^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1) // SPDX-License-Identifier: GPL-2.0-only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2) #include <linux/types.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3) #include <linux/string.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 4) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 5) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 6) #include <linux/ctype.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 7) #include <linux/dmi.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 8) #include <linux/efi.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 9) #include <linux/memblock.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 10) #include <linux/random.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 11) #include <asm/dmi.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 12) #include <asm/unaligned.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 13)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 14) #ifndef SMBIOS_ENTRY_POINT_SCAN_START
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 15) #define SMBIOS_ENTRY_POINT_SCAN_START 0xF0000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 16) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 17)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 18) struct kobject *dmi_kobj;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 19) EXPORT_SYMBOL_GPL(dmi_kobj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 20)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 21) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 22) * DMI stands for "Desktop Management Interface". It is part
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 23) * of and an antecedent to, SMBIOS, which stands for System
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 24) * Management BIOS. See further: https://www.dmtf.org/standards
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 25) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 26) static const char dmi_empty_string[] = "";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 27)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 28) static u32 dmi_ver __initdata;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 29) static u32 dmi_len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 30) static u16 dmi_num;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 31) static u8 smbios_entry_point[32];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 32) static int smbios_entry_point_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 33)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 34) /* DMI system identification string used during boot */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 35) static char dmi_ids_string[128] __initdata;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 36)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 37) static struct dmi_memdev_info {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 38) const char *device;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 39) const char *bank;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 40) u64 size; /* bytes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 41) u16 handle;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 42) u8 type; /* DDR2, DDR3, DDR4 etc */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 43) } *dmi_memdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 44) static int dmi_memdev_nr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 45)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 46) static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 47) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 48) const u8 *bp = ((u8 *) dm) + dm->length;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 49) const u8 *nsp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 50)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 51) if (s) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 52) while (--s > 0 && *bp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 53) bp += strlen(bp) + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 54)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 55) /* Strings containing only spaces are considered empty */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 56) nsp = bp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 57) while (*nsp == ' ')
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 58) nsp++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 59) if (*nsp != '\0')
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 60) return bp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 61) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 62)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 63) return dmi_empty_string;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 64) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 65)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 66) static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 67) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 68) const char *bp = dmi_string_nosave(dm, s);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 69) char *str;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 70) size_t len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 71)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 72) if (bp == dmi_empty_string)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 73) return dmi_empty_string;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 74)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 75) len = strlen(bp) + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 76) str = dmi_alloc(len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 77) if (str != NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 78) strcpy(str, bp);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 79)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 80) return str;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 81) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 82)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 83) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 84) * We have to be cautious here. We have seen BIOSes with DMI pointers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 85) * pointing to completely the wrong place for example
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 86) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 87) static void dmi_decode_table(u8 *buf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 88) void (*decode)(const struct dmi_header *, void *),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 89) void *private_data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 90) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 91) u8 *data = buf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 92) int i = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 93)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 94) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 95) * Stop when we have seen all the items the table claimed to have
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 96) * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 97) * >= 3.0 only) OR we run off the end of the table (should never
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 98) * happen but sometimes does on bogus implementations.)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 99) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 100) while ((!dmi_num || i < dmi_num) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 101) (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 102) const struct dmi_header *dm = (const struct dmi_header *)data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 103)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 104) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 105) * We want to know the total length (formatted area and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 106) * strings) before decoding to make sure we won't run off the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 107) * table in dmi_decode or dmi_string
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 108) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 109) data += dm->length;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 110) while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 111) data++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 112) if (data - buf < dmi_len - 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 113) decode(dm, private_data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 114)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 115) data += 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 116) i++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 117)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 118) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 119) * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 120) * For tables behind a 64-bit entry point, we have no item
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 121) * count and no exact table length, so stop on end-of-table
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 122) * marker. For tables behind a 32-bit entry point, we have
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 123) * seen OEM structures behind the end-of-table marker on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 124) * some systems, so don't trust it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 125) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 126) if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 127) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 128) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 129)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 130) /* Trim DMI table length if needed */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 131) if (dmi_len > data - buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 132) dmi_len = data - buf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 133) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 134)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 135) static phys_addr_t dmi_base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 136)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 137) static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 138) void *))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 139) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 140) u8 *buf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 141) u32 orig_dmi_len = dmi_len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 142)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 143) buf = dmi_early_remap(dmi_base, orig_dmi_len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 144) if (buf == NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 145) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 146)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 147) dmi_decode_table(buf, decode, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 148)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 149) add_device_randomness(buf, dmi_len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 150)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 151) dmi_early_unmap(buf, orig_dmi_len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 152) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 153) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 154)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 155) static int __init dmi_checksum(const u8 *buf, u8 len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 156) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 157) u8 sum = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 158) int a;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 159)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 160) for (a = 0; a < len; a++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 161) sum += buf[a];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 162)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 163) return sum == 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 164) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 165)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 166) static const char *dmi_ident[DMI_STRING_MAX];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 167) static LIST_HEAD(dmi_devices);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 168) int dmi_available;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 169)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 170) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 171) * Save a DMI string
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 172) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 173) static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 174) int string)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 175) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 176) const char *d = (const char *) dm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 177) const char *p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 178)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 179) if (dmi_ident[slot] || dm->length <= string)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 180) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 181)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 182) p = dmi_string(dm, d[string]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 183) if (p == NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 184) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 185)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 186) dmi_ident[slot] = p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 187) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 188)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 189) static void __init dmi_save_release(const struct dmi_header *dm, int slot,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 190) int index)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 191) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 192) const u8 *minor, *major;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 193) char *s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 194)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 195) /* If the table doesn't have the field, let's return */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 196) if (dmi_ident[slot] || dm->length < index)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 197) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 198)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 199) minor = (u8 *) dm + index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 200) major = (u8 *) dm + index - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 201)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 202) /* As per the spec, if the system doesn't support this field,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 203) * the value is FF
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 204) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 205) if (*major == 0xFF && *minor == 0xFF)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 206) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 207)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 208) s = dmi_alloc(8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 209) if (!s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 210) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 211)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 212) sprintf(s, "%u.%u", *major, *minor);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 213)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 214) dmi_ident[slot] = s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 215) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 216)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 217) static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 218) int index)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 219) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 220) const u8 *d;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 221) char *s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 222) int is_ff = 1, is_00 = 1, i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 223)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 224) if (dmi_ident[slot] || dm->length < index + 16)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 225) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 226)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 227) d = (u8 *) dm + index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 228) for (i = 0; i < 16 && (is_ff || is_00); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 229) if (d[i] != 0x00)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 230) is_00 = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 231) if (d[i] != 0xFF)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 232) is_ff = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 233) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 234)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 235) if (is_ff || is_00)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 236) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 237)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 238) s = dmi_alloc(16*2+4+1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 239) if (!s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 240) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 241)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 242) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 243) * As of version 2.6 of the SMBIOS specification, the first 3 fields of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 244) * the UUID are supposed to be little-endian encoded. The specification
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 245) * says that this is the defacto standard.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 246) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 247) if (dmi_ver >= 0x020600)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 248) sprintf(s, "%pUl", d);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 249) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 250) sprintf(s, "%pUb", d);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 251)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 252) dmi_ident[slot] = s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 253) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 254)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 255) static void __init dmi_save_type(const struct dmi_header *dm, int slot,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 256) int index)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 257) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 258) const u8 *d;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 259) char *s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 260)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 261) if (dmi_ident[slot] || dm->length <= index)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 262) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 263)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 264) s = dmi_alloc(4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 265) if (!s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 266) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 267)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 268) d = (u8 *) dm + index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 269) sprintf(s, "%u", *d & 0x7F);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 270) dmi_ident[slot] = s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 271) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 272)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 273) static void __init dmi_save_one_device(int type, const char *name)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 274) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 275) struct dmi_device *dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 276)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 277) /* No duplicate device */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 278) if (dmi_find_device(type, name, NULL))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 279) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 280)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 281) dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 282) if (!dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 283) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 284)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 285) dev->type = type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 286) strcpy((char *)(dev + 1), name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 287) dev->name = (char *)(dev + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 288) dev->device_data = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 289) list_add(&dev->list, &dmi_devices);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 290) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 291)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 292) static void __init dmi_save_devices(const struct dmi_header *dm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 293) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 294) int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 295)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 296) for (i = 0; i < count; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 297) const char *d = (char *)(dm + 1) + (i * 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 298)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 