 	u8 orig_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149) 	ssize_t ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150) 	unsigned long user_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152) 	ret = kstrtoul(buf, 10, &user_val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156) 	ret = count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158) 	orig_val = data->pwm_settings[attr->index][0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159) 	switch (user_val) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160) 	case 0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161) 		data->pwm_settings[attr->index][0] &=
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1162) 			~ABIT_UGURU_FAN_PWM_ENABLE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1163) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1164) 	case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1165) 		data->pwm_settings[attr->index][0] |= ABIT_UGURU_FAN_PWM_ENABLE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1166) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1167) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1168) 		ret = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1169) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1170) 	if ((data->pwm_settings[attr->index][0] != orig_val) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1171) 			(abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1172) 			attr->index, data->pwm_settings[attr->index],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1173) 			5) < 1)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1174) 		data->pwm_settings[attr->index][0] = orig_val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1175) 		ret = -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1176) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1177) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1178) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1179) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1180) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1181) static ssize_t show_name(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1182) 	struct device_attribute *devattr, char *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1183) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1184) 	return sprintf(buf, "%s\n", ABIT_UGURU_NAME);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1185) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1186) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1187) /* Sysfs attr templates, the real entries are generated automatically. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1188) static const
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1189) struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1190) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1191) 	SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1192) 	SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1193) 		store_bank1_setting, 1, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1194) 	SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1195) 		ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1196) 	SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1197) 		store_bank1_setting, 2, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1198) 	SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1199) 		ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1200) 	SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1201) 		store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1202) 	SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1203) 		store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1204) 	SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1205) 		store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1206) 	SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1207) 		store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1208) 	}, {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1209) 	SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1210) 	SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1211) 		ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1212) 	SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1213) 		store_bank1_setting, 1, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1214) 	SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1215) 		store_bank1_setting, 2, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1216) 	SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1217) 		store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1218) 	SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1219) 		store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1220) 	SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1221) 		store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1222) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1223) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1224) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1225) static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1226) 	SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1227) 	SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1228) 	SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1229) 		store_bank2_setting, 1, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1230) 	SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1231) 		store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1232) 	SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1233) 		store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1234) 	SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1235) 		store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1236) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1237) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1238) static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1239) 	SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1240) 		store_pwm_enable, 0, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1241) 	SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1242) 		store_pwm_sensor, 0, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1243) 	SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1244) 		store_pwm_setting, 1, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1245) 	SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1246) 		store_pwm_setting, 2, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1247) 	SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1248) 		store_pwm_setting, 3, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1249) 	SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1250) 		store_pwm_setting, 4, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1251) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1252) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1253) static struct sensor_device_attribute_2 abituguru_sysfs_attr[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1254) 	SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1255) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1256) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1257) static int abituguru_probe(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1258) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1259) 	struct abituguru_data *data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1260) 	int i, j, used, sysfs_names_free, sysfs_attr_i, res = -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1261) 	char *sysfs_filename;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1262) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1263) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1264) 	 * El weirdo probe order, to keep the sysfs order identical to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1265) 	 * BIOS and window-appliction listing order.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1266) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1267) 	static const u8 probe_order[ABIT_UGURU_MAX_BANK1_SENSORS] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1268) 		0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, 0x02,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1269) 		0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1270) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1271) 	data = devm_kzalloc(&pdev->dev, sizeof(struct abituguru_data),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1272) 			    GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1273) 	if (!data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1274) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1275) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1276) 	data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1277) 	mutex_init(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1278) 	platform_set_drvdata(pdev, data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1279) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1280) 	/* See if the uGuru is ready */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1281) 	if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1282) 		data->uguru_ready = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1283) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1284) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1285) 	 * Completely read the uGuru this has 2 purposes:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1286) 	 * - testread / see if one really is there.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1287) 	 * - make an in memory copy of all the uguru settings for future use.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1288) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1289) 	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1290) 			data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1291) 		goto abituguru_probe_error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1292) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1293) 	for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1294) 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1295) 				&data->bank1_value[i], 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1296) 				ABIT_UGURU_MAX_RETRIES) != 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1297) 			goto abituguru_probe_error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1298) 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1299) 				data->bank1_settings[i], 3,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1300) 				ABIT_UGURU_MAX_RETRIES) != 3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1301) 			goto abituguru_probe_error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1302) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1303) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1304) 	 * Note: We don't know how many bank2 sensors / pwms there really are,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1305) 	 * but in order to "detect" this we need to read the maximum amount
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1306) 	 * anyways. If we read sensors/pwms not there we'll just read crap
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1307) 	 * this can't hurt. We need the detection because we don't want
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1308) 	 * unwanted writes, which will hurt!
