Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2015 Broadcom
*/
/**
* DOC: VC4 KMS
*
* This is the general code for implementing KMS mode setting that
* doesn't clearly associate with any of the other objects (plane,
* crtc, HDMI encoder).
*/
#include <linux/clk.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc.h>
#include <drm/drm_gem_framebuffer_helper.h>
#include <drm/drm_plane_helper.h>
#include <drm/drm_probe_helper.h>
#include <drm/drm_vblank.h>
#include "vc4_drv.h"
#include "vc4_regs.h"
#define HVS_NUM_CHANNELS 3
struct vc4_ctm_state {
<------>struct drm_private_state base;
<------>struct drm_color_ctm *ctm;
<------>int fifo;
};
static struct vc4_ctm_state *to_vc4_ctm_state(struct drm_private_state *priv)
{
<------>return container_of(priv, struct vc4_ctm_state, base);
}
struct vc4_hvs_state {
<------>struct drm_private_state base;
<------>unsigned int unassigned_channels;
};
static struct vc4_hvs_state *
to_vc4_hvs_state(struct drm_private_state *priv)
{
<------>return container_of(priv, struct vc4_hvs_state, base);
}
struct vc4_load_tracker_state {
<------>struct drm_private_state base;
<------>u64 hvs_load;
<------>u64 membus_load;
};
static struct vc4_load_tracker_state *
to_vc4_load_tracker_state(struct drm_private_state *priv)
{
<------>return container_of(priv, struct vc4_load_tracker_state, base);
}
static struct vc4_ctm_state *vc4_get_ctm_state(struct drm_atomic_state *state,
<------><------><------><------><------> struct drm_private_obj *manager)
{
<------>struct drm_device *dev = state->dev;
<------>struct vc4_dev *vc4 = to_vc4_dev(dev);
<------>struct drm_private_state *priv_state;
<------>int ret;
<------>ret = drm_modeset_lock(&vc4->ctm_state_lock, state->acquire_ctx);
<------>if (ret)
<------><------>return ERR_PTR(ret);
<------>priv_state = drm_atomic_get_private_obj_state(state, manager);
<------>if (IS_ERR(priv_state))
<------><------>return ERR_CAST(priv_state);
<------>return to_vc4_ctm_state(priv_state);
}
static struct drm_private_state *
vc4_ctm_duplicate_state(struct drm_private_obj *obj)
{
<------>struct vc4_ctm_state *state;
<------>state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
<------>if (!state)
<------><------>return NULL;
<------>__drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
<------>return &state->base;
}
static void vc4_ctm_destroy_state(struct drm_private_obj *obj,
<------><------><------><------> struct drm_private_state *state)
{
<------>struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(state);
<------>kfree(ctm_state);
}
static const struct drm_private_state_funcs vc4_ctm_state_funcs = {
<------>.atomic_duplicate_state = vc4_ctm_duplicate_state,
<------>.atomic_destroy_state = vc4_ctm_destroy_state,
};
static void vc4_ctm_obj_fini(struct drm_device *dev, void *unused)
{
<------>struct vc4_dev *vc4 = to_vc4_dev(dev);
<------>drm_atomic_private_obj_fini(&vc4->ctm_manager);
}
static int vc4_ctm_obj_init(struct vc4_dev *vc4)
{
<------>struct vc4_ctm_state *ctm_state;
<------>drm_modeset_lock_init(&vc4->ctm_state_lock);
<------>ctm_state = kzalloc(sizeof(*ctm_state), GFP_KERNEL);
<------>if (!ctm_state)
<------><------>return -ENOMEM;
<------>drm_atomic_private_obj_init(&vc4->base, &vc4->ctm_manager, &ctm_state->base,
<------><------><------><------> &vc4_ctm_state_funcs);
<------>return drmm_add_action_or_reset(&vc4->base, vc4_ctm_obj_fini, NULL);
}
/* Converts a DRM S31.32 value to the HW S0.9 format. */
static u16 vc4_ctm_s31_32_to_s0_9(u64 in)
{
<------>u16 r;
<------>/* Sign bit. */
<------>r = in & BIT_ULL(63) ? BIT(9) : 0;
<------>if ((in & GENMASK_ULL(62, 32)) > 0) {