299) /* Skip disabled device */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 300) if ((*d & 0x80) == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 301) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 302)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 303) dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 304) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 305) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 306)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 307) static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 308) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 309) int i, count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 310) struct dmi_device *dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 311)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 312) if (dm->length < 0x05)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 313) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 314)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 315) count = *(u8 *)(dm + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 316) for (i = 1; i <= count; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 317) const char *devname = dmi_string(dm, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 318)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 319) if (devname == dmi_empty_string)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 320) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 321)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 322) dev = dmi_alloc(sizeof(*dev));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 323) if (!dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 324) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 325)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 326) dev->type = DMI_DEV_TYPE_OEM_STRING;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 327) dev->name = devname;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 328) dev->device_data = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 329)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 330) list_add(&dev->list, &dmi_devices);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 331) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 332) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 333)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 334) static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 335) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 336) struct dmi_device *dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 337) void *data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 338)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 339) data = dmi_alloc(dm->length);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 340) if (data == NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 341) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 342)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 343) memcpy(data, dm, dm->length);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 344)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 345) dev = dmi_alloc(sizeof(*dev));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 346) if (!dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 347) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 348)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 349) dev->type = DMI_DEV_TYPE_IPMI;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 350) dev->name = "IPMI controller";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 351) dev->device_data = data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 352)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 353) list_add_tail(&dev->list, &dmi_devices);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 354) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 355)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 356) static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 357) int devfn, const char *name, int type)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 358) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 359) struct dmi_dev_onboard *dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 360)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 361) /* Ignore invalid values */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 362) if (type == DMI_DEV_TYPE_DEV_SLOT &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 363) segment == 0xFFFF && bus == 0xFF && devfn == 0xFF)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 364) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 365)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 366) dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 367) if (!dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 368) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 369)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 370) dev->instance = instance;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 371) dev->segment = segment;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 372) dev->bus = bus;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 373) dev->devfn = devfn;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 374)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 375) strcpy((char *)&dev[1], name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 376) dev->dev.type = type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 377) dev->dev.name = (char *)&dev[1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 378) dev->dev.device_data = dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 379)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 380) list_add(&dev->dev.list, &dmi_devices);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 381) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 382)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 383) static void __init dmi_save_extended_devices(const struct dmi_header *dm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 384) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 385) const char *name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 386) const u8 *d = (u8 *)dm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 387)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 388) if (dm->length < 0x0B)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 389) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 390)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 391) /* Skip disabled device */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 392) if ((d[0x5] & 0x80) == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 393) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 394)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 395) name = dmi_string_nosave(dm, d[0x4]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 396) dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 397) DMI_DEV_TYPE_DEV_ONBOARD);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 398) dmi_save_one_device(d[0x5] & 0x7f, name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 399) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 400)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 401) static void __init dmi_save_system_slot(const struct dmi_header *dm)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 402) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 403) const u8 *d = (u8 *)dm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 404)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 405) /* Need SMBIOS 2.6+ structure */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 406) if (dm->length < 0x11)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 407) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 408) dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 409) d[0x10], dmi_string_nosave(dm, d[0x4]),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 410) DMI_DEV_TYPE_DEV_SLOT);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 411) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 412)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 413) static void __init count_mem_devices(const struct dmi_header *dm, void *v)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 414) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 415) if (dm->type != DMI_ENTRY_MEM_DEVICE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 416) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 417) dmi_memdev_nr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 418) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 419)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 420) static void __init save_mem_devices(const struct dmi_header *dm, void *v)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 421) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 422) const char *d = (const char *)dm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 423) static int nr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 424) u64 bytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 425) u16 size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 426)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 427) if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x13)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 428) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 429) if (nr >= dmi_memdev_nr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 430) pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 431) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 432) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 433) dmi_memdev[nr].handle = get_unaligned(&dm->handle);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 434) dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 435) dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 436) dmi_memdev[nr].type = d[0x12];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 437)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 438) size = get_unaligned((u16 *)&d[0xC]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 439) if (size == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 440) bytes = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 441) else if (size == 0xffff)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 442) bytes = ~0ull;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 443) else if (size & 0x8000)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 444) bytes = (u64)(size & 0x7fff) << 10;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 445) else if (size != 0x7fff || dm->length < 0x20)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 446) bytes = (u64)size << 20;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 447) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 448) bytes = (u64)get_unaligned((u32 *)&d[0x1C]) << 20;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 449)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 450) dmi_memdev[nr].size = bytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 451) nr++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 452) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 453)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 454) static void __init dmi_memdev_walk(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 455) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 456) if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 457) dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 458) if (dmi_memdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 459) dmi_walk_early(save_mem_devices);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 460) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 461) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 462)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 463) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 464) * Process a DMI table entry. Right now all we care about are the BIOS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 465) * and machine entries. For 2.5 we should pull the smbus controller info
