Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   1) // SPDX-License-Identifier: GPL-2.0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   3)  * FPGA Manager Driver for FPGA Management Engine (FME)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   5)  * Copyright (C) 2017-2018 Intel Corporation, Inc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   6)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   7)  * Authors:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   8)  *   Kang Luwei <luwei.kang@intel.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   9)  *   Xiao Guangrong <guangrong.xiao@linux.intel.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  10)  *   Wu Hao <hao.wu@intel.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  11)  *   Joseph Grecco <joe.grecco@intel.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  12)  *   Enno Luebbers <enno.luebbers@intel.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  13)  *   Tim Whisonant <tim.whisonant@intel.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  14)  *   Ananda Ravuri <ananda.ravuri@intel.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  15)  *   Christopher Rauer <christopher.rauer@intel.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  16)  *   Henry Mitchel <henry.mitchel@intel.com>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  17)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  18) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  19) #include <linux/bitfield.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  20) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  21) #include <linux/iopoll.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  22) #include <linux/io-64-nonatomic-lo-hi.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  23) #include <linux/fpga/fpga-mgr.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  24) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  25) #include "dfl-fme-pr.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  26) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  27) /* FME Partial Reconfiguration Sub Feature Register Set */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  28) #define FME_PR_DFH		0x0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  29) #define FME_PR_CTRL		0x8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  30) #define FME_PR_STS		0x10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  31) #define FME_PR_DATA		0x18
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  32) #define FME_PR_ERR		0x20
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  33) #define FME_PR_INTFC_ID_L	0xA8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  34) #define FME_PR_INTFC_ID_H	0xB0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  35) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  36) /* FME PR Control Register Bitfield */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  37) #define FME_PR_CTRL_PR_RST	BIT_ULL(0)  /* Reset PR engine */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  38) #define FME_PR_CTRL_PR_RSTACK	BIT_ULL(4)  /* Ack for PR engine reset */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  39) #define FME_PR_CTRL_PR_RGN_ID	GENMASK_ULL(9, 7)       /* PR Region ID */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  40) #define FME_PR_CTRL_PR_START	BIT_ULL(12) /* Start to request PR service */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  41) #define FME_PR_CTRL_PR_COMPLETE	BIT_ULL(13) /* PR data push completion */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  42) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  43) /* FME PR Status Register Bitfield */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  44) /* Number of available entries in HW queue inside the PR engine. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  45) #define FME_PR_STS_PR_CREDIT	GENMASK_ULL(8, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  46) #define FME_PR_STS_PR_STS	BIT_ULL(16) /* PR operation status */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  47) #define FME_PR_STS_PR_STS_IDLE	0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  48) #define FME_PR_STS_PR_CTRLR_STS	GENMASK_ULL(22, 20)     /* Controller status */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  49) #define FME_PR_STS_PR_HOST_STS	GENMASK_ULL(27, 24)     /* PR host status */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  50) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  51) /* FME PR Data Register Bitfield */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  52) /* PR data from the raw-binary file. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  53) #define FME_PR_DATA_PR_DATA_RAW	GENMASK_ULL(32, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  54) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  55) /* FME PR Error Register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  56) /* PR Operation errors detected. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  57) #define FME_PR_ERR_OPERATION_ERR	BIT_ULL(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  58) /* CRC error detected. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  59) #define FME_PR_ERR_CRC_ERR		BIT_ULL(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  60) /* Incompatible PR bitstream detected. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  61) #define FME_PR_ERR_INCOMPATIBLE_BS	BIT_ULL(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  62) /* PR data push protocol violated. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  63) #define FME_PR_ERR_PROTOCOL_ERR		BIT_ULL(3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  64) /* PR data fifo overflow error detected */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  65) #define FME_PR_ERR_FIFO_OVERFLOW	BIT_ULL(4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  66) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  67) #define PR_WAIT_TIMEOUT   8000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  68) #define PR_HOST_STATUS_IDLE	0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  69) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  70) struct fme_mgr_priv {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  71) 	void __iomem *ioaddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  72) 	u64 pr_error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  73) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  74) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  75) static u64 pr_error_to_mgr_status(u64 err)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  76) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  77) 	u64 status = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  78) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  79) 	if (err & FME_PR_ERR_OPERATION_ERR)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  80) 		status |= FPGA_MGR_STATUS_OPERATION_ERR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  81) 	if (err & FME_PR_ERR_CRC_ERR)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  82) 		status |= FPGA_MGR_STATUS_CRC_ERR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  83) 	if (err & FME_PR_ERR_INCOMPATIBLE_BS)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  84) 		status |= FPGA_MGR_STATUS_INCOMPATIBLE_IMAGE_ERR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  85) 	if (err & FME_PR_ERR_PROTOCOL_ERR)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  86) 		status |= FPGA_MGR_STATUS_IP_PROTOCOL_ERR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  87) 	if (err & FME_PR_ERR_FIFO_OVERFLOW)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  88) 		status |= FPGA_MGR_STATUS_FIFO_OVERFLOW_ERR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  89) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  90) 	return status;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  91) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  92) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  93) static u64 fme_mgr_pr_error_handle(void __iomem *fme_pr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  94) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  95) 	u64 pr_status, pr_error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  96) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  97) 	pr_status = readq(fme_pr + FME_PR_STS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  98) 	if (!