<------><------>/* We have zero integer bits so we can only saturate here. */
<------><------>r |= GENMASK(8, 0);
<------>} else {
<------><------>/* Otherwise take the 9 most important fractional bits. */
<------><------>r |= (in >> 23) & GENMASK(8, 0);
<------>}
<------>return r;
}
static void
vc4_ctm_commit(struct vc4_dev *vc4, struct drm_atomic_state *state)
{
<------>struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(vc4->ctm_manager.state);
<------>struct drm_color_ctm *ctm = ctm_state->ctm;
<------>if (ctm_state->fifo) {
<------><------>HVS_WRITE(SCALER_OLEDCOEF2,
<------><------><------> VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[0]),
<------><------><------><------><------>SCALER_OLEDCOEF2_R_TO_R) |
<------><------><------> VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[3]),
<------><------><------><------><------>SCALER_OLEDCOEF2_R_TO_G) |
<------><------><------> VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[6]),
<------><------><------><------><------>SCALER_OLEDCOEF2_R_TO_B));
<------><------>HVS_WRITE(SCALER_OLEDCOEF1,
<------><------><------> VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[1]),
<------><------><------><------><------>SCALER_OLEDCOEF1_G_TO_R) |
<------><------><------> VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[4]),
<------><------><------><------><------>SCALER_OLEDCOEF1_G_TO_G) |
<------><------><------> VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[7]),
<------><------><------><------><------>SCALER_OLEDCOEF1_G_TO_B));
<------><------>HVS_WRITE(SCALER_OLEDCOEF0,
<------><------><------> VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[2]),
<------><------><------><------><------>SCALER_OLEDCOEF0_B_TO_R) |
<------><------><------> VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[5]),
<------><------><------><------><------>SCALER_OLEDCOEF0_B_TO_G) |
<------><------><------> VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[8]),
<------><------><------><------><------>SCALER_OLEDCOEF0_B_TO_B));
<------>}
<------>HVS_WRITE(SCALER_OLEDOFFS,
<------><------> VC4_SET_FIELD(ctm_state->fifo, SCALER_OLEDOFFS_DISPFIFO));
}
static struct vc4_hvs_state *
vc4_hvs_get_global_state(struct drm_atomic_state *state)
{
<------>struct vc4_dev *vc4 = to_vc4_dev(state->dev);
<------>struct drm_private_state *priv_state;
<------>priv_state = drm_atomic_get_private_obj_state(state, &vc4->hvs_channels);
<------>if (IS_ERR(priv_state))
<------><------>return ERR_CAST(priv_state);
<------>return to_vc4_hvs_state(priv_state);
}
static void vc4_hvs_pv_muxing_commit(struct vc4_dev *vc4,
<------><------><------><------> struct drm_atomic_state *state)
{
<------>struct drm_crtc_state *crtc_state;
<------>struct drm_crtc *crtc;
<------>unsigned int i;
<------>for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
<------><------>struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
<------><------>u32 dispctrl;
<------><------>u32 dsp3_mux;
<------><------>if (!crtc_state->active)
<------><------><------>continue;
<------><------>if (vc4_state->assigned_channel != 2)
<------><------><------>continue;
<------><------>/*
<------><------> * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
<------><------> * FIFO X'.
<------><------> * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
<------><------> *
<------><------> * DSP3 is connected to FIFO2 unless the transposer is
<------><------> * enabled. In this case, FIFO 2 is directly accessed by the
<------><------> * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
<------><------> * route.
