Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    1) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    2)  * Synopsys DDR ECC Driver
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    3)  * This driver is based on ppc4xx_edac.c drivers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    5)  * Copyright (C) 2012 - 2014 Xilinx, Inc.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    6)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    7)  * This program is free software: you can redistribute it and/or modify
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    8)  * it under the terms of the GNU General Public License as published by
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    9)  * the Free Software Foundation, either version 2 of the License, or
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   10)  * (at your option) any later version.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   11)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   12)  * This program is distributed in the hope that it will be useful,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   13)  * but WITHOUT ANY WARRANTY; without even the implied warranty of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   14)  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   15)  * GNU General Public License for more details.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   16)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   17)  * This file is subject to the terms and conditions of the GNU General Public
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   18)  * License.  See the file "COPYING" in the main directory of this archive
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   19)  * for more details
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   20)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   21) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   22) #include <linux/edac.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   23) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   24) #include <linux/platform_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   25) #include <linux/interrupt.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   26) #include <linux/of.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   27) #include <linux/of_device.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   28) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   29) #include "edac_module.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   30) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   31) /* Number of cs_rows needed per memory controller */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   32) #define SYNPS_EDAC_NR_CSROWS		1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   33) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   34) /* Number of channels per memory controller */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   35) #define SYNPS_EDAC_NR_CHANS		1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   36) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   37) /* Granularity of reported error in bytes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   38) #define SYNPS_EDAC_ERR_GRAIN		1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   39) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   40) #define SYNPS_EDAC_MSG_SIZE		256
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   41) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   42) #define SYNPS_EDAC_MOD_STRING		"synps_edac"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   43) #define SYNPS_EDAC_MOD_VER		"1"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   44) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   45) /* Synopsys DDR memory controller registers that are relevant to ECC */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   46) #define CTRL_OFST			0x0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   47) #define T_ZQ_OFST			0xA4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   48) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   49) /* ECC control register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   50) #define ECC_CTRL_OFST			0xC4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   51) /* ECC log register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   52) #define CE_LOG_OFST			0xC8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   53) /* ECC address register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   54) #define CE_ADDR_OFST			0xCC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   55) /* ECC data[31:0] register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   56) #define CE_DATA_31_0_OFST		0xD0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   57) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   58) /* Uncorrectable error info registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   59) #define UE_LOG_OFST			0xDC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   60) #define UE_ADDR_OFST			0xE0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   61) #define UE_DATA_31_0_OFST		0xE4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   62) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   63) #define STAT_OFST			0xF0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   64) #define SCRUB_OFST			0xF4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   65) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   66) /* Control register bit field definitions */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   67) #define CTRL_BW_MASK			0xC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   68) #define CTRL_BW_SHIFT			2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   69) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   70) #define DDRCTL_WDTH_16			1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   71) #define DDRCTL_WDTH_32			0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   72) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   73) /* ZQ register bit field definitions */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   74) #define T_ZQ_DDRMODE_MASK		0x2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   75) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   76) /* ECC control register bit field definitions */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   77) #define ECC_CTRL_CLR_CE_ERR		0x2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   78) #define ECC_CTRL_CLR_UE_ERR		0x1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   79) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   80) /* ECC correctable/uncorrectable error log register definitions */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   81) #define LOG_VALID			0x1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   82) #define CE_LOG_BITPOS_MASK		0xFE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   83) #define CE_LOG_BITPOS_SHIFT		1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   84) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   85) /* ECC correctable/uncorrectable error address register definitions */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   86) #define ADDR_COL_MASK			0xFFF
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   87) #define ADDR_ROW_MASK			0xFFFF000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   88) #define ADDR_ROW_SHIFT			12
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   89) #define ADDR_BANK_MASK			0x70000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   90) #define ADDR_BANK_SHIFT			28
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   91) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   92) /* ECC statistic register definitions */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   93) #define STAT_UECNT_MASK			0xFF
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   94) #define STAT_CECNT_MASK			0xFF00
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   95) #define STAT_CECNT_SHIFT		8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   96) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   97) /* ECC scrub register definitions */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   98) #define SCRUB_MODE_MASK			0x7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   99) #define SCRUB_MODE_SECDED		0x4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  100) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  101) /* DDR ECC Quirks */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  102) #define DDR_ECC_INTR_SUPPORT		BIT(0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  103) #define DDR_ECC_DATA_POISON_SUPPORT	BIT(1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  104) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  105) /* ZynqMP Enhanced DDR memory controller registers that are relevant to ECC */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  106) /* ECC Configuration Registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  107) #define ECC_CFG0_OFST			0x70
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  108) #define ECC_CFG1_OFST			0x74
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  109) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  110) /* ECC Status Register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  111) #define ECC_STAT_OFST			0x78
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  112) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  113) /* ECC Clear Register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  114) #define ECC_CLR_OFST			0x7C
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  115) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  116) /* ECC Error count Register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  117) #define ECC_ERRCNT_OFST			0x80
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  118) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  119) /* ECC Corrected Error Address Register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  120) #define ECC_CEADDR0_OFST		0x84
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  121) #define ECC_CEADDR1_OFST		0x88
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  122) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  123) /* ECC Syndrome Registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  124) #define ECC_CSYND0_OFST			0x8C
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  125) #define ECC_CSYND1_OFST			0x90
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  126) #define ECC_CSYND2_OFST			0x94
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  127) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  128) /* ECC Bit Mask0 Address Register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  129) #define ECC_BITMASK0_OFST		0x98
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  130) #define ECC_BITMASK1_OFST		0x9C
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  131) #define ECC_BITMASK2_OFST		0xA0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  132) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  133) /* ECC UnCorrected Error Address Register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  134) #define ECC_UEADDR0_OFST		0xA4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  135) #define ECC_UEADDR1_OFST		0xA8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  136) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  137) /* ECC Syndrome Registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  138) #define ECC_UESYND0_OFST		0xAC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  139) #define ECC_UESYND1_OFST		0xB0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  140) #define ECC_UESYND2_OFST		0xB4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  141) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  142) /* ECC Poison Address Reg */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  143) #define ECC_POISON0_OFST		0xB8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  144) #define ECC_POISON1_OFST		0xBC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  145) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  146) #define ECC_ADDRMAP0_OFFSET		0x200
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  147) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  148) /* Control register bitfield definitions */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  149) #define ECC_CTRL_BUSWIDTH_MASK		0x3000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  150) #define ECC_CTRL_BUSWIDTH_SHIFT		12
