Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
/*
* SPDX-License-Identifier: MIT
*
* Copyright © 2012-2014 Intel Corporation
*/
#include <linux/mmu_context.h>
#include <linux/mmu_notifier.h>
#include <linux/mempolicy.h>
#include <linux/swap.h>
#include <linux/sched/mm.h>
#include "i915_drv.h"
#include "i915_gem_ioctls.h"
#include "i915_gem_object.h"
#include "i915_scatterlist.h"
struct i915_mm_struct {
<------>struct mm_struct *mm;
<------>struct drm_i915_private *i915;
<------>struct i915_mmu_notifier *mn;
<------>struct hlist_node node;
<------>struct kref kref;
<------>struct rcu_work work;
};
#if defined(CONFIG_MMU_NOTIFIER)
#include <linux/interval_tree.h>
struct i915_mmu_notifier {
<------>spinlock_t lock;
<------>struct hlist_node node;
<------>struct mmu_notifier mn;
<------>struct rb_root_cached objects;
<------>struct i915_mm_struct *mm;
};
struct i915_mmu_object {
<------>struct i915_mmu_notifier *mn;
<------>struct drm_i915_gem_object *obj;
<------>struct interval_tree_node it;
};
static void add_object(struct i915_mmu_object *mo)
{
<------>GEM_BUG_ON(!RB_EMPTY_NODE(&mo->it.rb));
<------>interval_tree_insert(&mo->it, &mo->mn->objects);
}
static void del_object(struct i915_mmu_object *mo)
{
<------>if (RB_EMPTY_NODE(&mo->it.rb))
<------><------>return;
<------>interval_tree_remove(&mo->it, &mo->mn->objects);
<------>RB_CLEAR_NODE(&mo->it.rb);
}
static void
__i915_gem_userptr_set_active(struct drm_i915_gem_object *obj, bool value)
{
<------>struct i915_mmu_object *mo = obj->userptr.mmu_object;
<------>/*
<------> * During mm_invalidate_range we need to cancel any userptr that
<------> * overlaps the range being invalidated. Doing so requires the
<------> * struct_mutex, and that risks recursion. In order to cause
<------> * recursion, the user must alias the userptr address space with
<------> * a GTT mmapping (possible with a MAP_FIXED) - then when we have
<------> * to invalidate that mmaping, mm_invalidate_range is called with
<------> * the userptr address *and* the struct_mutex held. To prevent that
<------> * we set a flag under the i915_mmu_notifier spinlock to indicate
<------> * whether this object is valid.
<------> */
<------>if (!mo)
<------><------>return;
<------>spin_lock(&mo->mn->lock);
<------>if (value)
<------><------>add_object(mo);
<------>else
<------><------>del_object(mo);
<------>spin_unlock(&mo->mn->lock);
}
static int
userptr_mn_invalidate_range_start(struct mmu_notifier *_mn,
<------><------><------><------> const struct mmu_notifier_range *range)
{
<------>struct i915_mmu_notifier *mn =
<------><------>container_of(_mn, struct i915_mmu_notifier, mn);
<------>struct interval_tree_node *it;
<------>unsigned long end;
<------>int ret = 0;
<------>if (RB_EMPTY_ROOT(&mn->objects.rb_root))
<------><------>return 0;
<------>/* interval ranges are inclusive, but invalidate range is exclusive */
<------>end = range->end - 1;
<------>spin_lock(&mn->lock);
<------>it = interval_tree_iter_first(&mn->objects, range->start, end);
<------>while (it) {
<------><------>struct drm_i915_gem_object *obj;
<------><------>if (!mmu_notifier_range_blockable(range)) {
<------><------><------>ret = -EAGAIN;
<------><------><------>break;
<------><------>}
<------><------>/*
<------><------> * The mmu_object is released late when destroying the
<------><------> * GEM object so it is entirely possible to gain a
<------><------> * reference on an object in the process of being freed
<------><------> * since our serialisation is via the spinlock and not
<------><------> * the struct_mutex - and consequently use it after it
<------><------> * is freed and then double free it. To prevent that
<------><------> * use-after-free we only acquire a reference on the
<------><------> * object if it is not in the process of being destroyed.