<------><------> */
<------><------>if (vc4_state->feed_txp)
<------><------><------>dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
<------><------>else
<------><------><------>dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
<------><------>dispctrl = HVS_READ(SCALER_DISPCTRL) &
<------><------><------> ~SCALER_DISPCTRL_DSP3_MUX_MASK;
<------><------>HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
<------>}
}
static void vc5_hvs_pv_muxing_commit(struct vc4_dev *vc4,
<------><------><------><------> struct drm_atomic_state *state)
{
<------>struct drm_crtc_state *crtc_state;
<------>struct drm_crtc *crtc;
<------>unsigned char mux;
<------>unsigned int i;
<------>u32 reg;
<------>for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
<------><------>struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
<------><------>struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
<------><------>if (!vc4_state->update_muxing)
<------><------><------>continue;
<------><------>switch (vc4_crtc->data->hvs_output) {
<------><------>case 2:
<------><------><------>mux = (vc4_state->assigned_channel == 2) ? 0 : 1;
<------><------><------>reg = HVS_READ(SCALER_DISPECTRL);
<------><------><------>HVS_WRITE(SCALER_DISPECTRL,
<------><------><------><------> (reg & ~SCALER_DISPECTRL_DSP2_MUX_MASK) |
<------><------><------><------> VC4_SET_FIELD(mux, SCALER_DISPECTRL_DSP2_MUX));
<------><------><------>break;
<------><------>case 3:
<------><------><------>if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED)
<------><------><------><------>mux = 3;
<------><------><------>else
<------><------><------><------>mux = vc4_state->assigned_channel;
<------><------><------>reg = HVS_READ(SCALER_DISPCTRL);
<------><------><------>HVS_WRITE(SCALER_DISPCTRL,
<------><------><------><------> (reg & ~SCALER_DISPCTRL_DSP3_MUX_MASK) |
<------><------><------><------> VC4_SET_FIELD(mux, SCALER_DISPCTRL_DSP3_MUX));
<------><------><------>break;
<------><------>case 4:
<------><------><------>if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED)
<------><------><------><------>mux = 3;
<------><------><------>else
<------><------><------><------>mux = vc4_state->assigned_channel;
<------><------><------>reg = HVS_READ(SCALER_DISPEOLN);
<------><------><------>HVS_WRITE(SCALER_DISPEOLN,
<------><------><------><------> (reg & ~SCALER_DISPEOLN_DSP4_MUX_MASK) |
<------><------><------><------> VC4_SET_FIELD(mux, SCALER_DISPEOLN_DSP4_MUX));
<------><------><------>break;
<------><------>case 5:
<------><------><------>if (vc4_state->assigned_channel == VC4_HVS_CHANNEL_DISABLED)
<------><------><------><------>mux = 3;
<------><------><------>else
<------><------><------><------>mux = vc4_state->assigned_channel;
<------><------><------>reg = HVS_READ(SCALER_DISPDITHER);
<------><------><------>HVS_WRITE(SCALER_DISPDITHER,
<------><------><------><------> (reg & ~SCALER_DISPDITHER_DSP5_MUX_MASK) |
<------><------><------><------> VC4_SET_FIELD(mux, SCALER_DISPDITHER_DSP5_MUX));
<------><------><------>break;
<------><------>default:
<------><------><------>break;
<------><------>}
<------>}
}
static void
vc4_atomic_complete_commit(struct drm_atomic_state *state)
{
<------>struct drm_device *dev = state->dev;
<------>struct vc4_dev *vc4 = to_vc4_dev(dev);
<------>struct vc4_hvs *hvs = vc4->hvs;
<------>struct drm_crtc_state *new_crtc_state;
<------>struct drm_crtc *crtc;
<------>int i;
<------>for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
<------><------>struct vc4_crtc_state *vc4_crtc_state;
<------><------>if (!new_crtc_state->commit)
<------><------><------>continue;
<------><------>vc4_crtc_state = to_vc4_crtc_state(new_crtc_state);
<------><------>vc4_hvs_mask_underrun(dev, vc4_crtc_state->assigned_channel);
<------>}
<------>if (vc4->hvs->hvs5)
<------><------>clk_set_min_rate(hvs->core_clk, 500000000);
<------>drm_atomic_helper_wait_for_fences(dev, state, false);
<------>drm_atomic_helper_wait_for_dependencies(state);
<------>drm_atomic_helper_commit_modeset_disables(dev, state);
<------>vc4_ctm_commit(vc4, state);
<------>if (vc4->hvs->hvs5)
<------><------>vc5_hvs_pv_muxing_commit(vc4, state);
<------>else
<------><------>vc4_hvs_pv_muxing_commit(vc4, state);
<------>drm_atomic_helper_commit_planes(dev, state, 0);
<------>drm_atomic_helper_commit_modeset_enables(dev, state);
<------>drm_atomic_helper_fake_vblank(state);
<------>drm_atomic_helper_commit_hw_done(state);
<------>drm_atomic_helper_wait_for_flip_done(dev, state);
<------>drm_atomic_helper_cleanup_planes(dev, state);
<------>drm_atomic_helper_commit_cleanup_done(state);
<------>if (vc4->hvs->hvs5)
<------><------>clk_set_min_rate(hvs->core_clk, 0);
<------>drm_atomic_state_put(state);
<------>up(&vc4->async_modeset);
}
static void commit_work(struct work_struct *work)
{
<------>struct drm_atomic_state *state = container_of(work,
<------><------><------><------><------><------> struct drm_atomic_state,
<------><------><------><------><------><------> commit_work);
<------>vc4_atomic_complete_commit(state);
}
/**
* vc4_atomic_commit - commit validated state object
* @dev: DRM device
* @state: the driver state object
* @nonblock: nonblocking commit
*
* This function commits a with drm_atomic_helper_check() pre-validated state
* object. This can still fail when e.g. the framebuffer reservation fails. For
* now this doesn't implement asynchronous commits.