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  151) #define ECC_CTRL_CLR_CE_ERRCNT		BIT(2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  152) #define ECC_CTRL_CLR_UE_ERRCNT		BIT(3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  153) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  154) /* DDR Control Register width definitions  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  155) #define DDRCTL_EWDTH_16			2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  156) #define DDRCTL_EWDTH_32			1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  157) #define DDRCTL_EWDTH_64			0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  158) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  159) /* ECC status register definitions */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  160) #define ECC_STAT_UECNT_MASK		0xF0000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  161) #define ECC_STAT_UECNT_SHIFT		16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  162) #define ECC_STAT_CECNT_MASK		0xF00
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  163) #define ECC_STAT_CECNT_SHIFT		8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  164) #define ECC_STAT_BITNUM_MASK		0x7F
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  165) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  166) /* DDR QOS Interrupt register definitions */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  167) #define DDR_QOS_IRQ_STAT_OFST		0x20200
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  168) #define DDR_QOSUE_MASK			0x4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  169) #define	DDR_QOSCE_MASK			0x2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  170) #define	ECC_CE_UE_INTR_MASK		0x6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  171) #define DDR_QOS_IRQ_EN_OFST		0x20208
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  172) #define DDR_QOS_IRQ_DB_OFST		0x2020C
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  173) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  174) /* ECC Corrected Error Register Mask and Shifts*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  175) #define ECC_CEADDR0_RW_MASK		0x3FFFF
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  176) #define ECC_CEADDR0_RNK_MASK		BIT(24)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  177) #define ECC_CEADDR1_BNKGRP_MASK		0x3000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  178) #define ECC_CEADDR1_BNKNR_MASK		0x70000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  179) #define ECC_CEADDR1_BLKNR_MASK		0xFFF
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  180) #define ECC_CEADDR1_BNKGRP_SHIFT	24
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  181) #define ECC_CEADDR1_BNKNR_SHIFT		16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  182) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  183) /* ECC Poison register shifts */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  184) #define ECC_POISON0_RANK_SHIFT		24
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  185) #define ECC_POISON0_RANK_MASK		BIT(24)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  186) #define ECC_POISON0_COLUMN_SHIFT	0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  187) #define ECC_POISON0_COLUMN_MASK		0xFFF
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  188) #define ECC_POISON1_BG_SHIFT		28
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  189) #define ECC_POISON1_BG_MASK		0x30000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  190) #define ECC_POISON1_BANKNR_SHIFT	24
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  191) #define ECC_POISON1_BANKNR_MASK		0x7000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  192) #define ECC_POISON1_ROW_SHIFT		0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  193) #define ECC_POISON1_ROW_MASK		0x3FFFF
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  194) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  195) /* DDR Memory type defines */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  196) #define MEM_TYPE_DDR3			0x1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  197) #define MEM_TYPE_LPDDR3			0x8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  198) #define MEM_TYPE_DDR2			0x4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  199) #define MEM_TYPE_DDR4			0x10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  200) #define MEM_TYPE_LPDDR4			0x20
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  201) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  202) /* DDRC Software control register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  203) #define DDRC_SWCTL			0x320
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  204) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  205) /* DDRC ECC CE & UE poison mask */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  206) #define ECC_CEPOISON_MASK		0x3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  207) #define ECC_UEPOISON_MASK		0x1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  208) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  209) /* DDRC Device config masks */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  210) #define DDRC_MSTR_CFG_MASK		0xC0000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  211) #define DDRC_MSTR_CFG_SHIFT		30
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  212) #define DDRC_MSTR_CFG_X4_MASK		0x0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  213) #define DDRC_MSTR_CFG_X8_MASK		0x1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  214) #define DDRC_MSTR_CFG_X16_MASK		0x2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  215) #define DDRC_MSTR_CFG_X32_MASK		0x3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  216) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  217) #define DDR_MAX_ROW_SHIFT		18
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  218) #define DDR_MAX_COL_SHIFT		14
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  219) #define DDR_MAX_BANK_SHIFT		3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  220) #define DDR_MAX_BANKGRP_SHIFT		2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  221) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  222) #define ROW_MAX_VAL_MASK		0xF
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  223) #define COL_MAX_VAL_MASK		0xF
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  224) #define BANK_MAX_VAL_MASK		0x1F
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  225) #define BANKGRP_MAX_VAL_MASK		0x1F
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  226) #define RANK_MAX_VAL_MASK		0x1F
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  227) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  228) #define ROW_B0_BASE			6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  229) #define ROW_B1_BASE			7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  230) #define ROW_B2_BASE			8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  231) #define ROW_B3_BASE			9
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  232) #define ROW_B4_BASE			10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  233) #define ROW_B5_BASE			11
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  234) #define ROW_B6_BASE			12
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  235) #define ROW_B7_BASE			13
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  236) #define ROW_B8_BASE			14
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  237) #define ROW_B9_BASE			15
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  238) #define ROW_B10_BASE			16
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  239) #define ROW_B11_BASE			17
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  240) #define ROW_B12_BASE			18
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  241) #define ROW_B13_BASE			19
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  242) #define ROW_B14_BASE			20
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  243) #define ROW_B15_BASE			21
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  244) #define ROW_B16_BASE			22
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  245) #define ROW_B17_BASE			23
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  246) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  247) #define COL_B2_BASE			2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  248) #define COL_B3_BASE			3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  249) #define COL_B4_BASE			4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  250) #define COL_B5_BASE			5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  251) #define COL_B6_BASE			6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  252) #define COL_B7_BASE			7
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  253) #define COL_B8_BASE			8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  254) #define COL_B9_BASE			9
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  255) #define COL_B10_BASE			10
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  256) #define COL_B11_BASE			11
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  257) #define COL_B12_BASE			12
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  258) #define COL_B13_BASE			13
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  259) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  260) #define BANK_B0_BASE			2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  261) #define BANK_B1_BASE			3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  262) #define BANK_B2_BASE			4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  263) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  264) #define BANKGRP_B0_BASE			2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  265) #define BANKGRP_B1_BASE			3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  266) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  267) #define RANK_B0_BASE			6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  268) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  269) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  270)  * struct ecc_error_info - ECC error log information.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  271)  * @row:	Row number.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  272)  * @col:	Column number.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  273)  * @bank:	Bank number.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  274)  * @bitpos:	Bit position.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  275)  * @data:	Data causing the error.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  276)  * @bankgrpnr:	Bank group number.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  277)  * @blknr:	Block number.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  278)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  279) struct ecc_error_info {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  280) 	u32 row;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  281) 	u32 col;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  282) 	u32 bank;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  283) 	u32 bitpos;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  284) 	u32 data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  285) 	u32 bankgrpnr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  286) 	u32 blknr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  287) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  288) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  289) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  290)  * struct synps_ecc_status - ECC status information to report.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  291)  * @ce_cnt:	Correctable error count.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  292)  * @ue_cnt:	Uncorrectable error count.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  293)  * @ceinfo:	Correctable error log information.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  294)  * @ueinfo:	Uncorrectable error log information.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  295)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  296) struct synps_ecc_status {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  297) 	u32 ce_cnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  298) 	u32 ue_cnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  299) 	struct ecc_error_info ceinfo;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  300) 	struct ecc_error_info ueinfo;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  301) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  302) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  303) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  304)  * struct synps_edac_priv - DDR memory controller private instance data.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  305)  * @baseaddr:		Base address of the DDR controller.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  306)  * @message:		Buffer for framing the event specific info.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  307)  * @stat:		ECC status information.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  308)  * @p_data:		Platform data.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  309)  * @ce_cnt:		Correctable Error count.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  310)  * @ue_cnt:		Uncorrectable Error count.