<------><------> */
<------><------>obj = container_of(it, struct i915_mmu_object, it)->obj;
<------><------>if (!kref_get_unless_zero(&obj->base.refcount)) {
<------><------><------>it = interval_tree_iter_next(it, range->start, end);
<------><------><------>continue;
<------><------>}
<------><------>spin_unlock(&mn->lock);
<------><------>ret = i915_gem_object_unbind(obj,
<------><------><------><------><------> I915_GEM_OBJECT_UNBIND_ACTIVE |
<------><------><------><------><------> I915_GEM_OBJECT_UNBIND_BARRIER);
<------><------>if (ret == 0)
<------><------><------>ret = __i915_gem_object_put_pages(obj);
<------><------>i915_gem_object_put(obj);
<------><------>if (ret)
<------><------><------>return ret;
<------><------>spin_lock(&mn->lock);
<------><------>/*
<------><------> * As we do not (yet) protect the mmu from concurrent insertion
<------><------> * over this range, there is no guarantee that this search will
<------><------> * terminate given a pathologic workload.
<------><------> */
<------><------>it = interval_tree_iter_first(&mn->objects, range->start, end);
<------>}
<------>spin_unlock(&mn->lock);
<------>return ret;
}
static const struct mmu_notifier_ops i915_gem_userptr_notifier = {
<------>.invalidate_range_start = userptr_mn_invalidate_range_start,
};
static struct i915_mmu_notifier *
i915_mmu_notifier_create(struct i915_mm_struct *mm)
{
<------>struct i915_mmu_notifier *mn;
<------>mn = kmalloc(sizeof(*mn), GFP_KERNEL);
<------>if (mn == NULL)
<------><------>return ERR_PTR(-ENOMEM);
<------>spin_lock_init(&mn->lock);
<------>mn->mn.ops = &i915_gem_userptr_notifier;
<------>mn->objects = RB_ROOT_CACHED;
<------>mn->mm = mm;
<------>return mn;
}
static void
i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
{
<------>struct i915_mmu_object *mo;
<------>mo = fetch_and_zero(&obj->userptr.mmu_object);
<------>if (!mo)
<------><------>return;
<------>spin_lock(&mo->mn->lock);
<------>del_object(mo);
<------>spin_unlock(&mo->mn->lock);
<------>kfree(mo);
}
static struct i915_mmu_notifier *
i915_mmu_notifier_find(struct i915_mm_struct *mm)
{
<------>struct i915_mmu_notifier *mn, *old;
<------>int err;
<------>mn = READ_ONCE(mm->mn);
<------>if (likely(mn))
<------><------>return mn;
<------>mn = i915_mmu_notifier_create(mm);
<------>if (IS_ERR(mn))
<------><------>return mn;
<------>err = mmu_notifier_register(&mn->mn, mm->mm);
<------>if (err) {
<------><------>kfree(mn);
<------><------>return ERR_PTR(err);
<------>}
<------>old = cmpxchg(&mm->mn, NULL, mn);
<------>if (old) {
<------><------>mmu_notifier_unregister(&mn->mn, mm->mm);
<------><------>kfree(mn);
<------><------>mn = old;
<------>}
<------>return mn;
}
static int
i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
<------><------><------><------> unsigned flags)
{
<------>struct i915_mmu_notifier *mn;
<------>struct i915_mmu_object *mo;
<------>if (flags & I915_USERPTR_UNSYNCHRONIZED)
<------><------>return capable(CAP_SYS_ADMIN) ? 0 : -EPERM;
<------>if (GEM_WARN_ON(!obj->userptr.mm))
<------><------>return -EINVAL;
<------>mn = i915_mmu_notifier_find(obj->userptr.mm);
<------>if (IS_ERR(mn))
<------><------>return PTR_ERR(mn);
<------>mo = kzalloc(sizeof(*mo), GFP_KERNEL);
<------>if (!mo)
<------><------>return -ENOMEM;
<------>mo->mn = mn;
<------>mo->obj = obj;
<------>mo->it.start = obj->userptr.ptr;
<------>mo->it.last = obj->userptr.ptr + obj->base.size - 1;
<------>RB_CLEAR_NODE(&mo->it.rb);
<------>obj->userptr.mmu_object = mo;
<------>return 0;
}
static void
i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
<------><------> struct mm_struct *mm)
{
<------>if (mn == NULL)
<------><------>return;
<------>mmu_notifier_unregister(&mn->mn, mm);
<------>kfree(mn);
}
#else
static void
__i915_gem_userptr_set_active(struct drm_i915_gem_object *obj, bool value)
{
}
static void
i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
{
}
static int