*
* RETURNS
* Zero for success or -errno.
*/
static int vc4_atomic_commit(struct drm_device *dev,
<------><------><------> struct drm_atomic_state *state,
<------><------><------> bool nonblock)
{
<------>struct vc4_dev *vc4 = to_vc4_dev(dev);
<------>int ret;
<------>if (state->async_update) {
<------><------>ret = down_interruptible(&vc4->async_modeset);
<------><------>if (ret)
<------><------><------>return ret;
<------><------>ret = drm_atomic_helper_prepare_planes(dev, state);
<------><------>if (ret) {
<------><------><------>up(&vc4->async_modeset);
<------><------><------>return ret;
<------><------>}
<------><------>drm_atomic_helper_async_commit(dev, state);
<------><------>drm_atomic_helper_cleanup_planes(dev, state);
<------><------>up(&vc4->async_modeset);
<------><------>return 0;
<------>}
<------>/* We know for sure we don't want an async update here. Set
<------> * state->legacy_cursor_update to false to prevent
<------> * drm_atomic_helper_setup_commit() from auto-completing
<------> * commit->flip_done.
<------> */
<------>state->legacy_cursor_update = false;
<------>ret = drm_atomic_helper_setup_commit(state, nonblock);
<------>if (ret)
<------><------>return ret;
<------>INIT_WORK(&state->commit_work, commit_work);
<------>ret = down_interruptible(&vc4->async_modeset);
<------>if (ret)
<------><------>return ret;
<------>ret = drm_atomic_helper_prepare_planes(dev, state);
<------>if (ret) {
<------><------>up(&vc4->async_modeset);
<------><------>return ret;
<------>}
<------>if (!nonblock) {
<------><------>ret = drm_atomic_helper_wait_for_fences(dev, state, true);
<------><------>if (ret) {
<------><------><------>drm_atomic_helper_cleanup_planes(dev, state);
<------><------><------>up(&vc4->async_modeset);
<------><------><------>return ret;
<------><------>}
<------>}
<------>/*
<------> * This is the point of no return - everything below never fails except
<------> * when the hw goes bonghits. Which means we can commit the new state on
<------> * the software side now.
<------> */
<------>BUG_ON(drm_atomic_helper_swap_state(state, false) < 0);
<------>/*
<------> * Everything below can be run asynchronously without the need to grab
<------> * any modeset locks at all under one condition: It must be guaranteed
<------> * that the asynchronous work has either been cancelled (if the driver
<------> * supports it, which at least requires that the framebuffers get
<------> * cleaned up with drm_atomic_helper_cleanup_planes()) or completed
<------> * before the new state gets committed on the software side with
<------> * drm_atomic_helper_swap_state().
<------> *
<------> * This scheme allows new atomic state updates to be prepared and
<------> * checked in parallel to the asynchronous completion of the previous
<------> * update. Which is important since compositors need to figure out the
<------> * composition of the next frame right after having submitted the
<------> * current layout.
<------> */
<------>drm_atomic_state_get(state);
<------>if (nonblock)
<------><------>queue_work(system_unbound_wq, &state->commit_work);
<------>else
<------><------>vc4_atomic_complete_commit(state);
<------>return 0;
}
static struct drm_framebuffer *vc4_fb_create(struct drm_device *dev,
<------><------><------><------><------> struct drm_file *file_priv,
<------><------><------><------><------> const struct drm_mode_fb_cmd2 *mode_cmd)
{
<------>struct drm_mode_fb_cmd2 mode_cmd_local;
<------>/* If the user didn't specify a modifier, use the
<------> * vc4_set_tiling_ioctl() state for the BO.