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  311)  * @poison_addr:	Data poison address.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  312)  * @row_shift:		Bit shifts for row bit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  313)  * @col_shift:		Bit shifts for column bit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  314)  * @bank_shift:		Bit shifts for bank bit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  315)  * @bankgrp_shift:	Bit shifts for bank group bit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  316)  * @rank_shift:		Bit shifts for rank bit.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  317)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  318) struct synps_edac_priv {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  319) 	void __iomem *baseaddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  320) 	char message[SYNPS_EDAC_MSG_SIZE];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  321) 	struct synps_ecc_status stat;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  322) 	const struct synps_platform_data *p_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  323) 	u32 ce_cnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  324) 	u32 ue_cnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  325) #ifdef CONFIG_EDAC_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  326) 	ulong poison_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  327) 	u32 row_shift[18];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  328) 	u32 col_shift[14];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  329) 	u32 bank_shift[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  330) 	u32 bankgrp_shift[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  331) 	u32 rank_shift[1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  332) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  333) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  334) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  335) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  336)  * struct synps_platform_data -  synps platform data structure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  337)  * @get_error_info:	Get EDAC error info.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  338)  * @get_mtype:		Get mtype.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  339)  * @get_dtype:		Get dtype.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  340)  * @get_ecc_state:	Get ECC state.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  341)  * @quirks:		To differentiate IPs.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  342)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  343) struct synps_platform_data {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  344) 	int (*get_error_info)(struct synps_edac_priv *priv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  345) 	enum mem_type (*get_mtype)(const void __iomem *base);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  346) 	enum dev_type (*get_dtype)(const void __iomem *base);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  347) 	bool (*get_ecc_state)(void __iomem *base);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  348) 	int quirks;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  349) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  350) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  351) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  352)  * zynq_get_error_info - Get the current ECC error info.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  353)  * @priv:	DDR memory controller private instance data.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  354)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  355)  * Return: one if there is no error, otherwise zero.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  356)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  357) static int zynq_get_error_info(struct synps_edac_priv *priv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  358) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  359) 	struct synps_ecc_status *p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  360) 	u32 regval, clearval = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  361) 	void __iomem *base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  362) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  363) 	base = priv->baseaddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  364) 	p = &priv->stat;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  365) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  366) 	regval = readl(base + STAT_OFST);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  367) 	if (!regval)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  368) 		return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  369) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  370) 	p->ce_cnt = (regval & STAT_CECNT_MASK) >> STAT_CECNT_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  371) 	p->ue_cnt = regval & STAT_UECNT_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  372) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  373) 	regval = readl(base + CE_LOG_OFST);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  374) 	if (!(p->ce_cnt && (regval & LOG_VALID)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  375) 		goto ue_err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  376) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  377) 	p->ceinfo.bitpos = (regval & CE_LOG_BITPOS_MASK) >> CE_LOG_BITPOS_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  378) 	regval = readl(base + CE_ADDR_OFST);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  379) 	p->ceinfo.row = (regval & ADDR_ROW_MASK) >> ADDR_ROW_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  380) 	p->ceinfo.col = regval & ADDR_COL_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  381) 	p->ceinfo.bank = (regval & ADDR_BANK_MASK) >> ADDR_BANK_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  382) 	p->ceinfo.data = readl(base + CE_DATA_31_0_OFST);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  383) 	edac_dbg(3, "CE bit position: %d data: %d\n", p->ceinfo.bitpos,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  384) 		 p->ceinfo.data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  385) 	clearval = ECC_CTRL_CLR_CE_ERR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  386) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  387) ue_err:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  388) 	regval = readl(base + UE_LOG_OFST);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  389) 	if (!(p->ue_cnt && (regval & LOG_VALID)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  390) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  391) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  392) 	regval = readl(base + UE_ADDR_OFST);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  393) 	p->ueinfo.row = (regval & ADDR_ROW_MASK) >> ADDR_ROW_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  394) 	p->ueinfo.col = regval & ADDR_COL_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  395) 	p->ueinfo.bank = (regval & ADDR_BANK_MASK) >> ADDR_BANK_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  396) 	p->ueinfo.data = readl(base + UE_DATA_31_0_OFST);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  397) 	clearval |= ECC_CTRL_CLR_UE_ERR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  398) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  399) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  400) 	writel(clearval, base + ECC_CTRL_OFST);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  401) 	writel(0x0, base + ECC_CTRL_OFST);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  402) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  403) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  404) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  405) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  406) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  407)  * zynqmp_get_error_info - Get the current ECC error info.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  408)  * @priv:	DDR memory controller private instance data.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  409)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  410)  * Return: one if there is no error otherwise returns zero.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  411)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  412) static int zynqmp_get_error_info(struct synps_edac_priv *priv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  413) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  414) 	struct synps_ecc_status *p;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  415) 	u32 regval, clearval = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  416) 	void __iomem *base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  417) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  418) 	base = priv->baseaddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  419) 	p = &priv->stat;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  420) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  421) 	regval = readl(base + ECC_STAT_OFST);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  422) 	if (!regval)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  423) 		return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  424) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  425) 	p->ce_cnt = (regval & ECC_STAT_CECNT_MASK) >> ECC_STAT_CECNT_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  426) 	p->ue_cnt = (regval & ECC_STAT_UECNT_MASK) >> ECC_STAT_UECNT_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  427) 	if (!p->ce_cnt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  428) 		goto ue_err;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  429) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  430) 	p->ceinfo.bitpos = (regval & ECC_STAT_BITNUM_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  431) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  432) 	regval = readl(base + ECC_CEADDR0_OFST);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  433) 	p->ceinfo.row = (regval & ECC_CEADDR0_RW_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  434) 	regval = readl(base + ECC_CEADDR1_OFST);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  435) 	p->ceinfo.bank = (regval & ECC_CEADDR1_BNKNR_MASK) >>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  436) 					ECC_CEADDR1_BNKNR_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  437) 	p->ceinfo.bankgrpnr = (regval &	ECC_CEADDR1_BNKGRP_MASK) >>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  438) 					ECC_CEADDR1_BNKGRP_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  439) 	p->ceinfo.blknr = (regval & ECC_CEADDR1_BLKNR_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  440) 	p->ceinfo.data = readl(base + ECC_CSYND0_OFST);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  441) 	edac_dbg(2, "ECCCSYN0: 0x%08X ECCCSYN1: 0x%08X ECCCSYN2: 0x%08X\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  442) 		 readl(base + ECC_CSYND0_OFST), readl(base + ECC_CSYND1_OFST),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  443) 		 readl(base + ECC_CSYND2_OFST));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  444) ue_err:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  445) 	if (!p->ue_cnt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  446) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  447) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  448) 	regval = readl(base + ECC_UEADDR0_OFST);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  449) 	p->ueinfo.row = (regval & ECC_CEADDR0_RW_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  450) 	regval = readl(base + ECC_UEADDR1_OFST);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  451) 	p->ueinfo.bankgrpnr = (regval & ECC_CEADDR1_BNKGRP_MASK) >>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  452) 					ECC_CEADDR1_BNKGRP_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  453) 	p->ueinfo.bank = (regval & ECC_CEADDR1_BNKNR_MASK) >>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  454) 					ECC_CEADDR1_BNKNR_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  455) 	p->ueinfo.blknr = (regval & ECC_CEADDR1_BLKNR_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  456) 	p->ueinfo.data = readl(base + ECC_UESYND0_OFST);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  457) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  458) 	clearval = ECC_CTRL_CLR_CE_ERR | ECC_CTRL_CLR_CE_ERRCNT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  459) 	clearval |= ECC_CTRL_CLR_UE_ERR | ECC_CTRL_CLR_UE_ERRCNT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  460) 	writel(clearval, base + ECC_CLR_OFST);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  461) 	writel(0x0, base + ECC_CLR_OFST);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  462) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  463) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  464) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  465) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  466) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  467)  * handle_error - Handle Correctable and Uncorrectable errors.