i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
<------><------><------><------> unsigned flags)
{
<------>if ((flags & I915_USERPTR_UNSYNCHRONIZED) == 0)
<------><------>return -ENODEV;
<------>if (!capable(CAP_SYS_ADMIN))
<------><------>return -EPERM;
<------>return 0;
}
static void
i915_mmu_notifier_free(struct i915_mmu_notifier *mn,
<------><------> struct mm_struct *mm)
{
}
#endif
static struct i915_mm_struct *
__i915_mm_struct_find(struct drm_i915_private *i915, struct mm_struct *real)
{
<------>struct i915_mm_struct *it, *mm = NULL;
<------>rcu_read_lock();
<------>hash_for_each_possible_rcu(i915->mm_structs,
<------><------><------><------> it, node,
<------><------><------><------> (unsigned long)real)
<------><------>if (it->mm == real && kref_get_unless_zero(&it->kref)) {
<------><------><------>mm = it;
<------><------><------>break;
<------><------>}
<------>rcu_read_unlock();
<------>return mm;
}
static int
i915_gem_userptr_init__mm_struct(struct drm_i915_gem_object *obj)
{
<------>struct drm_i915_private *i915 = to_i915(obj->base.dev);
<------>struct i915_mm_struct *mm, *new;
<------>int ret = 0;
<------>/* During release of the GEM object we hold the struct_mutex. This
<------> * precludes us from calling mmput() at that time as that may be
<------> * the last reference and so call exit_mmap(). exit_mmap() will
<------> * attempt to reap the vma, and if we were holding a GTT mmap
<------> * would then call drm_gem_vm_close() and attempt to reacquire
<------> * the struct mutex. So in order to avoid that recursion, we have
<------> * to defer releasing the mm reference until after we drop the
<------> * struct_mutex, i.e. we need to schedule a worker to do the clean
<------> * up.
<------> */
<------>mm = __i915_mm_struct_find(i915, current->mm);
<------>if (mm)
<------><------>goto out;
<------>new = kmalloc(sizeof(*mm), GFP_KERNEL);
<------>if (!new)
<------><------>return -ENOMEM;
<------>kref_init(&new->kref);
<------>new->i915 = to_i915(obj->base.dev);
<------>new->mm = current->mm;
<------>new->mn = NULL;
<------>spin_lock(&i915->mm_lock);
<------>mm = __i915_mm_struct_find(i915, current->mm);
<------>if (!mm) {
<------><------>hash_add_rcu(i915->mm_structs,
<------><------><------> &new->node,
<------><------><------> (unsigned long)new->mm);
<------><------>mmgrab(current->mm);
<------><------>mm = new;
<------>}
<------>spin_unlock(&i915->mm_lock);
<------>if (mm != new)
<------><------>kfree(new);
out:
<------>obj->userptr.mm = mm;
<------>return ret;
}
static void
__i915_mm_struct_free__worker(struct work_struct *work)
{
<------>struct i915_mm_struct *mm = container_of(work, typeof(*mm), work.work);
<------>i915_mmu_notifier_free(mm->mn, mm->mm);
<------>mmdrop(mm->mm);
<------>kfree(mm);
}
static void
__i915_mm_struct_free(struct kref *kref)
{
<------>struct i915_mm_struct *mm = container_of(kref, typeof(*mm), kref);
<------>spin_lock(&mm->i915->mm_lock);
<------>hash_del_rcu(&mm->node);
<------>spin_unlock(&mm->i915->mm_lock);
<------>INIT_RCU_WORK(&mm->work, __i915_mm_struct_free__worker);
<------>queue_rcu_work(system_wq, &mm->work);
}
static void
i915_gem_userptr_release__mm_struct(struct drm_i915_gem_object *obj)
{
<------>if (obj->userptr.mm == NULL)
<------><------>return;
<------>kref_put(&obj->userptr.mm->kref, __i915_mm_struct_free);
<------>obj->userptr.mm = NULL;
}
struct get_pages_work {
<------>struct work_struct work;
<------>struct drm_i915_gem_object *obj;
<------>struct task_struct *task;
};
static struct sg_table *
__i915_gem_userptr_alloc_pages(struct drm_i915_gem_object *obj,
<------><------><------> struct page **pvec, unsigned long num_pages)
{
<------>unsigned int max_segment = i915_sg_segment_size();
<------>struct sg_table *st;
<------>unsigned int sg_page_sizes;
<------>struct scatterlist *sg;
<------>int ret;
<------>st = kmalloc(sizeof(*st), GFP_KERNEL);
<------>if (!st)