<------> */
<------>if (!(mode_cmd->flags & DRM_MODE_FB_MODIFIERS)) {
<------><------>struct drm_gem_object *gem_obj;
<------><------>struct vc4_bo *bo;
<------><------>gem_obj = drm_gem_object_lookup(file_priv,
<------><------><------><------><------><------>mode_cmd->handles[0]);
<------><------>if (!gem_obj) {
<------><------><------>DRM_DEBUG("Failed to look up GEM BO %d\n",
<------><------><------><------> mode_cmd->handles[0]);
<------><------><------>return ERR_PTR(-ENOENT);
<------><------>}
<------><------>bo = to_vc4_bo(gem_obj);
<------><------>mode_cmd_local = *mode_cmd;
<------><------>if (bo->t_format) {
<------><------><------>mode_cmd_local.modifier[0] =
<------><------><------><------>DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED;
<------><------>} else {
<------><------><------>mode_cmd_local.modifier[0] = DRM_FORMAT_MOD_NONE;
<------><------>}
<------><------>drm_gem_object_put(gem_obj);
<------><------>mode_cmd = &mode_cmd_local;
<------>}
<------>return drm_gem_fb_create(dev, file_priv, mode_cmd);
}
/* Our CTM has some peculiar limitations: we can only enable it for one CRTC
* at a time and the HW only supports S0.9 scalars. To account for the latter,
* we don't allow userland to set a CTM that we have no hope of approximating.
*/
static int
vc4_ctm_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
{
<------>struct vc4_dev *vc4 = to_vc4_dev(dev);
<------>struct vc4_ctm_state *ctm_state = NULL;
<------>struct drm_crtc *crtc;
<------>struct drm_crtc_state *old_crtc_state, *new_crtc_state;
<------>struct drm_color_ctm *ctm;
<------>int i;
<------>for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
<------><------>/* CTM is being disabled. */
<------><------>if (!new_crtc_state->ctm && old_crtc_state->ctm) {
<------><------><------>ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
<------><------><------>if (IS_ERR(ctm_state))
<------><------><------><------>return PTR_ERR(ctm_state);
<------><------><------>ctm_state->fifo = 0;
<------><------>}
<------>}
<------>for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
<------><------>if (new_crtc_state->ctm == old_crtc_state->ctm)
<------><------><------>continue;
<------><------>if (!ctm_state) {
<------><------><------>ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
<------><------><------>if (IS_ERR(ctm_state))
<------><------><------><------>return PTR_ERR(ctm_state);
<------><------>}
<------><------>/* CTM is being enabled or the matrix changed. */
<------><------>if (new_crtc_state->ctm) {
<------><------><------>struct vc4_crtc_state *vc4_crtc_state =
<------><------><------><------>to_vc4_crtc_state(new_crtc_state);
<------><------><------>/* fifo is 1-based since 0 disables CTM. */
<------><------><------>int fifo = vc4_crtc_state->assigned_channel + 1;
<------><------><------>/* Check userland isn't trying to turn on CTM for more
<------><------><------> * than one CRTC at a time.
<------><------><------> */
<------><------><------>if (ctm_state->fifo && ctm_state->fifo != fifo) {
<------><------><------><------>DRM_DEBUG_DRIVER("Too many CTM configured\n");
<------><------><------><------>return -EINVAL;
<------><------><------>}
<------><------><------>/* Check we can approximate the specified CTM.
<------><------><------> * We disallow scalars |c| > 1.0 since the HW has
<------><------><------> * no integer bits.