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  468)  * @mci:	EDAC memory controller instance.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  469)  * @p:		Synopsys ECC status structure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  470)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  471)  * Handles ECC correctable and uncorrectable errors.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  472)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  473) static void handle_error(struct mem_ctl_info *mci, struct synps_ecc_status *p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  474) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  475) 	struct synps_edac_priv *priv = mci->pvt_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  476) 	struct ecc_error_info *pinf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  477) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  478) 	if (p->ce_cnt) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  479) 		pinf = &p->ceinfo;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  480) 		if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  481) 			snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  482) 				 "DDR ECC error type:%s Row %d Bank %d BankGroup Number %d Block Number %d Bit Position: %d Data: 0x%08x",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  483) 				 "CE", pinf->row, pinf->bank,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  484) 				 pinf->bankgrpnr, pinf->blknr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  485) 				 pinf->bitpos, pinf->data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  486) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  487) 			snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  488) 				 "DDR ECC error type:%s Row %d Bank %d Col %d Bit Position: %d Data: 0x%08x",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  489) 				 "CE", pinf->row, pinf->bank, pinf->col,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  490) 				 pinf->bitpos, pinf->data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  491) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  492) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  493) 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  494) 				     p->ce_cnt, 0, 0, 0, 0, 0, -1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  495) 				     priv->message, "");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  496) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  497) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  498) 	if (p->ue_cnt) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  499) 		pinf = &p->ueinfo;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  500) 		if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  501) 			snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  502) 				 "DDR ECC error type :%s Row %d Bank %d BankGroup Number %d Block Number %d",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  503) 				 "UE", pinf->row, pinf->bank,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  504) 				 pinf->bankgrpnr, pinf->blknr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  505) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  506) 			snprintf(priv->message, SYNPS_EDAC_MSG_SIZE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  507) 				 "DDR ECC error type :%s Row %d Bank %d Col %d ",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  508) 				 "UE", pinf->row, pinf->bank, pinf->col);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  509) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  510) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  511) 		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  512) 				     p->ue_cnt, 0, 0, 0, 0, 0, -1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  513) 				     priv->message, "");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  514) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  515) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  516) 	memset(p, 0, sizeof(*p));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  517) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  518) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  519) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  520)  * intr_handler - Interrupt Handler for ECC interrupts.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  521)  * @irq:        IRQ number.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  522)  * @dev_id:     Device ID.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  523)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  524)  * Return: IRQ_NONE, if interrupt not set or IRQ_HANDLED otherwise.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  525)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  526) static irqreturn_t intr_handler(int irq, void *dev_id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  527) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  528) 	const struct synps_platform_data *p_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  529) 	struct mem_ctl_info *mci = dev_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  530) 	struct synps_edac_priv *priv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  531) 	int status, regval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  532) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  533) 	priv = mci->pvt_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  534) 	p_data = priv->p_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  535) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  536) 	regval = readl(priv->baseaddr + DDR_QOS_IRQ_STAT_OFST);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  537) 	regval &= (DDR_QOSCE_MASK | DDR_QOSUE_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  538) 	if (!(regval & ECC_CE_UE_INTR_MASK))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  539) 		return IRQ_NONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  540) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  541) 	status = p_data->get_error_info(priv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  542) 	if (status)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  543) 		return IRQ_NONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  544) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  545) 	priv->ce_cnt += priv->stat.ce_cnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  546) 	priv->ue_cnt += priv->stat.ue_cnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  547) 	handle_error(mci, &priv->stat);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  548) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  549) 	edac_dbg(3, "Total error count CE %d UE %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  550) 		 priv->ce_cnt, priv->ue_cnt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  551) 	writel(regval, priv->baseaddr + DDR_QOS_IRQ_STAT_OFST);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  552) 	return IRQ_HANDLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  553) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  554) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  555) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  556)  * check_errors - Check controller for ECC errors.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  557)  * @mci:	EDAC memory controller instance.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  558)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  559)  * Check and post ECC errors. Called by the polling thread.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  560)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  561) static void check_errors(struct mem_ctl_info *mci)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  562) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  563) 	const struct synps_platform_data *p_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  564) 	struct synps_edac_priv *priv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  565) 	int status;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  566) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  567) 	priv = mci->pvt_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  568) 	p_data = priv->p_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  569) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  570) 	status = p_data->get_error_info(priv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  571) 	if (status)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  572) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  573) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  574) 	priv->ce_cnt += priv->stat.ce_cnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  575) 	priv->ue_cnt += priv->stat.ue_cnt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  576) 	handle_error(mci, &priv->stat);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  577) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  578) 	edac_dbg(3, "Total error count CE %d UE %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  579) 		 priv->ce_cnt, priv->ue_cnt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  580) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  581) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  582) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  583)  * zynq_get_dtype - Return the controller memory width.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  584)  * @base:	DDR memory controller base address.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  585)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  586)  * Get the EDAC device type width appropriate for the current controller
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  587)  * configuration.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  588)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  589)  * Return: a device type width enumeration.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  590)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  591) static enum dev_type zynq_get_dtype(const void __iomem *base)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  592) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  593) 	enum dev_type dt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  594) 	u32 width;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  595) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  596) 	width = readl(base + CTRL_OFST);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  597) 	width = (width & CTRL_BW_MASK) >> CTRL_BW_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  598) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  599) 	switch (width) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  600) 	case DDRCTL_WDTH_16:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  601) 		dt = DEV_X2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  602) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  603) 	case DDRCTL_WDTH_32:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  604) 		dt = DEV_X4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  605) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  606) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  607) 		dt = DEV_UNKNOWN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  608) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  609) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  610) 	return dt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  611) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  612) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  613) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  614)  * zynqmp_get_dtype - Return the controller memory width.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  615)  * @base:	DDR memory controller base address.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  616)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  617)  * Get the EDAC device type width appropriate for the current controller