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 466) * out of here.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 467) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 468) static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 469) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 470) switch (dm->type) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 471) case 0: /* BIOS Information */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 472) dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 473) dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 474) dmi_save_ident(dm, DMI_BIOS_DATE, 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 475) dmi_save_release(dm, DMI_BIOS_RELEASE, 21);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 476) dmi_save_release(dm, DMI_EC_FIRMWARE_RELEASE, 23);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 477) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 478) case 1: /* System Information */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 479) dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 480) dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 481) dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 482) dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 483) dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 484) dmi_save_ident(dm, DMI_PRODUCT_SKU, 25);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 485) dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 486) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 487) case 2: /* Base Board Information */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 488) dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 489) dmi_save_ident(dm, DMI_BOARD_NAME, 5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 490) dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 491) dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 492) dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 493) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 494) case 3: /* Chassis Information */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 495) dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 496) dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 497) dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 498) dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 499) dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 500) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 501) case 9: /* System Slots */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 502) dmi_save_system_slot(dm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 503) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 504) case 10: /* Onboard Devices Information */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 505) dmi_save_devices(dm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 506) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 507) case 11: /* OEM Strings */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 508) dmi_save_oem_strings_devices(dm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 509) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 510) case 38: /* IPMI Device Information */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 511) dmi_save_ipmi_device(dm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 512) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 513) case 41: /* Onboard Devices Extended Information */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 514) dmi_save_extended_devices(dm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 515) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 516) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 517)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 518) static int __init print_filtered(char *buf, size_t len, const char *info)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 519) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 520) int c = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 521) const char *p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 522)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 523) if (!info)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 524) return c;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 525)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 526) for (p = info; *p; p++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 527) if (isprint(*p))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 528) c += scnprintf(buf + c, len - c, "%c", *p);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 529) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 530) c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 531) return c;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 532) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 533)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 534) static void __init dmi_format_ids(char *buf, size_t len)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 535) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 536) int c = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 537) const char *board; /* Board Name is optional */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 538)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 539) c += print_filtered(buf + c, len - c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 540) dmi_get_system_info(DMI_SYS_VENDOR));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 541) c += scnprintf(buf + c, len - c, " ");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 542) c += print_filtered(buf + c, len - c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 543) dmi_get_system_info(DMI_PRODUCT_NAME));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 544)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 545) board = dmi_get_system_info(DMI_BOARD_NAME);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 546) if (board) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 547) c += scnprintf(buf + c, len - c, "/");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 548) c += print_filtered(buf + c, len - c, board);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 549) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 550) c += scnprintf(buf + c, len - c, ", BIOS ");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 551) c += print_filtered(buf + c, len - c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 552) dmi_get_system_info(DMI_BIOS_VERSION));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 553) c += scnprintf(buf + c, len - c, " ");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 554) c += print_filtered(buf + c, len - c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 555) dmi_get_system_info(DMI_BIOS_DATE));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 556) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 557)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 558) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 559) * Check for DMI/SMBIOS headers in the system firmware image. Any
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 560) * SMBIOS header must start 16 bytes before the DMI header, so take a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 561) * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 562) * 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 563) * takes precedence) and return 0. Otherwise return 1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 564) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 565) static int __init dmi_present(const u8 *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 566) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 567) u32 smbios_ver;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 568)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 569) if (memcmp(buf, "_SM_", 4) == 0 &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 570) buf[5] < 32 && dmi_checksum(buf, buf[5])) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 571) smbios_ver = get_unaligned_be16(buf + 6);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 572) smbios_entry_point_size = buf[5];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 573) memcpy(smbios_entry_point, buf, smbios_entry_point_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 574)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 575) /* Some BIOS report weird SMBIOS version, fix that up */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 576) switch (smbios_ver) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 577) case 0x021F:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 578) case 0x0221:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 579) pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 580) smbios_ver & 0xFF, 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 581) smbios_ver = 0x0203;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 582) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 583) case 0x0233:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 584) pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 585) smbios_ver = 0x0206;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 586) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 587) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 588) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 589) smbios_ver = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 590) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 591)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 592) buf += 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 593)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 594) if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 595) if (smbios_ver)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 596) dmi_ver = smbios_ver;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 597) else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 598) dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 599) dmi_ver <<= 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 600) dmi_num = get_unaligned_le16(buf + 12);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 601) dmi_len = get_unaligned_le16(buf + 6);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 602) dmi_base = get_unaligned_le32(buf + 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 603)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 604) if (dmi_walk_early(dmi_decode) == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 605) if (smbios_ver) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 606) pr_info("SMBIOS %d.