<------><------><------> */
<------><------><------>ctm = new_crtc_state->ctm->data;
<------><------><------>for (i = 0; i < ARRAY_SIZE(ctm->matrix); i++) {
<------><------><------><------>u64 val = ctm->matrix[i];
<------><------><------><------>val &= ~BIT_ULL(63);
<------><------><------><------>if (val > BIT_ULL(32))
<------><------><------><------><------>return -EINVAL;
<------><------><------>}
<------><------><------>ctm_state->fifo = fifo;
<------><------><------>ctm_state->ctm = ctm;
<------><------>}
<------>}
<------>return 0;
}
static int vc4_load_tracker_atomic_check(struct drm_atomic_state *state)
{
<------>struct drm_plane_state *old_plane_state, *new_plane_state;
<------>struct vc4_dev *vc4 = to_vc4_dev(state->dev);
<------>struct vc4_load_tracker_state *load_state;
<------>struct drm_private_state *priv_state;
<------>struct drm_plane *plane;
<------>int i;
<------>if (!vc4->load_tracker_available)
<------><------>return 0;
<------>priv_state = drm_atomic_get_private_obj_state(state,
<------><------><------><------><------><------> &vc4->load_tracker);
<------>if (IS_ERR(priv_state))
<------><------>return PTR_ERR(priv_state);
<------>load_state = to_vc4_load_tracker_state(priv_state);
<------>for_each_oldnew_plane_in_state(state, plane, old_plane_state,
<------><------><------><------> new_plane_state, i) {
<------><------>struct vc4_plane_state *vc4_plane_state;
<------><------>if (old_plane_state->fb && old_plane_state->crtc) {
<------><------><------>vc4_plane_state = to_vc4_plane_state(old_plane_state);
<------><------><------>load_state->membus_load -= vc4_plane_state->membus_load;
<------><------><------>load_state->hvs_load -= vc4_plane_state->hvs_load;
<------><------>}
<------><------>if (new_plane_state->fb && new_plane_state->crtc) {
<------><------><------>vc4_plane_state = to_vc4_plane_state(new_plane_state);
<------><------><------>load_state->membus_load += vc4_plane_state->membus_load;
<------><------><------>load_state->hvs_load += vc4_plane_state->hvs_load;
<------><------>}
<------>}
<------>/* Don't check the load when the tracker is disabled. */
<------>if (!vc4->load_tracker_enabled)
<------><------>return 0;
<------>/* The absolute limit is 2Gbyte/sec, but let's take a margin to let
<------> * the system work when other blocks are accessing the memory.
<------> */
<------>if (load_state->membus_load > SZ_1G + SZ_512M)
<------><------>return -ENOSPC;
<------>/* HVS clock is supposed to run @ 250Mhz, let's take a margin and
<------> * consider the maximum number of cycles is 240M.
<------> */
<------>if (load_state->hvs_load > 240000000ULL)
<------><------>return -ENOSPC;
<------>return 0;
}
static struct drm_private_state *
vc4_load_tracker_duplicate_state(struct drm_private_obj *obj)
{
<------>struct vc4_load_tracker_state *state;
<------>state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
<------>if (!state)
<------><------>return NULL;
<------>__drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
<------>return &state->base;
}
static void vc4_load_tracker_destroy_state(struct drm_private_obj *obj,
<------><------><------><------><------> struct drm_private_state *state)
{
<------>struct vc4_load_tracker_state *load_state;
<------>load_state = to_vc4_load_tracker_state(state);
<------>kfree(load_state);
}
static const struct drm_private_state_funcs vc4_load_tracker_state_funcs = {
<------>.atomic_duplicate_state = vc4_load_tracker_duplicate_state,
<------>.atomic_destroy_state = vc4_load_tracker_destroy_state,
};
static void vc4_load_tracker_obj_fini(struct drm_device *dev, void *unused)
{
<------>struct vc4_dev *vc4 = to_vc4_dev(dev);
<------>if (!vc4->load_tracker_available)
<------><------>return;
<------>drm_atomic_private_obj_fini(&vc4->load_tracker);
}
static int vc4_load_tracker_obj_init(struct vc4_dev *vc4)
{
<------>struct vc4_load_tracker_state *load_state;
<------>if (!vc4->load_tracker_available)
<------><------>return 0;
<------>load_state = kzalloc(sizeof(*load_state), GFP_KERNEL);
<------>if (!load_state)
<------><------>return -ENOMEM;
<------>drm_atomic_private_obj_init(&vc4->base, &vc4->load_tracker,
<------><------><------><------> &load_state->base,
<------><------><------><------> &vc4_load_tracker_state_funcs);
<------>return drmm_add_action_or_reset(&vc4->base, vc4_load_tracker_obj_fini, NULL);
}
static struct drm_private_state *
vc4_hvs_channels_duplicate_state(struct drm_private_obj *obj)
{
<------>struct vc4_hvs_state *old_state = to_vc4_hvs_state(obj->state);
<------>struct vc4_hvs_state *state;
<------>state = kzalloc(sizeof(*state), GFP_KERNEL);