<------><------>return ERR_PTR(-ENOMEM);
alloc_table:
<------>sg = __sg_alloc_table_from_pages(st, pvec, num_pages, 0,
<------><------><------><------><------> num_pages << PAGE_SHIFT, max_segment,
<------><------><------><------><------> NULL, 0, GFP_KERNEL);
<------>if (IS_ERR(sg)) {
<------><------>kfree(st);
<------><------>return ERR_CAST(sg);
<------>}
<------>ret = i915_gem_gtt_prepare_pages(obj, st);
<------>if (ret) {
<------><------>sg_free_table(st);
<------><------>if (max_segment > PAGE_SIZE) {
<------><------><------>max_segment = PAGE_SIZE;
<------><------><------>goto alloc_table;
<------><------>}
<------><------>kfree(st);
<------><------>return ERR_PTR(ret);
<------>}
<------>sg_page_sizes = i915_sg_page_sizes(st->sgl);
<------>__i915_gem_object_set_pages(obj, st, sg_page_sizes);
<------>return st;
}
static void
__i915_gem_userptr_get_pages_worker(struct work_struct *_work)
{
<------>struct get_pages_work *work = container_of(_work, typeof(*work), work);
<------>struct drm_i915_gem_object *obj = work->obj;
<------>const unsigned long npages = obj->base.size >> PAGE_SHIFT;
<------>unsigned long pinned;
<------>struct page **pvec;
<------>int ret;
<------>ret = -ENOMEM;
<------>pinned = 0;
<------>pvec = kvmalloc_array(npages, sizeof(struct page *), GFP_KERNEL);
<------>if (pvec != NULL) {
<------><------>struct mm_struct *mm = obj->userptr.mm->mm;
<------><------>unsigned int flags = 0;
<------><------>int locked = 0;
<------><------>if (!i915_gem_object_is_readonly(obj))
<------><------><------>flags |= FOLL_WRITE;
<------><------>ret = -EFAULT;
<------><------>if (mmget_not_zero(mm)) {
<------><------><------>while (pinned < npages) {
<------><------><------><------>if (!locked) {
<------><------><------><------><------>mmap_read_lock(mm);
<------><------><------><------><------>locked = 1;
<------><------><------><------>}
<------><------><------><------>ret = pin_user_pages_remote
<------><------><------><------><------>(mm,
<------><------><------><------><------> obj->userptr.ptr + pinned * PAGE_SIZE,
<------><------><------><------><------> npages - pinned,
<------><------><------><------><------> flags,
<------><------><------><------><------> pvec + pinned, NULL, &locked);
<------><------><------><------>if (ret < 0)
<------><------><------><------><------>break;
<------><------><------><------>pinned += ret;
<------><------><------>}
<------><------><------>if (locked)
<------><------><------><------>mmap_read_unlock(mm);
<------><------><------>mmput(mm);
<------><------>}
<------>}
<------>mutex_lock_nested(&obj->mm.lock, I915_MM_GET_PAGES);
<------>if (obj->userptr.work == &work->work) {
<------><------>struct sg_table *pages = ERR_PTR(ret);
<------><------>if (pinned == npages) {
<------><------><------>pages = __i915_gem_userptr_alloc_pages(obj, pvec,
<------><------><------><------><------><------><------> npages);
<------><------><------>if (!IS_ERR(pages)) {
<------><------><------><------>pinned = 0;
<------><------><------><------>pages = NULL;
<------><------><------>}
<------><------>}
<------><------>obj->userptr.work = ERR_CAST(pages);
<------><------>if (IS_ERR(pages))
<------><------><------>__i915_gem_userptr_set_active(obj, false);
<------>}
<------>mutex_unlock(&obj->mm.lock);
<------>unpin_user_pages(pvec, pinned);
<------>kvfree(pvec);
<------>i915_gem_object_put(obj);
<------>put_task_struct(work->task);
<------>kfree(work);
}
static struct sg_table *
__i915_gem_userptr_get_pages_schedule(struct drm_i915_gem_object *obj)
{
<------>struct get_pages_work *work;
<------>/* Spawn a worker so that we can acquire the
<------> * user pages without holding our mutex. Access
<------> * to the user pages requires mmap_lock, and we have
<------> * a strict lock ordering of mmap_lock, struct_mutex -
<------> * we already hold struct_mutex here and so cannot
<------> * call gup without encountering a lock inversion.