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  618)  * configuration.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  619)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  620)  * Return: a device type width enumeration.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  621)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  622) static enum dev_type zynqmp_get_dtype(const void __iomem *base)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  623) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  624) 	enum dev_type dt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  625) 	u32 width;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  626) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  627) 	width = readl(base + CTRL_OFST);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  628) 	width = (width & ECC_CTRL_BUSWIDTH_MASK) >> ECC_CTRL_BUSWIDTH_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  629) 	switch (width) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  630) 	case DDRCTL_EWDTH_16:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  631) 		dt = DEV_X2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  632) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  633) 	case DDRCTL_EWDTH_32:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  634) 		dt = DEV_X4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  635) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  636) 	case DDRCTL_EWDTH_64:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  637) 		dt = DEV_X8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  638) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  639) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  640) 		dt = DEV_UNKNOWN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  641) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  642) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  643) 	return dt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  644) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  645) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  646) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  647)  * zynq_get_ecc_state - Return the controller ECC enable/disable status.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  648)  * @base:	DDR memory controller base address.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  649)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  650)  * Get the ECC enable/disable status of the controller.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  651)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  652)  * Return: true if enabled, otherwise false.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  653)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  654) static bool zynq_get_ecc_state(void __iomem *base)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  655) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  656) 	enum dev_type dt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  657) 	u32 ecctype;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  658) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  659) 	dt = zynq_get_dtype(base);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  660) 	if (dt == DEV_UNKNOWN)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  661) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  662) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  663) 	ecctype = readl(base + SCRUB_OFST) & SCRUB_MODE_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  664) 	if ((ecctype == SCRUB_MODE_SECDED) && (dt == DEV_X2))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  665) 		return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  666) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  667) 	return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  668) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  669) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  670) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  671)  * zynqmp_get_ecc_state - Return the controller ECC enable/disable status.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  672)  * @base:	DDR memory controller base address.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  673)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  674)  * Get the ECC enable/disable status for the controller.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  675)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  676)  * Return: a ECC status boolean i.e true/false - enabled/disabled.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  677)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  678) static bool zynqmp_get_ecc_state(void __iomem *base)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  679) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  680) 	enum dev_type dt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  681) 	u32 ecctype;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  682) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  683) 	dt = zynqmp_get_dtype(base);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  684) 	if (dt == DEV_UNKNOWN)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  685) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  686) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  687) 	ecctype = readl(base + ECC_CFG0_OFST) & SCRUB_MODE_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  688) 	if ((ecctype == SCRUB_MODE_SECDED) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  689) 	    ((dt == DEV_X2) || (dt == DEV_X4) || (dt == DEV_X8)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  690) 		return true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  691) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  692) 	return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  693) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  694) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  695) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  696)  * get_memsize - Read the size of the attached memory device.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  697)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  698)  * Return: the memory size in bytes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  699)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  700) static u32 get_memsize(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  701) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  702) 	struct sysinfo inf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  703) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  704) 	si_meminfo(&inf);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  705) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  706) 	return inf.totalram * inf.mem_unit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  707) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  708) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  709) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  710)  * zynq_get_mtype - Return the controller memory type.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  711)  * @base:	Synopsys ECC status structure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  712)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  713)  * Get the EDAC memory type appropriate for the current controller
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  714)  * configuration.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  715)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  716)  * Return: a memory type enumeration.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  717)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  718) static enum mem_type zynq_get_mtype(const void __iomem *base)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  719) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  720) 	enum mem_type mt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  721) 	u32 memtype;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  722) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  723) 	memtype = readl(base + T_ZQ_OFST);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  724) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  725) 	if (memtype & T_ZQ_DDRMODE_MASK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  726) 		mt = MEM_DDR3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  727) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  728) 		mt = MEM_DDR2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  729) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  730) 	return mt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  731) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  732) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  733) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  734)  * zynqmp_get_mtype - Returns controller memory type.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  735)  * @base:	Synopsys ECC status structure.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  736)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  737)  * Get the EDAC memory type appropriate for the current controller
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  738)  * configuration.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  739)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  740)  * Return: a memory type enumeration.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  741)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  742) static enum mem_type zynqmp_get_mtype(const void __iomem *base)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  743) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  744) 	enum mem_type mt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  745) 	u32 memtype;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  746) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  747) 	memtype = readl(base + CTRL_OFST);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  748) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  749) 	if ((memtype & MEM_TYPE_DDR3) || (memtype & MEM_TYPE_LPDDR3))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  750) 		mt = MEM_DDR3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  751) 	else if (memtype & MEM_TYPE_DDR2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  752) 		mt = MEM_RDDR2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  753) 	else if ((memtype & MEM_TYPE_LPDDR4) || (memtype & MEM_TYPE_DDR4))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  754) 		mt = MEM_DDR4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  755) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  756) 		mt = MEM_EMPTY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  757) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  758) 	return mt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  759) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  760) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  761) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  762)  * init_csrows - Initialize the csrow data.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  763)  * @mci:	EDAC memory controller instance.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  764)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  765)  * Initialize the chip select rows associated with the EDAC memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  766)  * controller instance.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  767)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  768) static void init_csrows(struct mem_ctl_info *mci)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  769) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  770) 	struct synps_edac_priv *priv = mci->pvt_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  771) 	const struct synps_platform_data *p_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  772) 	struct csrow_info *csi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  773) 	struct dimm_info *dimm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  774) 	u32 size, row;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  775) 	int j;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  776) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  777) 	p_data = priv->p_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  778) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  779) 	for (row = 0; row < mci->nr_csrows; row++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  780) 		csi = mci->csrows[row];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  781) 		size = get_memsize();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  782) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  783) 		for (j = 0; j < csi->nr_channels; j++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  784) 			dimm		= csi->channels[j]->dimm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  785) 			dimm->edac_mode	= EDAC_SECDED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  786) 			dimm->mtype	= p_data->get_mtype(priv->baseaddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  787) 			dimm->nr_pages	= (size >> PAGE_SHIFT) / csi->nr_channels;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  788) 			dimm->grain	= SYNPS_EDAC_ERR_GRAIN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  789) 			dimm->dtype	= p_data->get_dtype(priv->baseaddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  790) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  791) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  792) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  793) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  794) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  795)  * mc_init - Initialize one driver instance.