<------>if (!state)
<------><------>return NULL;
<------>__drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
<------>state->unassigned_channels = old_state->unassigned_channels;
<------>return &state->base;
}
static void vc4_hvs_channels_destroy_state(struct drm_private_obj *obj,
<------><------><------><------><------> struct drm_private_state *state)
{
<------>struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state);
<------>kfree(hvs_state);
}
static const struct drm_private_state_funcs vc4_hvs_state_funcs = {
<------>.atomic_duplicate_state = vc4_hvs_channels_duplicate_state,
<------>.atomic_destroy_state = vc4_hvs_channels_destroy_state,
};
static void vc4_hvs_channels_obj_fini(struct drm_device *dev, void *unused)
{
<------>struct vc4_dev *vc4 = to_vc4_dev(dev);
<------>drm_atomic_private_obj_fini(&vc4->hvs_channels);
}
static int vc4_hvs_channels_obj_init(struct vc4_dev *vc4)
{
<------>struct vc4_hvs_state *state;
<------>state = kzalloc(sizeof(*state), GFP_KERNEL);
<------>if (!state)
<------><------>return -ENOMEM;
<------>state->unassigned_channels = GENMASK(HVS_NUM_CHANNELS - 1, 0);
<------>drm_atomic_private_obj_init(&vc4->base, &vc4->hvs_channels,
<------><------><------><------> &state->base,
<------><------><------><------> &vc4_hvs_state_funcs);
<------>return drmm_add_action_or_reset(&vc4->base, vc4_hvs_channels_obj_fini, NULL);
}
/*
* The BCM2711 HVS has up to 7 outputs connected to the pixelvalves and
* the TXP (and therefore all the CRTCs found on that platform).
*
* The naive (and our initial) implementation would just iterate over
* all the active CRTCs, try to find a suitable FIFO, and then remove it
* from the pool of available FIFOs. However, there are a few corner
* cases that need to be considered:
*
* - When running in a dual-display setup (so with two CRTCs involved),
* we can update the state of a single CRTC (for example by changing
* its mode using xrandr under X11) without affecting the other. In
* this case, the other CRTC wouldn't be in the state at all, so we
* need to consider all the running CRTCs in the DRM device to assign
* a FIFO, not just the one in the state.
*
* - To fix the above, we can't use drm_atomic_get_crtc_state on all
* enabled CRTCs to pull their CRTC state into the global state, since
* a page flip would start considering their vblank to complete. Since
* we don't have a guarantee that they are actually active, that
* vblank might never happen, and shouldn't even be considered if we
* want to do a page flip on a single CRTC. That can be tested by
* doing a modetest -v first on HDMI1 and then on HDMI0.
*
* - Since we need the pixelvalve to be disabled and enabled back when
* the FIFO is changed, we should keep the FIFO assigned for as long
* as the CRTC is enabled, only considering it free again once that
* CRTC has been disabled. This can be tested by booting X11 on a
* single display, and changing the resolution down and then back up.
*/
static int vc4_pv_muxing_atomic_check(struct drm_device *dev,
<------><------><------><------> struct drm_atomic_state *state)
{
<------>struct vc4_hvs_state *hvs_new_state;
<------>struct drm_crtc_state *old_crtc_state, *new_crtc_state;
<------>struct drm_crtc *crtc;
<------>unsigned int i;
<------>hvs_new_state = vc4_hvs_get_global_state(state);
<------>if (!hvs_new_state)
<------><------>return -EINVAL;
<------>for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
<------><------>struct vc4_crtc_state *old_vc4_crtc_state =
<------><------><------>to_vc4_crtc_state(old_crtc_state);
<------><------>struct vc4_crtc_state *new_vc4_crtc_state =
<------><------><------>to_vc4_crtc_state(new_crtc_state);
<------><------>struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
<------><------>unsigned int matching_channels;
<------><------>/* Nothing to do here, let's skip it */
<------><------>if (old_crtc_state->enable == new_crtc_state->enable)
<------><------><------>continue;
<------><------>/* Muxing will need to be modified, mark it as such */
<------><------>new_vc4_crtc_state->update_muxing = true;
<------><------>/* If we're disabling our CRTC, we put back our channel */
<------><------>if (!new_crtc_state->enable) {
<------><------><------>hvs_new_state->unassigned_channels |= BIT(old_vc4_crtc_state->assigned_channel);
<------><------><------>new_vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
<------><------><------>continue;
<------><------>}
<------><------>/*
<------><------> * The problem we have to solve here is that we have
<------><------> * up to 7 encoders, connected to up to 6 CRTCs.