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1309) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1310) 	for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1311) 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1312) 				&data->bank2_value[i], 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1313) 				ABIT_UGURU_MAX_RETRIES) != 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1314) 			goto abituguru_probe_error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1315) 		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1316) 				data->bank2_settings[i], 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1317) 				ABIT_UGURU_MAX_RETRIES) != 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1318) 			goto abituguru_probe_error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1319) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1320) 	for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1321) 		if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1322) 				data->pwm_settings[i], 5,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1323) 				ABIT_UGURU_MAX_RETRIES) != 5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1324) 			goto abituguru_probe_error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1325) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1326) 	data->last_updated = jiffies;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1327) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1328) 	/* Detect sensor types and fill the sysfs attr for bank1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1329) 	sysfs_attr_i = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1330) 	sysfs_filename = data->sysfs_names;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1331) 	sysfs_names_free = ABITUGURU_SYSFS_NAMES_LENGTH;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1332) 	for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1333) 		res = abituguru_detect_bank1_sensor_type(data, probe_order[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1334) 		if (res < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1335) 			goto abituguru_probe_error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1336) 		if (res == ABIT_UGURU_NC)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1337) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1338) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1339) 		/* res 1 (temp) sensors have 7 sysfs entries, 0 (in) 9 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1340) 		for (j = 0; j < (res ? 7 : 9); j++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1341) 			used = snprintf(sysfs_filename, sysfs_names_free,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1342) 				abituguru_sysfs_bank1_templ[res][j].dev_attr.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1343) 				attr.name, data->bank1_sensors[res] + res)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1344) 				+ 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1345) 			data->sysfs_attr[sysfs_attr_i] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1346) 				abituguru_sysfs_bank1_templ[res][j];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1347) 			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1348) 				sysfs_filename;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1349) 			data->sysfs_attr[sysfs_attr_i].index = probe_order[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1350) 			sysfs_filename += used;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1351) 			sysfs_names_free -= used;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1352) 			sysfs_attr_i++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1353) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1354) 		data->bank1_max_value[probe_order[i]] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1355) 			abituguru_bank1_max_value[res];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1356) 		data->bank1_address[res][data->bank1_sensors[res]] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1357) 			probe_order[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1358) 		data->bank1_sensors[res]++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1359) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1360) 	/* Detect number of sensors and fill the sysfs attr for bank2 (fans) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1361) 	abituguru_detect_no_bank2_sensors(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1362) 	for (i = 0; i < data->bank2_sensors; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1363) 		for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_fan_templ); j++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1364) 			used = snprintf(sysfs_filename, sysfs_names_free,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1365) 				abituguru_sysfs_fan_templ[j].dev_attr.attr.name,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1366) 				i + 1) + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1367) 			data->sysfs_attr[sysfs_attr_i] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1368) 				abituguru_sysfs_fan_templ[j];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1369) 			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1370) 				sysfs_filename;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1371) 			data->sysfs_attr[sysfs_attr_i].index = i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1372) 			sysfs_filename += used;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1373) 			sysfs_names_free -= used;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1374) 			sysfs_attr_i++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1375) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1376) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1377) 	/* Detect number of sensors and fill the sysfs attr for pwms */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1378) 	abituguru_detect_no_pwms(data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1379) 	for (i = 0; i < data->pwms; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1380) 		for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_pwm_templ); j++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1381) 			used = snprintf(sysfs_filename, sysfs_names_free,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1382) 				abituguru_sysfs_pwm_templ[j].dev_attr.attr.name,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1383) 				i + 1) + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1384) 			data->sysfs_attr[sysfs_attr_i] =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1385) 				abituguru_sysfs_pwm_templ[j];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1386) 			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1387) 				sysfs_filename;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1388) 			data->sysfs_attr[sysfs_attr_i].index = i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1389) 			sysfs_filename += used;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1390) 			sysfs_names_free -= used;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1391) 			sysfs_attr_i++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1392) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1393) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1394) 	/* Fail safe check, this should never happen! */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1395) 	if (sysfs_names_free < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1396) 		pr_err("Fatal error ran out of space for sysfs attr names. %s %s",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1397) 		       never_happen, report_this);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1398) 		res = -ENAMETOOLONG;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1399) 		goto abituguru_probe_error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1400) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1401) 	pr_info("found Abit uGuru\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1402) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1403) 	/* Register sysfs hooks */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1404) 	for (i = 0; i < sysfs_attr_i; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1405) 		res = device_create_file(&pdev->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1406) 					 &data->sysfs_attr[i].dev_attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1407) 		if (res)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1408) 			goto abituguru_probe_error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1409) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1410) 	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1411) 		