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  796)  * @mci:	EDAC memory controller instance.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  797)  * @pdev:	platform device.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  798)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  799)  * Perform initialization of the EDAC memory controller instance and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  800)  * related driver-private data associated with the memory controller the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  801)  * instance is bound to.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  802)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  803) static void mc_init(struct mem_ctl_info *mci, struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  804) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  805) 	struct synps_edac_priv *priv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  806) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  807) 	mci->pdev = &pdev->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  808) 	priv = mci->pvt_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  809) 	platform_set_drvdata(pdev, mci);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  810) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  811) 	/* Initialize controller capabilities and configuration */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  812) 	mci->mtype_cap = MEM_FLAG_DDR3 | MEM_FLAG_DDR2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  813) 	mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  814) 	mci->scrub_cap = SCRUB_HW_SRC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  815) 	mci->scrub_mode = SCRUB_NONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  816) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  817) 	mci->edac_cap = EDAC_FLAG_SECDED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  818) 	mci->ctl_name = "synps_ddr_controller";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  819) 	mci->dev_name = SYNPS_EDAC_MOD_STRING;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  820) 	mci->mod_name = SYNPS_EDAC_MOD_VER;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  821) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  822) 	if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  823) 		edac_op_state = EDAC_OPSTATE_INT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  824) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  825) 		edac_op_state = EDAC_OPSTATE_POLL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  826) 		mci->edac_check = check_errors;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  827) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  828) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  829) 	mci->ctl_page_to_phys = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  830) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  831) 	init_csrows(mci);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  832) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  833) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  834) static void enable_intr(struct synps_edac_priv *priv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  835) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  836) 	/* Enable UE/CE Interrupts */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  837) 	writel(DDR_QOSUE_MASK | DDR_QOSCE_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  838) 			priv->baseaddr + DDR_QOS_IRQ_EN_OFST);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  839) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  840) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  841) static void disable_intr(struct synps_edac_priv *priv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  842) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  843) 	/* Disable UE/CE Interrupts */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  844) 	writel(DDR_QOSUE_MASK | DDR_QOSCE_MASK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  845) 			priv->baseaddr + DDR_QOS_IRQ_DB_OFST);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  846) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  847) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  848) static int setup_irq(struct mem_ctl_info *mci,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  849) 		     struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  850) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  851) 	struct synps_edac_priv *priv = mci->pvt_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  852) 	int ret, irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  853) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  854) 	irq = platform_get_irq(pdev, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  855) 	if (irq < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  856) 		edac_printk(KERN_ERR, EDAC_MC,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  857) 			    "No IRQ %d in DT\n", irq);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  858) 		return irq;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  859) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  860) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  861) 	ret = devm_request_irq(&pdev->dev, irq, intr_handler,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  862) 			       0, dev_name(&pdev->dev), mci);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  863) 	if (ret < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  864) 		edac_printk(KERN_ERR, EDAC_MC, "Failed to request IRQ\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  865) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  866) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  867) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  868) 	enable_intr(priv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  869) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  870) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  871) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  872) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  873) static const struct synps_platform_data zynq_edac_def = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  874) 	.get_error_info	= zynq_get_error_info,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  875) 	.get_mtype	= zynq_get_mtype,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  876) 	.get_dtype	= zynq_get_dtype,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  877) 	.get_ecc_state	= zynq_get_ecc_state,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  878) 	.quirks		= 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  879) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  880) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  881) static const struct synps_platform_data zynqmp_edac_def = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  882) 	.get_error_info	= zynqmp_get_error_info,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  883) 	.get_mtype	= zynqmp_get_mtype,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  884) 	.get_dtype	= zynqmp_get_dtype,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  885) 	.get_ecc_state	= zynqmp_get_ecc_state,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  886) 	.quirks         = (DDR_ECC_INTR_SUPPORT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  887) #ifdef CONFIG_EDAC_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  888) 			  | DDR_ECC_DATA_POISON_SUPPORT
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  889) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  890) 			  ),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  891) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  892) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  893) static const struct of_device_id synps_edac_match[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  894) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  895) 		.compatible = "xlnx,zynq-ddrc-a05",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  896) 		.data = (void *)&zynq_edac_def
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  897) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  898) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  899) 		.compatible = "xlnx,zynqmp-ddrc-2.40a",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  900) 		.data = (void *)&zynqmp_edac_def
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  901) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  902) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  903) 		/* end of table */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  904) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  905) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  906) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  907) MODULE_DEVICE_TABLE(of, synps_edac_match);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  908) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  909) #ifdef CONFIG_EDAC_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  910) #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  911) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  912) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  913)  * ddr_poison_setup -	Update poison registers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  914)  * @priv:		DDR memory controller private instance data.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  915)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  916)  * Update poison registers as per DDR mapping.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  917)  * Return: none.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  918)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  919) static void ddr_poison_setup(struct synps_edac_priv *priv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  920) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  921) 	int col = 0, row = 0, bank = 0, bankgrp = 0, rank = 0, regval;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  922) 	int index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  923) 	ulong hif_addr = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  924) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  925) 	hif_addr = priv->poison_addr >> 3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  926) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  927) 	for (index = 0; index < DDR_MAX_ROW_SHIFT; index++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  928) 		if (priv->row_shift[index])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  929) 			row |= (((hif_addr >> priv->row_shift[index]) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  930) 						BIT(0)) << index);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  931) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  932) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  933) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  934) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  935) 	for (index = 0; index < DDR_MAX_COL_SHIFT; index++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  936) 		if (priv->col_shift[index] || index < 3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  937) 			col |= (((hif_addr >> priv->col_shift[index]) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  938) 						BIT(0)) << index);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  939) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  940) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  941) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  942) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  943) 	for (index = 0; index < DDR_MAX_BANK_SHIFT; index++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  944) 		if (priv->bank_shift[index])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  945) 			bank |= (((hif_addr >> priv->bank_shift[index]) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  946) 						BIT(0)) << index);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  947) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  948) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  949) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  950) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  951) 	for (index = 0; index < DDR_MAX_BANKGRP_SHIFT; index++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  952) 		if (priv->bankgrp_shift[index])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  953) 			bankgrp |= (((hif_addr >> priv->bankgrp_shift[index])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  954) 						& BIT(0)) << index);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  955) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  956) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  957) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  958) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  959) 	if (priv->rank_shift[0])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  960) 		rank = (hif_addr >> priv->rank_shift[0]) & BIT(0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  961) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  962) 	regval = (rank << ECC_POISON0_RANK_SHIFT) & ECC_POISON0_RANK_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  963) 	regval |= (col << ECC_POISON0_COLUMN_SHIFT) & ECC_POISON0_COLUMN_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  964) 	writel(regval, priv->baseaddr + ECC_POISON0_OFST);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  965) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  966) 	regval = (bankgrp << ECC_POISON1_BG_SHIFT) & ECC_POISON1_BG_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  967) 	regval |= (bank << ECC_POISON1_BANKNR_SHIFT) & ECC_POISON1_BANKNR_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  968) 	regval |= (row << ECC_POISON1_ROW_SHIFT) & ECC_POISON1_ROW_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  969) 	writel(regval, priv->baseaddr + ECC_POISON1_OFST);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  970) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  971) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  972) static ssize_t inject_data_error_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  973) 				      struct device_attribute *mattr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  974) 				      char *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  975) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  976) 	struct mem_ctl_info *mci = to_mci(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  977) 	struct synps_edac_priv *priv = mci->pvt_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  978) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  979) 	return sprintf(data, "Poison0 Addr: 0x%08x\n\rPoison1 Addr: 0x%08x\n\r"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  980) 			"Error injection Address: 0x%lx\n\r",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  981) 			readl(priv->baseaddr + ECC_POISON0_OFST),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  982) 			readl(priv->baseaddr + ECC_POISON1_OFST),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  983) 			priv->poison_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  984) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  985) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  986) static ssize_t inject_data_error_store(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  987) 				       struct device_attribute *mattr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  988) 				       const char *data, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  989) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  990) 	struct mem_ctl_info *mci = to_mci(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  991) 	struct synps_edac_priv *priv = mci->pvt_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  992) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  993) 	if (kstrtoul(data, 0, &priv->poison_addr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  994) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  995) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  996) 	ddr_poison_setup(priv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  997) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  998) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  999) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) static ssize_t inject_data_poison_show(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) 				       struct device_attribute *mattr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) 				       char *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005) 	struct mem_ctl_info *mci = to_mci(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) 	struct synps_edac_priv *priv = mci->pvt_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008) 	return sprintf(data, "Data Poisoning: %s\n\r",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) 			(((readl(priv->baseaddr + ECC_CFG1_OFST)) & 0x3) == 0x3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) 			? ("Correctable Error") : ("UnCorrectable Error"));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) static ssize_t inject_data_poison_store(struct device *dev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014) 					struct device_attribute *mattr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) 					const char *data, size_t count)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017) 	struct mem_ctl_info *mci = to_mci(dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018) 	struct synps_edac_priv *priv = mci->pvt_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020) 	writel(0, priv->baseaddr + DDRC_SWCTL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021) 	if (strncmp(data, "CE", 2) == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022) 		writel(ECC_CEPOISON_MASK, priv->baseaddr + ECC_CFG1_OFST);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) 		writel(ECC_UEPOISON_MASK, priv->baseaddr + ECC_CFG1_OFST);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) 	writel(1, priv->baseaddr + DDRC_SWCTL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027) 	return count;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030) static DEVICE_ATTR_RW(inject_data_error);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031) static DEVICE_ATTR_RW(inject_data_poison);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033) static int edac_create_sysfs_attributes(struct mem_ctl_info *mci)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035) 	int rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037) 	rc = device_create_file(&mci->dev, &dev_attr_inject_data_error);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038) 	if (rc < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039) 		return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040) 	rc = device_create_file(&mci->dev, &dev_attr_inject_data_poison);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041) 	if (rc < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042) 		return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046) static void edac_remove_sysfs_attributes(struct mem_ctl_info *mci)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048) 	device_remove_file(&mci->dev, &dev_attr_inject_data_error);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049) 	device_remove_file(&mci->dev, &dev_attr_inject_data_poison);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052) static void setup_row_address_map(struct synps_edac_priv *priv, u32 *addrmap)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054) 	u32 addrmap_row_b2_10;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055) 	int index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057) 	priv->row_shift[0] = (addrmap[5] & ROW_MAX_VAL_MASK) + ROW_B0_BASE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058) 	priv->row_shift[1] = ((addrmap[5] >> 8) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) 			ROW_MAX_VAL_MASK) + ROW_B1_BASE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) 	addrmap_row_b2_10 = (addrmap[5] >> 16) & ROW_MAX_VAL_MASK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) 	if (addrmap_row_b2_10 != ROW_MAX_VAL_MASK) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) 		for (index = 2; index < 11; index++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) 			priv->row_shift[index] = addrmap_row_b2_10 +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) 				index + ROW_B0_BASE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) 		priv->row_shift[2] = (addrmap[9] &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) 				ROW_MAX_VAL_MASK) + ROW_B2_BASE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) 		priv->row_shift[3] = ((addrmap[9] >> 8) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) 				ROW_MAX_VAL_MASK) + ROW_B3_BASE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) 		priv->row_shift[4] = ((addrmap[9] >> 16) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) 				ROW_MAX_VAL_MASK) + ROW_B4_BASE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) 		priv->row_shift[5] = ((addrmap[9] >> 24) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) 				ROW_MAX_VAL_MASK) + ROW_B5_BASE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) 		priv->row_shift[6] = (addrmap[10] &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) 				ROW_MAX_VAL_MASK) + ROW_B6_BASE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078) 		priv->row_shift[7] = ((addrmap[10] >> 8) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) 				ROW_MAX_VAL_MASK) + ROW_B7_BASE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) 		priv->row_shift[8] = ((addrmap[10] >> 16) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) 				ROW_MAX_VAL_MASK) + ROW_B8_BASE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) 		priv->row_shift[9] = ((addrmap[10] >> 24) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) 				ROW_MAX_VAL_MASK) + ROW_B9_BASE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) 		priv->row_shift[10] = (addrmap[11] &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) 				ROW_MAX_VAL_MASK) + ROW_B10_BASE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088) 	priv->row_shift[11] = (((addrmap[5] >> 24) & ROW_MAX_VAL_MASK) ==
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) 				ROW_MAX_VAL_MASK) ? 0 : (((addrmap[5] >> 24) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090) 				ROW_MAX_VAL_MASK) + ROW_B11_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) 	priv->row_shift[12] = ((addrmap[6] & ROW_MAX_VAL_MASK) ==
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) 				ROW_MAX_VAL_MASK) ? 0 : ((addrmap[6] &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) 				ROW_MAX_VAL_MASK) + ROW_B12_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) 	priv->row_shift[13] = (((addrmap[6] >> 8) & ROW_MAX_VAL_MASK) ==
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) 				ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 8) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096) 				ROW_MAX_VAL_MASK) + ROW_B13_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097) 	priv->row_shift[14] = (((addrmap[6] >> 16) & ROW_MAX_VAL_MASK) ==
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098) 				ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 16) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099) 				ROW_MAX_VAL_MASK) + ROW_B14_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100) 	priv->row_shift[15] = (((addrmap[6] >> 24) & ROW_MAX_VAL_MASK) ==
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101) 				ROW_MAX_VAL_MASK) ? 0 : (((addrmap[6] >> 24) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102) 				ROW_MAX_VAL_MASK) + ROW_B15_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103) 	priv->row_shift[16] = ((addrmap[7] & ROW_MAX_VAL_MASK) ==
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104) 				ROW_MAX_VAL_MASK) ? 0 : ((addrmap[7] &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105) 				ROW_MAX_VAL_MASK) + ROW_B16_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106) 	priv->row_shift[17] = (((addrmap[7] >> 8) & ROW_MAX_VAL_MASK) ==
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) 				ROW_MAX_VAL_MASK) ? 0 : (((addrmap[7] >> 8) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108) 				ROW_MAX_VAL_MASK) + ROW_B17_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111) static void setup_column_address_map(struct synps_edac_priv *priv, u32 *addrmap)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) 	u32 width, memtype;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114) 	int index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116) 	memtype = readl(priv->baseaddr + CTRL_OFST);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) 	width = (memtype & ECC_CTRL_BUSWIDTH_MASK) >> ECC_CTRL_BUSWIDTH_SHIFT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119) 	priv->col_shift[0] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) 	priv->col_shift[1] = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) 	priv->col_shift[2] = (addrmap[2] & COL_MAX_VAL_MASK) + COL_B2_BASE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122) 	priv->col_shift[3] = ((addrmap[2] >> 8) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123) 			COL_MAX_VAL_MASK) + COL_B3_BASE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124) 	priv->col_shift[4] = (((addrmap[2] >> 16) & COL_MAX_VAL_MASK) ==
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125) 			COL_MAX_VAL_MASK) ? 0 : (((addrmap[2] >> 16) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126) 					COL_MAX_VAL_MASK) + COL_B4_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127) 	priv->col_shift[5] = (((addrmap[2] >> 24) & COL_MAX_VAL_MASK) ==