(pr_status & FME_PR_STS_PR_STS))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  99) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) 	pr_error = readq(fme_pr + FME_PR_ERR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) 	writeq(pr_error, fme_pr + FME_PR_ERR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) 	return pr_error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) static int fme_mgr_write_init(struct fpga_manager *mgr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) 			      struct fpga_image_info *info,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) 			      const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) 	struct device *dev = &mgr->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) 	struct fme_mgr_priv *priv = mgr->priv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) 	void __iomem *fme_pr = priv->ioaddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114) 	u64 pr_ctrl, pr_status;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) 	if (!(info->flags & FPGA_MGR_PARTIAL_RECONFIG)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117) 		dev_err(dev, "only supports partial reconfiguration.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) 	dev_dbg(dev, "resetting PR before initiated PR\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) 	pr_ctrl = readq(fme_pr + FME_PR_CTRL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) 	pr_ctrl |= FME_PR_CTRL_PR_RST;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) 	writeq(pr_ctrl, fme_pr + FME_PR_CTRL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) 	if (readq_poll_timeout(fme_pr + FME_PR_CTRL, pr_ctrl,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) 			       pr_ctrl & FME_PR_CTRL_PR_RSTACK, 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129) 			       PR_WAIT_TIMEOUT)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) 		dev_err(dev, "PR Reset ACK timeout\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) 		return -ETIMEDOUT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134) 	pr_ctrl = readq(fme_pr + FME_PR_CTRL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) 	pr_ctrl &= ~FME_PR_CTRL_PR_RST;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136) 	writeq(pr_ctrl, fme_pr + FME_PR_CTRL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) 	dev_dbg(dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) 		"waiting for PR resource in HW to be initialized and ready\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) 	if (readq_poll_timeout(fme_pr + FME_PR_STS, pr_status,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142) 			       (pr_status & FME_PR_STS_PR_STS) ==
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) 			       FME_PR_STS_PR_STS_IDLE, 1, PR_WAIT_TIMEOUT)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) 		dev_err(dev, "PR Status timeout\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) 		priv->pr_error = fme_mgr_pr_error_handle(fme_pr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146) 		return -ETIMEDOUT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) 	dev_dbg(dev, "check and clear previous PR error\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150) 	priv->pr_error = fme_mgr_pr_error_handle(fme_pr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) 	if (priv->pr_error)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) 		dev_dbg(dev, "previous PR error detected %llx\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) 			(unsigned long long)priv->pr_error);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) 	dev_dbg(dev, "set PR port ID\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) 	pr_ctrl = readq(fme_pr + FME_PR_CTRL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) 	pr_ctrl &= ~FME_PR_CTRL_PR_RGN_ID;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159) 	pr_ctrl |= FIELD_PREP(FME_PR_CTRL_PR_RGN_ID, info->region_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) 	writeq(pr_ctrl, fme_pr + FME_PR_CTRL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165) static int fme_mgr_write(struct fpga_manager *mgr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) 			 const char *buf, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) 	struct device *dev = &mgr->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169) 	struct fme_mgr_priv *priv = mgr->priv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) 	void __iomem *fme_pr = priv->ioaddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) 	u64 pr_ctrl, pr_status, pr_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) 	int delay = 0, pr_credit, i = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) 	dev_dbg(dev, "start request\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) 	pr_ctrl = readq(fme_pr + FME_PR_CTRL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) 	pr_ctrl |= FME_PR_CTRL_PR_START;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178) 	writeq(pr_ctrl, fme_pr + FME_PR_CTRL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) 	dev_dbg(dev, "pushing data from bitstream to HW\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) 	 * driver can push data to PR hardware using PR_DATA register once HW
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) 	 * has enough pr_credit (> 1), pr_credit reduces one for every 32bit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185) 	 * pr data write to PR_DATA register. If pr_credit <= 1, driver needs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) 	 * to wait for enough pr_credit from hardware by polling.