Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
// SPDX-License-Identifier: MIT
/*
* Copyright (C) 2019 Google, Inc.
*
* Authors:
* Sean Paul <seanpaul@chromium.org>
*/
#include <linux/average.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_connector.h>
#include <drm/drm_crtc.h>
#include <drm/drm_device.h>
#include <drm/drm_mode_config.h>
#include <drm/drm_modeset_lock.h>
#include <drm/drm_print.h>
#include <drm/drm_self_refresh_helper.h>
/**
* DOC: overview
*
* This helper library provides an easy way for drivers to leverage the atomic
* framework to implement panel self refresh (SR) support. Drivers are
* responsible for initializing and cleaning up the SR helpers on load/unload
* (see &drm_self_refresh_helper_init/&drm_self_refresh_helper_cleanup).
* The connector is responsible for setting
* &drm_connector_state.self_refresh_aware to true at runtime if it is SR-aware
* (meaning it knows how to initiate self refresh on the panel).
*
* Once a crtc has enabled SR using &drm_self_refresh_helper_init, the
* helpers will monitor activity and call back into the driver to enable/disable
* SR as appropriate. The best way to think about this is that it's a DPMS
* on/off request with &drm_crtc_state.self_refresh_active set in crtc state
* that tells you to disable/enable SR on the panel instead of power-cycling it.
*
* During SR, drivers may choose to fully disable their crtc/encoder/bridge
* hardware (in which case no driver changes are necessary), or they can inspect
* &drm_crtc_state.self_refresh_active if they want to enter low power mode
* without full disable (in case full disable/enable is too slow).
*
* SR will be deactivated if there are any atomic updates affecting the
* pipe that is in SR mode. If a crtc is driving multiple connectors, all
* connectors must be SR aware and all will enter/exit SR mode at the same time.
*
* If the crtc and connector are SR aware, but the panel connected does not
* support it (or is otherwise unable to enter SR), the driver should fail
* atomic_check when &drm_crtc_state.self_refresh_active is true.
*/
#define SELF_REFRESH_AVG_SEED_MS 200
DECLARE_EWMA(psr_time, 4, 4)
struct drm_self_refresh_data {
<------>struct drm_crtc *crtc;
<------>struct delayed_work entry_work;
<------>struct mutex avg_mutex;
<------>struct ewma_psr_time entry_avg_ms;
<------>struct ewma_psr_time exit_avg_ms;
};
static void drm_self_refresh_helper_entry_work(struct work_struct *work)
{
<------>struct drm_self_refresh_data *sr_data = container_of(
<------><------><------><------>to_delayed_work(work),
<------><------><------><------>struct drm_self_refresh_data, entry_work);
<------>struct drm_crtc *crtc = sr_data->crtc;
<------>struct drm_device *dev = crtc->dev;
<------>struct drm_modeset_acquire_ctx ctx;
<------>struct drm_atomic_state *state;
<------>struct drm_connector *conn;
<------>struct drm_connector_state *conn_state;
<------>struct drm_crtc_state *crtc_state;
<------>int i, ret = 0;
<------>drm_modeset_acquire_init(&ctx, 0);
<------>state = drm_atomic_state_alloc(dev);
<------>if (!state) {
<------><------>ret = -ENOMEM;
<------><------>goto out_drop_locks;
<------>}
retry:
<------>state->acquire_ctx = &ctx;
<------>crtc_state = drm_atomic_get_crtc_state(state, crtc);
<------>if (IS_ERR(crtc_state)) {
<------><------>ret = PTR_ERR(crtc_state);
<------><------>goto out;
<------>}
<------>if (!crtc_state->enable)
<------><------>goto out;
<------>ret = drm_atomic_add_affected_connectors(state, crtc);
<------>if (ret)
<------><------>goto out;
<------>for_each_new_connector_in_state(state, conn, conn_state, i) {
<------><------>if (!conn_state->self_refresh_aware)
<------><------><------>goto out;
<------>}
<------>crtc_state->active = false;
<------>crtc_state->self_refresh_active = true;
<------>ret = drm_atomic_commit(state);
<------>if (ret)
<------><------>goto out;
out:
<------>if (ret == -EDEADLK) {
<------><------>drm_atomic_state_clear(state);
<------><------>ret = drm_modeset_backoff(&ctx);
<------><------>if (!ret)
<------><------><------>goto retry;
<------>}
<------>drm_atomic_state_put(state);
out_drop_locks:
<------>drm_modeset_drop_locks(&ctx);
<------>drm_modeset_acquire_fini(&ctx);
}
/**
* drm_self_refresh_helper_update_avg_times - Updates a crtc's SR time averages
* @state: the state which has just been applied to hardware
* @commit_time_ms: the amount of time in ms that this commit took to complete
* @new_self_refresh_mask: bitmask of crtc's that have self_refresh_active in
* new state
*
* Called after &drm_mode_config_funcs.atomic_commit_tail, this function will
* update the average entry/exit self refresh times on self refresh transitions.
* These averages will be used when calculating how long to delay before
* entering self refresh mode after activity.