<------> *
<------> * Userspace will keep on repeating the operation
<------> * (thanks to EAGAIN) until either we hit the fast
<------> * path or the worker completes. If the worker is
<------> * cancelled or superseded, the task is still run
<------> * but the results ignored. (This leads to
<------> * complications that we may have a stray object
<------> * refcount that we need to be wary of when
<------> * checking for existing objects during creation.)
<------> * If the worker encounters an error, it reports
<------> * that error back to this function through
<------> * obj->userptr.work = ERR_PTR.
<------> */
<------>work = kmalloc(sizeof(*work), GFP_KERNEL);
<------>if (work == NULL)
<------><------>return ERR_PTR(-ENOMEM);
<------>obj->userptr.work = &work->work;
<------>work->obj = i915_gem_object_get(obj);
<------>work->task = current;
<------>get_task_struct(work->task);
<------>INIT_WORK(&work->work, __i915_gem_userptr_get_pages_worker);
<------>queue_work(to_i915(obj->base.dev)->mm.userptr_wq, &work->work);
<------>return ERR_PTR(-EAGAIN);
}
static int i915_gem_userptr_get_pages(struct drm_i915_gem_object *obj)
{
<------>const unsigned long num_pages = obj->base.size >> PAGE_SHIFT;
<------>struct mm_struct *mm = obj->userptr.mm->mm;
<------>struct page **pvec;
<------>struct sg_table *pages;
<------>bool active;
<------>int pinned;
<------>unsigned int gup_flags = 0;
<------>/* If userspace should engineer that these pages are replaced in
<------> * the vma between us binding this page into the GTT and completion
<------> * of rendering... Their loss. If they change the mapping of their
<------> * pages they need to create a new bo to point to the new vma.
<------> *
<------> * However, that still leaves open the possibility of the vma
<------> * being copied upon fork. Which falls under the same userspace
<------> * synchronisation issue as a regular bo, except that this time
<------> * the process may not be expecting that a particular piece of
<------> * memory is tied to the GPU.
<------> *
<------> * Fortunately, we can hook into the mmu_notifier in order to
<------> * discard the page references prior to anything nasty happening
<------> * to the vma (discard or cloning) which should prevent the more
<------> * egregious cases from causing harm.
<------> */
<------>if (obj->userptr.work) {
<------><------>/* active flag should still be held for the pending work */
<------><------>if (IS_ERR(obj->userptr.work))
<------><------><------>return PTR_ERR(obj->userptr.work);
<------><------>else
<------><------><------>return -EAGAIN;
<------>}
<------>pvec = NULL;
<------>pinned = 0;
<------>if (mm == current->mm) {
<------><------>pvec = kvmalloc_array(num_pages, sizeof(struct page *),
<------><------><------><------> GFP_KERNEL |
<------><------><------><------> __GFP_NORETRY |
<------><------><------><------> __GFP_NOWARN);
<------><------>if (pvec) {
<------><------><------>/* defer to worker if malloc fails */
<------><------><------>if (!i915_gem_object_is_readonly(obj))
<------><------><------><------>gup_flags |= FOLL_WRITE;
<------><------><------>pinned = pin_user_pages_fast_only(obj->userptr.ptr,
<------><------><------><------><------><------><------> num_pages, gup_flags,
<------><------><------><------><------><------><------> pvec);
<------><------>}
<------>}
<------>active = false;
<------>if (pinned < 0) {
<------><------>pages = ERR_PTR(pinned);
<------><------>pinned = 0;
<------>} else if (pinned < num_pages) {
<------><------>pages = __i915_gem_userptr_get_pages_schedule(obj);
<------><------>active = pages == ERR_PTR(-EAGAIN);
<------>} else {
<------><------>pages = __i915_gem_userptr_alloc_pages(obj, pvec, num_pages);
<------><------>active = !IS_ERR(pages);
<------>}
<------>if (active)
<------><------>__i915_gem_userptr_set_active(obj, true);
<------>if (IS_ERR(pages))
<------><------>unpin_user_pages(pvec, pinned);
<------>kvfree(pvec);
<------>return PTR_ERR_OR_ZERO(pages);
}
static void
i915_gem_userptr_put_pages(struct drm_i915_gem_object *obj,
<------><------><------> struct sg_table *pages)
{
<------>struct sgt_iter sgt_iter;
<------>struct page *page;
<------>/* Cancel any inflight work and force them to restart their gup */
<------>obj->userptr.work = NULL;
<------>__i915_gem_userptr_set_active(obj, false);
<------>if (!pages)
<------><------>return;
<------>__i915_gem_object_release_shmem(obj, pages, true);
<------>i915_gem_gtt_finish_pages(obj, pages);
<------>/*
<------> * We always mark objects as dirty when they are used by the GPU,
<------> * just in case. However, if we set the vma as being read-only we know
<------> * that the object will never have been written to.