res = device_create_file(&pdev->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1412) 					 &abituguru_sysfs_attr[i].dev_attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1413) 		if (res)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1414) 			goto abituguru_probe_error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1415) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1416) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1417) 	data->hwmon_dev = hwmon_device_register(&pdev->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1418) 	if (!IS_ERR(data->hwmon_dev))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1419) 		return 0; /* success */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1420) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1421) 	res = PTR_ERR(data->hwmon_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1422) abituguru_probe_error:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1423) 	for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1424) 		device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1425) 	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1426) 		device_remove_file(&pdev->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1427) 			&abituguru_sysfs_attr[i].dev_attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1428) 	return res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1429) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1430) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1431) static int abituguru_remove(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1432) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1433) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1434) 	struct abituguru_data *data = platform_get_drvdata(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1435) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1436) 	hwmon_device_unregister(data->hwmon_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1437) 	for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1438) 		device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1439) 	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1440) 		device_remove_file(&pdev->dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1441) 			&abituguru_sysfs_attr[i].dev_attr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1442) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1443) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1444) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1445) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1446) static struct abituguru_data *abituguru_update_device(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1447) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1448) 	int i, err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1449) 	struct abituguru_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1450) 	/* fake a complete successful read if no update necessary. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1451) 	char success = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1452) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1453) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1454) 	if (time_after(jiffies, data->last_updated + HZ)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1455) 		success = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1456) 		err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1457) 				     data->alarms, 3, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1458) 		if (err != 3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1459) 			goto LEAVE_UPDATE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1460) 		for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1461) 			err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1462) 					     i, &data->bank1_value[i], 1, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1463) 			if (err != 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1464) 				goto LEAVE_UPDATE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1465) 			err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1466) 					     i, data->bank1_settings[i], 3, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1467) 			if (err != 3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1468) 				goto LEAVE_UPDATE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1469) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1470) 		for (i = 0; i < data->bank2_sensors; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1471) 			err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1472) 					     &data->bank2_value[i], 1, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1473) 			if (err != 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1474) 				goto LEAVE_UPDATE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1475) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1476) 		/* success! */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1477) 		success = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1478) 		data->update_timeouts = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1479) LEAVE_UPDATE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1480) 		/* handle timeout condition */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1481) 		if (!success && (err == -EBUSY || err >= 0)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1482) 			/* No overflow please */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1483) 			if (data->update_timeouts < 255u)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1484) 				data->update_timeouts++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1485) 			if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1486) 				ABIT_UGURU_DEBUG(3, "timeout exceeded, will "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1487) 					"try again next update\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1488) 				/* Just a timeout, fake a successful read */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1489) 				success = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1490) 			} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1491) 				ABIT_UGURU_DEBUG(1, "timeout exceeded %d "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1492) 					"times waiting for more input state\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1493) 					(int)data->update_timeouts);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1494) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1495) 		/* On success set last_updated */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1496) 		if (success)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1497) 			data->last_updated = jiffies;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1498) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1499) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1500) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1501) 	if (success)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1502) 		return data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1503) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1504) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1505) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1506) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1507) #ifdef CONFIG_PM_SLEEP
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1508) static int abituguru_suspend(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1509) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1510) 	struct abituguru_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1511) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1512) 	 * make sure all communications with the uguru are done and no new
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1513) 	 * ones are started
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1514) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1515) 	mutex_lock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1516) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1517) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1518) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1519) static int abituguru_resume(struct device *dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1520) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1521) 	struct abituguru_data *data = dev_get_drvdata(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1522) 	/* See if the uGuru is still ready */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1523) 	if (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1524) 		data->uguru_ready = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1525) 	mutex_unlock(&data->update_lock);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1526) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1527) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1528) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1529) static SIMPLE_DEV_PM_OPS(abituguru_pm, abituguru_suspend, abituguru_resume);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1530) #define ABIT_UGURU_PM	(&abituguru_pm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1531) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1532) #define ABIT_UGURU_PM	NULL