%d present.\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 607) dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 608) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 609) smbios_entry_point_size = 15;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 610) memcpy(smbios_entry_point, buf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 611) smbios_entry_point_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 612) pr_info("Legacy DMI %d.%d present.\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 613) dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 614) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 615) dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 616) pr_info("DMI: %s\n", dmi_ids_string);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 617) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 618) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 619) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 620)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 621) return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 622) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 623)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 624) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 625) * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 626) * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 627) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 628) static int __init dmi_smbios3_present(const u8 *buf)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 629) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 630) if (memcmp(buf, "_SM3_", 5) == 0 &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 631) buf[6] < 32 && dmi_checksum(buf, buf[6])) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 632) dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 633) dmi_num = 0; /* No longer specified */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 634) dmi_len = get_unaligned_le32(buf + 12);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 635) dmi_base = get_unaligned_le64(buf + 16);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 636) smbios_entry_point_size = buf[6];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 637) memcpy(smbios_entry_point, buf, smbios_entry_point_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 638)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 639) if (dmi_walk_early(dmi_decode) == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 640) pr_info("SMBIOS %d.%d.%d present.\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 641) dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 642) dmi_ver & 0xFF);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 643) dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 644) pr_info("DMI: %s\n", dmi_ids_string);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 645) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 646) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 647) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 648) return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 649) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 650)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 651) static void __init dmi_scan_machine(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 652) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 653) char __iomem *p, *q;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 654) char buf[32];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 655)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 656) if (efi_enabled(EFI_CONFIG_TABLES)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 657) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 658) * According to the DMTF SMBIOS reference spec v3.0.0, it is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 659) * allowed to define both the 64-bit entry point (smbios3) and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 660) * the 32-bit entry point (smbios), in which case they should
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 661) * either both point to the same SMBIOS structure table, or the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 662) * table pointed to by the 64-bit entry point should contain a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 663) * superset of the table contents pointed to by the 32-bit entry
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 664) * point (section 5.2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 665) * This implies that the 64-bit entry point should have
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 666) * precedence if it is defined and supported by the OS. If we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 667) * have the 64-bit entry point, but fail to decode it, fall
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 668) * back to the legacy one (if available)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 669) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 670) if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 671) p = dmi_early_remap(efi.smbios3, 32);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 672) if (p == NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 673) goto error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 674) memcpy_fromio(buf, p, 32);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 675) dmi_early_unmap(p, 32);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 676)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 677) if (!dmi_smbios3_present(buf)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 678) dmi_available = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 679) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 680) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 681) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 682) if (efi.smbios == EFI_INVALID_TABLE_ADDR)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 683) goto error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 684)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 685) /* This is called as a core_initcall() because it isn't
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 686) * needed during early boot. This also means we can
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 687) * iounmap the space when we're done with it.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 688) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 689) p = dmi_early_remap(efi.smbios, 32);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 690) if (p == NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 691) goto error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 692) memcpy_fromio(buf, p, 32);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 693) dmi_early_unmap(p, 32);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 694)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 695) if (!dmi_present(buf)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 696) dmi_available = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 697) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 698) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 699) } else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 700) p = dmi_early_remap(SMBIOS_ENTRY_POINT_SCAN_START, 0x10000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 701) if (p == NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 702) goto error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 703)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 704) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 705) * Same logic as above, look for a 64-bit entry point
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 706) * first, and if not found, fall back to 32-bit entry point.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 707) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 708) memcpy_fromio(buf, p, 16);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 709) for (q = p + 16; q < p + 0x10000; q += 16) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 710) memcpy_fromio(buf + 16, q, 16);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 711) if (!dmi_smbios3_present(buf)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 712) dmi_available = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 713) dmi_early_unmap(p, 0x10000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 714) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 715) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 716) memcpy(buf, buf + 16, 16);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 717) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 718)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 719) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 720) * Iterate over all possible DMI header addresses q.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 721) * Maintain the 32 bytes around q in buf. On the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 722) * first iteration, substitute zero for the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 723) * out-of-range bytes so there is no chance of falsely