<------><------> *
<------><------> * Those CRTCs, depending on the instance, can be
<------><------> * routed to 1, 2 or 3 HVS FIFOs, and we need to set
<------><------> * the change the muxing between FIFOs and outputs in
<------><------> * the HVS accordingly.
<------><------> *
<------><------> * It would be pretty hard to come up with an
<------><------> * algorithm that would generically solve
<------><------> * this. However, the current routing trees we support
<------><------> * allow us to simplify a bit the problem.
<------><------> *
<------><------> * Indeed, with the current supported layouts, if we
<------><------> * try to assign in the ascending crtc index order the
<------><------> * FIFOs, we can't fall into the situation where an
<------><------> * earlier CRTC that had multiple routes is assigned
<------><------> * one that was the only option for a later CRTC.
<------><------> *
<------><------> * If the layout changes and doesn't give us that in
<------><------> * the future, we will need to have something smarter,
<------><------> * but it works so far.
<------><------> */
<------><------>matching_channels = hvs_new_state->unassigned_channels & vc4_crtc->data->hvs_available_channels;
<------><------>if (matching_channels) {
<------><------><------>unsigned int channel = ffs(matching_channels) - 1;
<------><------><------>new_vc4_crtc_state->assigned_channel = channel;
<------><------><------>hvs_new_state->unassigned_channels &= ~BIT(channel);
<------><------>} else {
<------><------><------>return -EINVAL;
<------><------>}
<------>}
<------>return 0;
}
static int
vc4_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
{
<------>int ret;
<------>ret = vc4_pv_muxing_atomic_check(dev, state);
<------>if (ret)
<------><------>return ret;
<------>ret = vc4_ctm_atomic_check(dev, state);
<------>if (ret < 0)
<------><------>return ret;
<------>ret = drm_atomic_helper_check(dev, state);
<------>if (ret)
<------><------>return ret;
<------>return vc4_load_tracker_atomic_check(state);
}
static const struct drm_mode_config_funcs vc4_mode_funcs = {
<------>.atomic_check = vc4_atomic_check,
<------>.atomic_commit = vc4_atomic_commit,
<------>.fb_create = vc4_fb_create,
};
int vc4_kms_load(struct drm_device *dev)
{
<------>struct vc4_dev *vc4 = to_vc4_dev(dev);
<------>bool is_vc5 = of_device_is_compatible(dev->dev->of_node,
<------><------><------><------><------> "brcm,bcm2711-vc5");
<------>int ret;
<------>if (!is_vc5) {
<------><------>vc4->load_tracker_available = true;
<------><------>/* Start with the load tracker enabled. Can be
<------><------> * disabled through the debugfs load_tracker file.
<------><------> */
<------><------>vc4->load_tracker_enabled = true;
<------>}
<------>sema_init(&vc4->async_modeset, 1);
<------>/* Set support for vblank irq fast disable, before drm_vblank_init() */
<------>dev->vblank_disable_immediate = true;
<------>dev->irq_enabled = true;
<------>ret = drm_vblank_init(dev, dev->mode_config.num_crtc);
<------>if (ret < 0) {
<------><------>dev_err(dev->dev, "failed to initialize vblank\n");
<------><------>return ret;
<------>}
<------>if (is_vc5) {
<------><------>dev->mode_config.max_width = 7680;
<------><------>dev->mode_config.max_height = 7680;
<------>} else {
<------><------>dev->mode_config.max_width = 2048;
<------><------>dev->mode_config.max_height = 2048;
<------>}
<------>dev->mode_config.funcs = &vc4_mode_funcs;
<------>dev->mode_config.preferred_depth = 24;
<------>dev->mode_config.async_page_flip = true;
<------>dev->mode_config.allow_fb_modifiers = true;
<------>ret = vc4_ctm_obj_init(vc4);
<------>if (ret)
<------><------>return ret;
<------>ret = vc4_load_tracker_obj_init(vc4);
<------>if (ret)
<------><------>return ret;
<------>ret = vc4_hvs_channels_obj_init(vc4);
<------>if (ret)
<------><------>return ret;
<------>drm_mode_config_reset(dev);
<------>drm_kms_helper_poll_init(dev);
<------>return 0;
}