*/
void
drm_self_refresh_helper_update_avg_times(struct drm_atomic_state *state,
<------><------><------><------><------> unsigned int commit_time_ms,
<------><------><------><------><------> unsigned int new_self_refresh_mask)
{
<------>struct drm_crtc *crtc;
<------>struct drm_crtc_state *old_crtc_state;
<------>int i;
<------>for_each_old_crtc_in_state(state, crtc, old_crtc_state, i) {
<------><------>bool new_self_refresh_active = new_self_refresh_mask & BIT(i);
<------><------>struct drm_self_refresh_data *sr_data = crtc->self_refresh_data;
<------><------>struct ewma_psr_time *time;
<------><------>if (old_crtc_state->self_refresh_active ==
<------><------> new_self_refresh_active)
<------><------><------>continue;
<------><------>if (new_self_refresh_active)
<------><------><------>time = &sr_data->entry_avg_ms;
<------><------>else
<------><------><------>time = &sr_data->exit_avg_ms;
<------><------>mutex_lock(&sr_data->avg_mutex);
<------><------>ewma_psr_time_add(time, commit_time_ms);
<------><------>mutex_unlock(&sr_data->avg_mutex);
<------>}
}
EXPORT_SYMBOL(drm_self_refresh_helper_update_avg_times);
/**
* drm_self_refresh_helper_alter_state - Alters the atomic state for SR exit
* @state: the state currently being checked
*
* Called at the end of atomic check. This function checks the state for flags
* incompatible with self refresh exit and changes them. This is a bit
* disingenuous since userspace is expecting one thing and we're giving it
* another. However in order to keep self refresh entirely hidden from
* userspace, this is required.
*
* At the end, we queue up the self refresh entry work so we can enter PSR after
* the desired delay.
*/
void drm_self_refresh_helper_alter_state(struct drm_atomic_state *state)
{
<------>struct drm_crtc *crtc;
<------>struct drm_crtc_state *crtc_state;
<------>int i;
<------>if (state->async_update || !state->allow_modeset) {
<------><------>for_each_old_crtc_in_state(state, crtc, crtc_state, i) {
<------><------><------>if (crtc_state->self_refresh_active) {
<------><------><------><------>state->async_update = false;
<------><------><------><------>state->allow_modeset = true;
<------><------><------><------>break;
<------><------><------>}
<------><------>}
<------>}
<------>for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
<------><------>struct drm_self_refresh_data *sr_data;
<------><------>unsigned int delay;
<------><------>/* Don't trigger the entry timer when we're already in SR */
<------><------>if (crtc_state->self_refresh_active)
<------><------><------>continue;
<------><------>sr_data = crtc->self_refresh_data;
<------><------>if (!sr_data)
<------><------><------>continue;
<------><------>mutex_lock(&sr_data->avg_mutex);
<------><------>delay = (ewma_psr_time_read(&sr_data->entry_avg_ms) +
<------><------><------> ewma_psr_time_read(&sr_data->exit_avg_ms)) * 2;
<------><------>mutex_unlock(&sr_data->avg_mutex);
<------><------>mod_delayed_work(system_wq, &sr_data->entry_work,
<------><------><------><------> msecs_to_jiffies(delay));
<------>}
}
EXPORT_SYMBOL(drm_self_refresh_helper_alter_state);
/**
* drm_self_refresh_helper_init - Initializes self refresh helpers for a crtc
* @crtc: the crtc which supports self refresh supported displays
*
* Returns zero if successful or -errno on failure
*/
int drm_self_refresh_helper_init(struct drm_crtc *crtc)
{
<------>struct drm_self_refresh_data *sr_data = crtc->self_refresh_data;
<------>/* Helper is already initialized */
<------>if (WARN_ON(sr_data))
<------><------>return -EINVAL;
<------>sr_data = kzalloc(sizeof(*sr_data), GFP_KERNEL);
<------>if (!sr_data)
<------><------>return -ENOMEM;
<------>INIT_DELAYED_WORK(&sr_data->entry_work,
<------><------><------> drm_self_refresh_helper_entry_work);
<------>sr_data->crtc = crtc;
<------>mutex_init(&sr_data->avg_mutex);
<------>ewma_psr_time_init(&sr_data->entry_avg_ms);
<------>ewma_psr_time_init(&sr_data->exit_avg_ms);
<------>/*
<------> * Seed the averages so they're non-zero (and sufficiently large
<------> * for even poorly performing panels). As time goes on, this will be
<------> * averaged out and the values will trend to their true value.
<------> */
<------>ewma_psr_time_add(&sr_data->entry_avg_ms, SELF_REFRESH_AVG_SEED_MS);
<------>ewma_psr_time_add(&sr_data->exit_avg_ms, SELF_REFRESH_AVG_SEED_MS);
<------>crtc->self_refresh_data = sr_data;
<------>return 0;
}
EXPORT_SYMBOL(drm_self_refresh_helper_init);
/**
* drm_self_refresh_helper_cleanup - Cleans up self refresh helpers for a crtc
* @crtc: the crtc to cleanup
*/
void drm_self_refresh_helper_cleanup(struct drm_crtc *crtc)
{
<------>struct drm_self_refresh_data *sr_data = crtc->self_refresh_data;
<------>/* Helper is already uninitialized */
<------>if (!sr_data)
<------><------>return;
<------>crtc->self_refresh_data = NULL;
<------>cancel_delayed_work_sync(&sr_data->entry_work);
<------>kfree(sr_data);
}
EXPORT_SYMBOL(drm_self_refresh_helper_cleanup);