<------> */
<------>if (i915_gem_object_is_readonly(obj))
<------><------>obj->mm.dirty = false;
<------>for_each_sgt_page(page, sgt_iter, pages) {
<------><------>if (obj->mm.dirty && trylock_page(page)) {
<------><------><------>/*
<------><------><------> * As this may not be anonymous memory (e.g. shmem)
<------><------><------> * but exist on a real mapping, we have to lock
<------><------><------> * the page in order to dirty it -- holding
<------><------><------> * the page reference is not sufficient to
<------><------><------> * prevent the inode from being truncated.
<------><------><------> * Play safe and take the lock.
<------><------><------> *
<------><------><------> * However...!
<------><------><------> *
<------><------><------> * The mmu-notifier can be invalidated for a
<------><------><------> * migrate_page, that is alreadying holding the lock
<------><------><------> * on the page. Such a try_to_unmap() will result
<------><------><------> * in us calling put_pages() and so recursively try
<------><------><------> * to lock the page. We avoid that deadlock with
<------><------><------> * a trylock_page() and in exchange we risk missing
<------><------><------> * some page dirtying.
<------><------><------> */
<------><------><------>set_page_dirty(page);
<------><------><------>unlock_page(page);
<------><------>}
<------><------>mark_page_accessed(page);
<------><------>unpin_user_page(page);
<------>}
<------>obj->mm.dirty = false;
<------>sg_free_table(pages);
<------>kfree(pages);
}
static void
i915_gem_userptr_release(struct drm_i915_gem_object *obj)
{
<------>i915_gem_userptr_release__mmu_notifier(obj);
<------>i915_gem_userptr_release__mm_struct(obj);
}
static int
i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object *obj)
{
<------>if (obj->userptr.mmu_object)
<------><------>return 0;
<------>return i915_gem_userptr_init__mmu_notifier(obj, 0);
}
static const struct drm_i915_gem_object_ops i915_gem_userptr_ops = {
<------>.name = "i915_gem_object_userptr",
<------>.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
<------><------> I915_GEM_OBJECT_IS_SHRINKABLE |
<------><------> I915_GEM_OBJECT_NO_MMAP |
<------><------> I915_GEM_OBJECT_ASYNC_CANCEL,
<------>.get_pages = i915_gem_userptr_get_pages,
<------>.put_pages = i915_gem_userptr_put_pages,
<------>.dmabuf_export = i915_gem_userptr_dmabuf_export,
<------>.release = i915_gem_userptr_release,
};
/*
* Creates a new mm object that wraps some normal memory from the process
* context - user memory.
*
* We impose several restrictions upon the memory being mapped
* into the GPU.
* 1. It must be page aligned (both start/end addresses, i.e ptr and size).
* 2. It must be normal system memory, not a pointer into another map of IO
* space (e.g. it must not be a GTT mmapping of another object).
* 3. We only allow a bo as large as we could in theory map into the GTT,
* that is we limit the size to the total size of the GTT.
* 4. The bo is marked as being snoopable. The backing pages are left
* accessible directly by the CPU, but reads and writes by the GPU may
* incur the cost of a snoop (unless you have an LLC architecture).
*
* Synchronisation between multiple users and the GPU is left to userspace
* through the normal set-domain-ioctl. The kernel will enforce that the
* GPU relinquishes the VMA before it is returned back to the system
* i.e. upon free(), munmap() or process termination. However, the userspace
* malloc() library may not immediately relinquish the VMA after free() and
* instead reuse it whilst the GPU is still reading and writing to the VMA.
* Caveat emptor.
*
* Also note, that the object created here is not currently a "first class"
* object, in that several ioctls are banned. These are the CPU access
* ioctls: mmap(), pwrite and pread. In practice, you are expected to use
* direct access via your pointer rather than use those ioctls. Another
* restriction is that we do not allow userptr surfaces to be pinned to the
* hardware and so we reject any attempt to create a framebuffer out of a
* userptr.