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1533) #endif /* CONFIG_PM */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1534) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1535) static struct platform_driver abituguru_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1536) 	.driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1537) 		.name	= ABIT_UGURU_NAME,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1538) 		.pm	= ABIT_UGURU_PM,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1539) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1540) 	.probe		= abituguru_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1541) 	.remove		= abituguru_remove,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1542) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1543) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1544) static int __init abituguru_detect(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1545) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1546) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1547) 	 * See if there is an uguru there. After a reboot uGuru will hold 0x00
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1548) 	 * at DATA and 0xAC, when this driver has already been loaded once
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1549) 	 * DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1550) 	 * scenario but some will hold 0x00.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1551) 	 * Some uGuru's initially hold 0x09 at DATA and will only hold 0x08
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1552) 	 * after reading CMD first, so CMD must be read first!
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1553) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1554) 	u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1555) 	u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1556) 	if (((data_val == 0x00) || (data_val == 0x08)) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1557) 	    ((cmd_val == 0x00) || (cmd_val == 0xAC)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1558) 		return ABIT_UGURU_BASE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1559) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1560) 	ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1561) 		"0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1562) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1563) 	if (force) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1564) 		pr_info("Assuming Abit uGuru is present because of \"force\" parameter\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1565) 		return ABIT_UGURU_BASE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1566) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1567) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1568) 	/* No uGuru found */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1569) 	return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1570) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1571) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1572) static struct platform_device *abituguru_pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1573) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1574) static int __init abituguru_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1575) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1576) 	int address, err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1577) 	struct resource res = { .flags = IORESOURCE_IO };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1578) 	const char *board_vendor = dmi_get_system_info(DMI_BOARD_VENDOR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1579) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1580) 	/* safety check, refuse to load on non Abit motherboards */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1581) 	if (!force && (!board_vendor ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1582) 			strcmp(board_vendor, "http://www.abit.com.tw/")))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1583) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1584) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1585) 	address = abituguru_detect();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1586) 	if (address < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1587) 		return address;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1588) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1589) 	err = platform_driver_register(&abituguru_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1590) 	if (err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1591) 		goto exit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1592) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1593) 	abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1594) 	if (!abituguru_pdev) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1595) 		pr_err("Device allocation failed\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1596) 		err = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1597) 		goto exit_driver_unregister;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1598) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1599) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1600) 	res.start = address;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1601) 	res.end = address + ABIT_UGURU_REGION_LENGTH - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1602) 	res.name = ABIT_UGURU_NAME;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1603) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1604) 	err = platform_device_add_resources(abituguru_pdev, &res, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1605) 	if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1606) 		pr_err("Device resource addition failed (%d)\n", err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1607) 		goto exit_device_put;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1608) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1609) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1610) 	err = platform_device_add(abituguru_pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1611) 	if (err) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1612) 		pr_err("Device addition failed (%d)\n", err);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1613) 		goto exit_device_put;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1614) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1615) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1616) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1617) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1618) exit_device_put:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1619) 	platform_device_put(abituguru_pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1620) exit_driver_unregister:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1621) 	platform_driver_unregister(&abituguru_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1622) exit:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1623) 	return err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1624) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1625) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1626) static void __exit abituguru_exit(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1627) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1628) 	platform_device_unregister(abituguru_pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1629) 	platform_driver_unregister(&abituguru_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1630) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1631) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1632) MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1633) MODULE_DESCRIPTION("Abit uGuru Sensor device");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1634) MODULE_LICENSE("GPL");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1635) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1636) module_init(abituguru_init);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1637) module_exit(abituguru_exit);