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 724) * detecting an SMBIOS header.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 725) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 726) memset(buf, 0, 16);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 727) for (q = p; q < p + 0x10000; q += 16) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 728) memcpy_fromio(buf + 16, q, 16);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 729) if (!dmi_present(buf)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 730) dmi_available = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 731) dmi_early_unmap(p, 0x10000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 732) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 733) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 734) memcpy(buf, buf + 16, 16);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 735) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 736) dmi_early_unmap(p, 0x10000);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 737) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 738) error:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 739) pr_info("DMI not present or invalid.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 740) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 741)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 742) static ssize_t raw_table_read(struct file *file, struct kobject *kobj,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 743) struct bin_attribute *attr, char *buf,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 744) loff_t pos, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 745) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 746) memcpy(buf, attr->private + pos, count);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 747) return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 748) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 749)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 750) static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 751) static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 752)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 753) static int __init dmi_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 754) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 755) struct kobject *tables_kobj;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 756) u8 *dmi_table;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 757) int ret = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 758)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 759) if (!dmi_available)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 760) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 761)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 762) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 763) * Set up dmi directory at /sys/firmware/dmi. This entry should stay
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 764) * even after farther error, as it can be used by other modules like
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 765) * dmi-sysfs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 766) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 767) dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 768) if (!dmi_kobj)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 769) goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 770)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 771) tables_kobj = kobject_create_and_add("tables", dmi_kobj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 772) if (!tables_kobj)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 773) goto err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 774)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 775) dmi_table = dmi_remap(dmi_base, dmi_len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 776) if (!dmi_table)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 777) goto err_tables;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 778)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 779) bin_attr_smbios_entry_point.size = smbios_entry_point_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 780) bin_attr_smbios_entry_point.private = smbios_entry_point;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 781) ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 782) if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 783) goto err_unmap;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 784)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 785) bin_attr_DMI.size = dmi_len;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 786) bin_attr_DMI.private = dmi_table;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 787) ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 788) if (!ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 789) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 790)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 791) sysfs_remove_bin_file(tables_kobj,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 792) &bin_attr_smbios_entry_point);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 793) err_unmap:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 794) dmi_unmap(dmi_table);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 795) err_tables:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 796) kobject_del(tables_kobj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 797) kobject_put(tables_kobj);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 798) err:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 799) pr_err("dmi: Firmware registration failed.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 800)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 801) return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 802) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 803) subsys_initcall(dmi_init);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 804)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 805) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 806) * dmi_setup - scan and setup DMI system information
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 807) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 808) * Scan the DMI system information. This setups DMI identifiers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 809) * (dmi_system_id) for printing it out on task dumps and prepares
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 810) * DIMM entry information (dmi_memdev_info) from the SMBIOS table
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 811) * for using this when reporting memory errors.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 812) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 813) void __init dmi_setup(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 814) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 815) dmi_scan_machine();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 816) if (!dmi_available)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 817) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 818)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 819) dmi_memdev_walk();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 820) dump_stack_set_arch_desc("%s", dmi_ids_string);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 821) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 822)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 823) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 824) * dmi_matches - check if dmi_system_id structure matches system DMI data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 825) * @dmi: pointer to the dmi_system_id structure to check
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 826) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 827) static bool dmi_matches(const struct dmi_system_id *dmi)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 828) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 829) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 830)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 831) for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 832) int s = dmi->matches[i].slot;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 833) if (s == DMI_NONE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 834) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 835) if (s == DMI_OEM_STRING) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 836) /* DMI_OEM_STRING must be exact match */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 837) const struct dmi_device *valid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 838)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 839) valid = dmi_find_device(DMI_DEV_TYPE_OEM_STRING,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 840) dmi->matches[i].substr, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 841) if (valid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 842) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 843) } else if (dmi_ident[s]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 844) if (dmi->matches[i].exact_match) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 845) if (!strcmp(dmi_ident[s],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 846) dmi->matches[i].substr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 847) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 848) } else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 849) if (strstr(dmi_ident[s],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 850) dmi->matches[i].substr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 851) continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 852) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 853) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 854)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 855) /* No match */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 856) return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 857) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 858) return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 859) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 860)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 861) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 862) * dmi_is_end_of_table - check for end-of-table marker
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 863) * @dmi: pointer to the dmi_system_id structure to check
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 864) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 865) static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 866) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 867) return dmi->matches[0].slot == DMI_NONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 868) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 869)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 870) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 871) * dmi_check_system - check system DMI data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 872) * @list: array of dmi_system_id structures to match against
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 873) * All non-null elements of the list must match
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 874) * their slot's (field index's) data (i.e., each
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 875) * list string must be a substring of the specified
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 876) * DMI slot's string data) to be considered a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 877) * successful match.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 878) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 879) * Walk the blacklist table running matching functions until someone