*
* If you think this is a good interface to use to pass GPU memory between
* drivers, please use dma-buf instead. In fact, wherever possible use
* dma-buf instead.
*/
int
i915_gem_userptr_ioctl(struct drm_device *dev,
<------><------> void *data,
<------><------> struct drm_file *file)
{
<------>static struct lock_class_key lock_class;
<------>struct drm_i915_private *dev_priv = to_i915(dev);
<------>struct drm_i915_gem_userptr *args = data;
<------>struct drm_i915_gem_object *obj;
<------>int ret;
<------>u32 handle;
<------>if (!HAS_LLC(dev_priv) && !HAS_SNOOP(dev_priv)) {
<------><------>/* We cannot support coherent userptr objects on hw without
<------><------> * LLC and broken snooping.
<------><------> */
<------><------>return -ENODEV;
<------>}
<------>if (args->flags & ~(I915_USERPTR_READ_ONLY |
<------><------><------> I915_USERPTR_UNSYNCHRONIZED))
<------><------>return -EINVAL;
<------>/*
<------> * XXX: There is a prevalence of the assumption that we fit the
<------> * object's page count inside a 32bit _signed_ variable. Let's document
<------> * this and catch if we ever need to fix it. In the meantime, if you do
<------> * spot such a local variable, please consider fixing!
<------> *
<------> * Aside from our own locals (for which we have no excuse!):
<------> * - sg_table embeds unsigned int for num_pages
<------> * - get_user_pages*() mixed ints with longs
<------> */
<------>if (args->user_size >> PAGE_SHIFT > INT_MAX)
<------><------>return -E2BIG;
<------>if (overflows_type(args->user_size, obj->base.size))
<------><------>return -E2BIG;
<------>if (!args->user_size)
<------><------>return -EINVAL;
<------>if (offset_in_page(args->user_ptr | args->user_size))
<------><------>return -EINVAL;
<------>if (!access_ok((char __user *)(unsigned long)args->user_ptr, args->user_size))
<------><------>return -EFAULT;
<------>if (args->flags & I915_USERPTR_READ_ONLY) {
<------><------>/*
<------><------> * On almost all of the older hw, we cannot tell the GPU that
<------><------> * a page is readonly.
<------><------> */
<------><------>if (!dev_priv->gt.vm->has_read_only)
<------><------><------>return -ENODEV;
<------>}
<------>obj = i915_gem_object_alloc();
<------>if (obj == NULL)
<------><------>return -ENOMEM;
<------>drm_gem_private_object_init(dev, &obj->base, args->user_size);
<------>i915_gem_object_init(obj, &i915_gem_userptr_ops, &lock_class);
<------>obj->read_domains = I915_GEM_DOMAIN_CPU;
<------>obj->write_domain = I915_GEM_DOMAIN_CPU;
<------>i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
<------>obj->userptr.ptr = args->user_ptr;
<------>if (args->flags & I915_USERPTR_READ_ONLY)
<------><------>i915_gem_object_set_readonly(obj);
<------>/* And keep a pointer to the current->mm for resolving the user pages
<------> * at binding. This means that we need to hook into the mmu_notifier
<------> * in order to detect if the mmu is destroyed.
<------> */
<------>ret = i915_gem_userptr_init__mm_struct(obj);
<------>if (ret == 0)
<------><------>ret = i915_gem_userptr_init__mmu_notifier(obj, args->flags);
<------>if (ret == 0)
<------><------>ret = drm_gem_handle_create(file, &obj->base, &handle);
<------>/* drop reference from allocate - handle holds it now */
<------>i915_gem_object_put(obj);
<------>if (ret)
<------><------>return ret;
<------>args->handle = handle;
<------>return 0;
}
int i915_gem_init_userptr(struct drm_i915_private *dev_priv)
{
<------>spin_lock_init(&dev_priv->mm_lock);
<------>hash_init(dev_priv->mm_structs);
<------>dev_priv->mm.userptr_wq =
<------><------>alloc_workqueue("i915-userptr-acquire",
<------><------><------><------>WQ_HIGHPRI | WQ_UNBOUND,
<------><------><------><------>0);
<------>if (!dev_priv->mm.userptr_wq)
<------><------>return -ENOMEM;
<------>return 0;
}
void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv)
{
<------>destroy_workqueue(dev_priv->mm.userptr_wq);
}