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188) 	pr_status = readq(fme_pr + FME_PR_STS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) 	pr_credit = FIELD_GET(FME_PR_STS_PR_CREDIT, pr_status);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) 	while (count > 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) 		while (pr_credit <= 1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) 			if (delay++ > PR_WAIT_TIMEOUT) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194) 				dev_err(dev, "PR_CREDIT timeout\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) 				return -ETIMEDOUT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) 			udelay(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) 			pr_status = readq(fme_pr + FME_PR_STS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) 			pr_credit = FIELD_GET(FME_PR_STS_PR_CREDIT, pr_status);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) 		if (count < 4) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) 			dev_err(dev, "Invalid PR bitstream size\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) 			return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) 		pr_data = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) 		pr_data |= FIELD_PREP(FME_PR_DATA_PR_DATA_RAW,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) 				      *(((u32 *)buf) + i));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211) 		writeq(pr_data, fme_pr + FME_PR_DATA);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) 		count -= 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213) 		pr_credit--;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) 		i++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) static int fme_mgr_write_complete(struct fpga_manager *mgr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) 				  struct fpga_image_info *info)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223) 	struct device *dev = &mgr->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) 	struct fme_mgr_priv *priv = mgr->priv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) 	void __iomem *fme_pr = priv->ioaddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226) 	u64 pr_ctrl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) 	pr_ctrl = readq(fme_pr + FME_PR_CTRL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) 	pr_ctrl |= FME_PR_CTRL_PR_COMPLETE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) 	writeq(pr_ctrl, fme_pr + FME_PR_CTRL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) 	dev_dbg(dev, "green bitstream push complete\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) 	dev_dbg(dev, "waiting for HW to release PR resource\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) 	if (readq_poll_timeout(fme_pr + FME_PR_CTRL, pr_ctrl,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) 			       !(pr_ctrl & FME_PR_CTRL_PR_START), 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237) 			       PR_WAIT_TIMEOUT)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) 		dev_err(dev, "PR Completion ACK timeout.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) 		return -ETIMEDOUT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) 	dev_dbg(dev, "PR operation complete, checking status\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) 	priv->pr_error = fme_mgr_pr_error_handle(fme_pr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) 	if (priv->pr_error) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) 		dev_dbg(dev, "PR error detected %llx\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) 			(unsigned long long)priv->pr_error);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) 		return -EIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) 	dev_dbg(dev, "PR done successfully\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) static enum fpga_mgr_states fme_mgr_state(struct fpga_manager *mgr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) 	return FPGA_MGR_STATE_UNKNOWN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260) static u64 fme_mgr_status(struct fpga_manager *mgr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) 	struct fme_mgr_priv *priv = mgr->priv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) 	return pr_error_to_mgr_status(priv->pr_error);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267) static const struct fpga_manager_ops fme_mgr_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) 	.write_init = fme_mgr_write_init,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) 	.write = fme_mgr_write,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) 	.write_complete = fme_mgr_write_complete,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) 	.state = fme_mgr_state,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272) 	.status = fme_mgr_status,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) static void fme_mgr_get_compat_id(void __iomem *fme_pr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276) 				  struct fpga_compat_id *id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) 	id->id_l = readq(fme_pr + FME_PR_INTFC_ID_L);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) 	id->id_h = readq(fme_pr + FME_PR_INTFC_ID_H);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) static int fme_mgr_probe(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284) 	struct dfl_fme_mgr_pdata *pdata = dev_get_platdata(&pdev->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) 	struct fpga_compat_id *compat_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) 	struct device *dev = &pdev->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) 	struct fme_mgr_priv *priv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) 	struct fpga_manager *mgr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) 	struct resource *res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291) 	priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) 	if (!priv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295) 	if (pdata->ioaddr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) 		priv->ioaddr = pdata->ioaddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298) 	if (!priv->ioaddr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) 		priv->ioaddr = devm_ioremap_resource(dev, res);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) 		if (IS_ERR(priv->ioaddr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302) 			return PTR_ERR(priv->ioaddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) 	compat_id = devm_kzalloc(dev, sizeof(*compat_id), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306) 	if (!compat_id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) 	fme_mgr_get_compat_id(priv->ioaddr, compat_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311) 	mgr = devm_fpga_mgr_create(dev, "DFL FME FPGA Manager",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) 				   &fme_mgr_ops, priv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) 	if (!mgr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) 	mgr->compat_id = compat_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) 	platform_set_drvdata(pdev, mgr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) 	return fpga_mgr_register(mgr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) static int fme_mgr_remove(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) 	struct fpga_manager *mgr = platform_get_drvdata(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) 	fpga_mgr_unregister(mgr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) static struct platform_driver fme_mgr_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) 	.driver	= {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333) 		.name    = DFL_FPGA_FME_MGR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) 	.probe   = fme_mgr_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) 	.remove  = fme_mgr_remove,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) module_platform_driver(fme_mgr_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) MODULE_DESCRIPTION("FPGA Manager for DFL FPGA Management Engine");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342) MODULE_AUTHOR("Intel Corporation");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) MODULE_LICENSE("GPL v2");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344) MODULE_ALIAS("platform:dfl-fme-mgr");