Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags   |
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2020 Intel
*
* Based on drivers/base/devres.c
*/
#include <drm/drm_managed.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <drm/drm_device.h>
#include <drm/drm_print.h>
#include "drm_internal.h"
/**
* DOC: managed resources
*
* Inspired by struct &device managed resources, but tied to the lifetime of
* struct &drm_device, which can outlive the underlying physical device, usually
* when userspace has some open files and other handles to resources still open.
*
* Release actions can be added with drmm_add_action(), memory allocations can
* be done directly with drmm_kmalloc() and the related functions. Everything
* will be released on the final drm_dev_put() in reverse order of how the
* release actions have been added and memory has been allocated since driver
* loading started with devm_drm_dev_alloc().
*
* Note that release actions and managed memory can also be added and removed
* during the lifetime of the driver, all the functions are fully concurrent
* safe. But it is recommended to use managed resources only for resources that
* change rarely, if ever, during the lifetime of the &drm_device instance.
*/
struct drmres_node {
<------>struct list_head entry;
<------>drmres_release_t release;
<------>const char *name;
<------>size_t size;
};
struct drmres {
<------>struct drmres_node node;
<------>/*
<------> * Some archs want to perform DMA into kmalloc caches
<------> * and need a guaranteed alignment larger than
<------> * the alignment of a 64-bit integer.
<------> * Thus we use ARCH_KMALLOC_MINALIGN here and get exactly the same
<------> * buffer alignment as if it was allocated by plain kmalloc().
<------> */
<------>u8 __aligned(ARCH_KMALLOC_MINALIGN) data[];
};
static void free_dr(struct drmres *dr)
{
<------>kfree_const(dr->node.name);
<------>kfree(dr);
}
void drm_managed_release(struct drm_device *dev)
{
<------>struct drmres *dr, *tmp;
<------>drm_dbg_drmres(dev, "drmres release begin\n");
<------>list_for_each_entry_safe(dr, tmp, &dev->managed.resources, node.entry) {
<------><------>drm_dbg_drmres(dev, "REL %p %s (%zu bytes)\n",
<------><------><------> dr, dr->node.name, dr->node.size);
<------><------>if (dr->node.release)
<------><------><------>dr->node.release(dev, dr->node.size ? *(void **)&dr->data : NULL);
<------><------>list_del(&dr->node.entry);
<------><------>free_dr(dr);
<------>}
<------>drm_dbg_drmres(dev, "drmres release end\n");
}
/*
* Always inline so that kmalloc_track_caller tracks the actual interesting
* caller outside of drm_managed.c.
*/
static __always_inline struct drmres * alloc_dr(drmres_release_t release,
<------><------><------><------><------><------>size_t size, gfp_t gfp, int nid)
{
<------>size_t tot_size;
<------>struct drmres *dr;
<------>/* We must catch any near-SIZE_MAX cases that could overflow. */
<------>if (unlikely(check_add_overflow(sizeof(*dr), size, &tot_size)))
<------><------>return NULL;
<------>dr = kmalloc_node_track_caller(tot_size, gfp, nid);
<------>if (unlikely(!dr))
<------><------>return NULL;
<------>memset(dr, 0, offsetof(struct drmres, data));
<------>INIT_LIST_HEAD(&dr->node.entry);
<------>dr->node.release = release;
<------>dr->node.size = size;
<------>return dr;
}
static void del_dr(struct drm_device *dev, struct drmres *dr)
{
<------>list_del_init(&dr->node.entry);
<------>drm_dbg_drmres(dev, "DEL %p %s (%lu bytes)\n",
<------><------> dr, dr->node.name, (unsigned long) dr->node.size);
}
static void add_dr(struct drm_device *dev, struct drmres *dr)
{
<------>unsigned long flags;
<------>spin_lock_irqsave(&dev->managed.lock, flags);
<------>list_add(&dr->node.entry, &dev->managed.resources);
<------>spin_unlock_irqrestore(&dev->managed.lock, flags);
<------>drm_dbg_drmres(dev, "ADD %p %s (%lu bytes)\n",
<------><------> dr, dr->node.name, (unsigned long) dr->node.size);