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 880) * returns non zero or we hit the end. Callback function is called for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 881) * each successful match. Returns the number of matches.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 882) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 883) * dmi_setup must be called before this function is called.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 884) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 885) int dmi_check_system(const struct dmi_system_id *list)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 886) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 887) int count = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 888) const struct dmi_system_id *d;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 889)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 890) for (d = list; !dmi_is_end_of_table(d); d++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 891) if (dmi_matches(d)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 892) count++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 893) if (d->callback && d->callback(d))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 894) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 895) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 896)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 897) return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 898) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 899) EXPORT_SYMBOL(dmi_check_system);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 900)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 901) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 902) * dmi_first_match - find dmi_system_id structure matching system DMI data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 903) * @list: array of dmi_system_id structures to match against
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 904) * All non-null elements of the list must match
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 905) * their slot's (field index's) data (i.e., each
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 906) * list string must be a substring of the specified
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 907) * DMI slot's string data) to be considered a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 908) * successful match.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 909) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 910) * Walk the blacklist table until the first match is found. Return the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 911) * pointer to the matching entry or NULL if there's no match.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 912) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 913) * dmi_setup must be called before this function is called.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 914) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 915) const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 916) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 917) const struct dmi_system_id *d;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 918)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 919) for (d = list; !dmi_is_end_of_table(d); d++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 920) if (dmi_matches(d))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 921) return d;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 922)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 923) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 924) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 925) EXPORT_SYMBOL(dmi_first_match);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 926)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 927) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 928) * dmi_get_system_info - return DMI data value
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 929) * @field: data index (see enum dmi_field)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 930) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 931) * Returns one DMI data value, can be used to perform
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 932) * complex DMI data checks.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 933) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 934) const char *dmi_get_system_info(int field)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 935) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 936) return dmi_ident[field];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 937) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 938) EXPORT_SYMBOL(dmi_get_system_info);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 939)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 940) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 941) * dmi_name_in_serial - Check if string is in the DMI product serial information
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 942) * @str: string to check for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 943) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 944) int dmi_name_in_serial(const char *str)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 945) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 946) int f = DMI_PRODUCT_SERIAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 947) if (dmi_ident[f] && strstr(dmi_ident[f], str))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 948) return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 949) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 950) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 951)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 952) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 953) * dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 954) * @str: Case sensitive Name
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 955) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 956) int dmi_name_in_vendors(const char *str)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 957) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 958) static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 959) int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 960) for (i = 0; fields[i] != DMI_NONE; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 961) int f = fields[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 962) if (dmi_ident[f] && strstr(dmi_ident[f], str))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 963) return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 964) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 965) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 966) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 967) EXPORT_SYMBOL(dmi_name_in_vendors);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 968)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 969) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 970) * dmi_find_device - find onboard device by type/name
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 971) * @type: device type or %DMI_DEV_TYPE_ANY to match all device types
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 972) * @name: device name string or %NULL to match all
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 973) * @from: previous device found in search, or %NULL for new search.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 974) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 975) * Iterates through the list of known onboard devices. If a device is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 976) * found with a matching @type and @name, a pointer to its device
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 977) * structure is returned. Otherwise, %NULL is returned.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 978) * A new search is initiated by passing %NULL as the @from argument.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 979) * If @from is not %NULL, searches continue from next device.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 980) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 981) const struct dmi_device *dmi_find_device(int type, const char *name,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 982) const struct dmi_device *from)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 983) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 984) const struct list_head *head = from ? &from->list : &dmi_devices;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 985) struct list_head *d;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 986)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 987) for (d = head->next; d != &dmi_devices; d = d->next) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 988) const struct dmi_device *dev =
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 989) list_entry(d, struct dmi_device, list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 990)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 991) if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 992) ((name == NULL) || (strcmp(dev->name, name) == 0)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 993) return dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 994) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 995)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 996) return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 997) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 998) EXPORT_SYMBOL(dmi_find_device);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 999)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) * dmi_get_date - parse a DMI date
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) * @field: data index (see enum dmi_field)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) * @yearp: optional out parameter for the year
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) * @monthp: optional out parameter for the month
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005) * @dayp: optional out parameter for the day
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) * The date field is assumed to be in the form resembling
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008) * [mm[/dd]]/yy[yy] and the result is stored in the out
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) * parameters any or all of which can be omitted.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011) * If the field doesn't exist, all out parameters are set to zero
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012) * and false is returned. Otherwise, true is returned with any
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) * invalid part of date set to zero.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) * On return, year, month and day are guaranteed to be in the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016) * range of [0,9999], [0,12] and [0,31] respectively.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018) bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020) int year = 0, month = 0, day = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021) bool exists;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022) const char *s, *y;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) char *e;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) s = dmi_get_system_info(field);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) exists = s;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027) if (!exists)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031) * Determine year first. We assume the date string resembles
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032) * mm/dd/yy[yy] but the original code extracted only the year
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033) * from the end. Keep the behavior in the spirit of no
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) * surprises.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036) y = strrchr(s, '/');
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037) if (!y)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040) y++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041) year = simple_strtoul(y, &e, 10);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042) if (y != e && year < 100) { /* 2-digit year */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043) year += 1900;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044) if (year < 1996) /* no dates < spec 1.0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045) year += 100;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047) if (year > 9999) /* year should fit in %04d */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048) year = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050) /* parse the mm and dd */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051) month = simple_strtoul(s, &e, 10);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052) if (s == e || *e != '/' || !month || month > 12) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053) month = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054) goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057) s = e + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058) day = simple_strtoul(s, &e, 10);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) if (s == y || s == e || *e != '/' || day > 31)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060) day = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) if (yearp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) *yearp = year;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) if (monthp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) *monthp = month;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) if (dayp)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) *dayp = day;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) return exists;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) EXPORT_SYMBOL(dmi_get_date);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) * dmi_get_bios_year - get a year out of DMI_BIOS_DATE field
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) * Returns year on success, -ENXIO if DMI is not selected,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) * or a different negative error code if DMI field is not present
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) * or not parseable.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) int dmi_get_bios_year(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) bool exists;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) int year;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) exists = dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) if (!exists)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086) return -ENODATA;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088) return year ? year : -ERANGE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090) EXPORT_SYMBOL(dmi_get_bios_year);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) * dmi_walk - Walk the DMI table and get called back for every record
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) * @decode: Callback function
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) * @private_data: Private data to be passed to the callback function
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097) * Returns 0 on success, -ENXIO if DMI is not selected or not present,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098) * or a different negative error code if DMI walking fails.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100) int dmi_walk(void (*decode)(const struct dmi_header *, void *),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101) void *private_data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103) u8 *buf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105) if (!dmi_available)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106) return -ENXIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108) buf = dmi_remap(dmi_base, dmi_len);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109) if (buf == NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110) return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112) dmi_decode_table(buf, decode, private_data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114) dmi_unmap(buf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115) return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) EXPORT_SYMBOL_GPL(dmi_walk);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) * dmi_match - compare a string to the dmi field (if exists)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) * @f: DMI field identifier
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122) * @str: string to compare the DMI field to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124) * Returns true if the requested field equals to the str (including NULL).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126) bool dmi_match(enum dmi_field f, const char *str)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128) const char *info = dmi_get_system_info(f);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130) if (info == NULL || str == NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131) return info == str;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133) return !strcmp(info, str);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135) EXPORT_SYMBOL_GPL(dmi_match);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137) void dmi_memdev_name(u16 handle, const char **bank, const char **device)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139) int n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141) if (dmi_memdev == NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142) return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144) for (n = 0; n < dmi_memdev_nr; n++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145) if (handle == dmi_memdev[n].handle) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146) *bank = dmi_memdev[n].bank;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147) *device = dmi_memdev[n].device;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148) break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152) EXPORT_SYMBOL_GPL(dmi_memdev_name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154) u64 dmi_memdev_size(u16 handle)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156) int n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158) if (dmi_memdev) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159) for (n = 0; n < dmi_memdev_nr; n++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160) if (handle == dmi_memdev[n].handle)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161) return dmi_memdev[n].size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1162) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1163) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1164) return ~0ull;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1165) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1166) EXPORT_SYMBOL_GPL(dmi_memdev_size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1167)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1168) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1169) * dmi_memdev_type - get the memory type
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1170) * @handle: DMI structure handle
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1171) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1172) * Return the DMI memory type of the module in the slot associated with the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1173) * given DMI handle, or 0x0 if no such DMI handle exists.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1174) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1175) u8 dmi_memdev_type(u16 handle)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1176) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1177) int n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1178)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1179) if (dmi_memdev) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1180) for (n = 0; n < dmi_memdev_nr; n++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1181) if (handle == dmi_memdev[n].handle)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1182) return dmi_memdev[n].type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1183) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1184) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1185) return 0x0; /* Not a valid value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1186) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1187) EXPORT_SYMBOL_GPL(dmi_memdev_type);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1188)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1189) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1190) * dmi_memdev_handle - get the DMI handle of a memory slot
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1191) * @slot: slot number
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1192) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1193) * Return the DMI handle associated with a given memory slot, or %0xFFFF
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1194) * if there is no such slot.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1195) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1196) u16 dmi_memdev_handle(int slot)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1197) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1198) if (dmi_memdev && slot >= 0 && slot < dmi_memdev_nr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1199) return dmi_memdev[slot].handle;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1200)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1201) return 0xffff; /* Not a valid value */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1202) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1203) EXPORT_SYMBOL_GPL(dmi_memdev_handle);