}
void drmm_add_final_kfree(struct drm_device *dev, void *container)
{
<------>WARN_ON(dev->managed.final_kfree);
<------>WARN_ON(dev < (struct drm_device *) container);
<------>WARN_ON(dev + 1 > (struct drm_device *) (container + ksize(container)));
<------>dev->managed.final_kfree = container;
}
int __drmm_add_action(struct drm_device *dev,
<------><------> drmres_release_t action,
<------><------> void *data, const char *name)
{
<------>struct drmres *dr;
<------>void **void_ptr;
<------>dr = alloc_dr(action, data ? sizeof(void*) : 0,
<------><------> GFP_KERNEL | __GFP_ZERO,
<------><------> dev_to_node(dev->dev));
<------>if (!dr) {
<------><------>drm_dbg_drmres(dev, "failed to add action %s for %p\n",
<------><------><------> name, data);
<------><------>return -ENOMEM;
<------>}
<------>dr->node.name = kstrdup_const(name, GFP_KERNEL);
<------>if (data) {
<------><------>void_ptr = (void **)&dr->data;
<------><------>*void_ptr = data;
<------>}
<------>add_dr(dev, dr);
<------>return 0;
}
EXPORT_SYMBOL(__drmm_add_action);
int __drmm_add_action_or_reset(struct drm_device *dev,
<------><------><------> drmres_release_t action,
<------><------><------> void *data, const char *name)
{
<------>int ret;
<------>ret = __drmm_add_action(dev, action, data, name);
<------>if (ret)
<------><------>action(dev, data);
<------>return ret;
}
EXPORT_SYMBOL(__drmm_add_action_or_reset);
/**
* drmm_kmalloc - &drm_device managed kmalloc()
* @dev: DRM device
* @size: size of the memory allocation
* @gfp: GFP allocation flags
*
* This is a &drm_device managed version of kmalloc(). The allocated memory is
* automatically freed on the final drm_dev_put(). Memory can also be freed
* before the final drm_dev_put() by calling drmm_kfree().
*/
void *drmm_kmalloc(struct drm_device *dev, size_t size, gfp_t gfp)
{
<------>struct drmres *dr;
<------>dr = alloc_dr(NULL, size, gfp, dev_to_node(dev->dev));
<------>if (!dr) {
<------><------>drm_dbg_drmres(dev, "failed to allocate %zu bytes, %u flags\n",
<------><------><------> size, gfp);
<------><------>return NULL;
<------>}
<------>dr->node.name = kstrdup_const("kmalloc", GFP_KERNEL);
<------>add_dr(dev, dr);
<------>return dr->data;
}
EXPORT_SYMBOL(drmm_kmalloc);
/**
* drmm_kstrdup - &drm_device managed kstrdup()
* @dev: DRM device
* @s: 0-terminated string to be duplicated
* @gfp: GFP allocation flags
*
* This is a &drm_device managed version of kstrdup(). The allocated memory is
* automatically freed on the final drm_dev_put() and works exactly like a
* memory allocation obtained by drmm_kmalloc().
*/
char *drmm_kstrdup(struct drm_device *dev, const char *s, gfp_t gfp)
{
<------>size_t size;
<------>char *buf;
<------>if (!s)
<------><------>return NULL;
<------>size = strlen(s) + 1;
<------>buf = drmm_kmalloc(dev, size, gfp);
<------>if (buf)
<------><------>memcpy(buf, s, size);
<------>return buf;
}
EXPORT_SYMBOL_GPL(drmm_kstrdup);
/**
* drmm_kfree - &drm_device managed kfree()
* @dev: DRM device
* @data: memory allocation to be freed
*
* This is a &drm_device managed version of kfree() which can be used to
* release memory allocated through drmm_kmalloc() or any of its related
* functions before the final drm_dev_put() of @dev.
*/
void drmm_kfree(struct drm_device *dev, void *data)
{
<------>struct drmres *dr_match = NULL, *dr;
<------>unsigned long flags;
<------>if (!data)
<------><------>return;
<------>spin_lock_irqsave(&dev->managed.lock, flags);
<------>list_for_each_entry(dr, &dev->managed.resources, node.entry) {
<------><------>if (dr->data == data) {
<------><------><------>dr_match = dr;
<------><------><------>del_dr(dev, dr_match);
<------><------><------>break;
<------><------>}
<------>}
<------>spin_unlock_irqrestore(&dev->managed.lock, flags);
<------>if (WARN_ON(!dr_match))
<------><------>return;
<------>free_dr(dr_match);
}
EXPORT_SYMBOL(drmm_kfree);