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128) 			COL_MAX_VAL_MASK) ? 0 : (((addrmap[2] >> 24) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129) 					COL_MAX_VAL_MASK) + COL_B5_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130) 	priv->col_shift[6] = ((addrmap[3] & COL_MAX_VAL_MASK) ==
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131) 			COL_MAX_VAL_MASK) ? 0 : ((addrmap[3] &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132) 					COL_MAX_VAL_MASK) + COL_B6_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133) 	priv->col_shift[7] = (((addrmap[3] >> 8) & COL_MAX_VAL_MASK) ==
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134) 			COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 8) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135) 					COL_MAX_VAL_MASK) + COL_B7_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136) 	priv->col_shift[8] = (((addrmap[3] >> 16) & COL_MAX_VAL_MASK) ==
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137) 			COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 16) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138) 					COL_MAX_VAL_MASK) + COL_B8_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139) 	priv->col_shift[9] = (((addrmap[3] >> 24) & COL_MAX_VAL_MASK) ==
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140) 			COL_MAX_VAL_MASK) ? 0 : (((addrmap[3] >> 24) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141) 					COL_MAX_VAL_MASK) + COL_B9_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142) 	if (width == DDRCTL_EWDTH_64) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143) 		if (memtype & MEM_TYPE_LPDDR3) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144) 			priv->col_shift[10] = ((addrmap[4] &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145) 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146) 				((addrmap[4] & COL_MAX_VAL_MASK) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147) 				 COL_B10_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148) 			priv->col_shift[11] = (((addrmap[4] >> 8) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149) 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150) 				(((addrmap[4] >> 8) & COL_MAX_VAL_MASK) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151) 				 COL_B11_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153) 			priv->col_shift[11] = ((addrmap[4] &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154) 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155) 				((addrmap[4] & COL_MAX_VAL_MASK) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156) 				 COL_B10_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157) 			priv->col_shift[13] = (((addrmap[4] >> 8) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158) 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159) 				(((addrmap[4] >> 8) & COL_MAX_VAL_MASK) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160) 				 COL_B11_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1162) 	} else if (width == DDRCTL_EWDTH_32) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1163) 		if (memtype & MEM_TYPE_LPDDR3) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1164) 			priv->col_shift[10] = (((addrmap[3] >> 24) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1165) 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1166) 				(((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1167) 				 COL_B9_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1168) 			priv->col_shift[11] = ((addrmap[4] &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1169) 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1170) 				((addrmap[4] & COL_MAX_VAL_MASK) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1171) 				 COL_B10_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1172) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1173) 			priv->col_shift[11] = (((addrmap[3] >> 24) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1174) 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1175) 				(((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1176) 				 COL_B9_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1177) 			priv->col_shift[13] = ((addrmap[4] &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1178) 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1179) 				((addrmap[4] & COL_MAX_VAL_MASK) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1180) 				 COL_B10_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1181) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1182) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1183) 		if (memtype & MEM_TYPE_LPDDR3) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1184) 			priv->col_shift[10] = (((addrmap[3] >> 16) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1185) 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1186) 				(((addrmap[3] >> 16) & COL_MAX_VAL_MASK) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1187) 				 COL_B8_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1188) 			priv->col_shift[11] = (((addrmap[3] >> 24) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1189) 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1190) 				(((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1191) 				 COL_B9_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1192) 			priv->col_shift[13] = ((addrmap[4] &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1193) 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1194) 				((addrmap[4] & COL_MAX_VAL_MASK) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1195) 				 COL_B10_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1196) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1197) 			priv->col_shift[11] = (((addrmap[3] >> 16) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1198) 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1199) 				(((addrmap[3] >> 16) & COL_MAX_VAL_MASK) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1200) 				 COL_B8_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1201) 			priv->col_shift[13] = (((addrmap[3] >> 24) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1202) 				COL_MAX_VAL_MASK) == COL_MAX_VAL_MASK) ? 0 :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1203) 				(((addrmap[3] >> 24) & COL_MAX_VAL_MASK) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1204) 				 COL_B9_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1205) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1206) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1207) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1208) 	if (width) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1209) 		for (index = 9; index > width; index--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1210) 			priv->col_shift[index] = priv->col_shift[index - width];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1211) 			priv->col_shift[index - width] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1212) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1213) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1214) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1215) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1216) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1217) static void setup_bank_address_map(struct synps_edac_priv *priv, u32 *addrmap)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1218) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1219) 	priv->bank_shift[0] = (addrmap[1] & BANK_MAX_VAL_MASK) + BANK_B0_BASE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1220) 	priv->bank_shift[1] = ((addrmap[1] >> 8) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1221) 				BANK_MAX_VAL_MASK) + BANK_B1_BASE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1222) 	priv->bank_shift[2] = (((addrmap[1] >> 16) &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1223) 				BANK_MAX_VAL_MASK) == BANK_MAX_VAL_MASK) ? 0 :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1224) 				(((addrmap[1] >> 16) & BANK_MAX_VAL_MASK) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1225) 				 BANK_B2_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1226) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1227) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1228) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1229) static void setup_bg_address_map(struct synps_edac_priv *priv, u32 *addrmap)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1230) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1231) 	priv->bankgrp_shift[0] = (addrmap[8] &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1232) 				BANKGRP_MAX_VAL_MASK) + BANKGRP_B0_BASE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1233) 	priv->bankgrp_shift[1] = (((addrmap[8] >> 8) & BANKGRP_MAX_VAL_MASK) ==
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1234) 				BANKGRP_MAX_VAL_MASK) ? 0 : (((addrmap[8] >> 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1235) 				& BANKGRP_MAX_VAL_MASK) + BANKGRP_B1_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1236) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1237) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1238) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1239) static void setup_rank_address_map(struct synps_edac_priv *priv, u32 *addrmap)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1240) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1241) 	priv->rank_shift[0] = ((addrmap[0] & RANK_MAX_VAL_MASK) ==
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1242) 				RANK_MAX_VAL_MASK) ? 0 : ((addrmap[0] &
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1243) 				RANK_MAX_VAL_MASK) + RANK_B0_BASE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1244) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1245) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1246) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1247)  * setup_address_map -	Set Address Map by querying ADDRMAP registers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1248)  * @priv:		DDR memory controller private instance data.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1249)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1250)  * Set Address Map by querying ADDRMAP registers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1251)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1252)  * Return: none.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1253)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1254) static void setup_address_map(struct synps_edac_priv *priv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1255) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1256) 	u32 addrmap[12];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1257) 	int index;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1258) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1259) 	for (index = 0; index < 12; index++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1260) 		u32 addrmap_offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1261) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1262) 		addrmap_offset = ECC_ADDRMAP0_OFFSET + (index * 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1263) 		addrmap[index] = readl(priv->baseaddr + addrmap_offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1264) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1265) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1266) 	setup_row_address_map(priv, addrmap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1267) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1268) 	setup_column_address_map(priv, addrmap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1269) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1270) 	setup_bank_address_map(priv, addrmap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1271) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1272) 	setup_bg_address_map(priv, addrmap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1273) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1274) 	setup_rank_address_map(priv, addrmap);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1275) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1276) #endif /* CONFIG_EDAC_DEBUG */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1277) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1278) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1279)  * mc_probe - Check controller and bind driver.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1280)  * @pdev:	platform device.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1281)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1282)  * Probe a specific controller instance for binding with the driver.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1283)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1284)  * Return: 0 if the controller instance was successfully bound to the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1285)  * driver; otherwise, < 0 on error.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1286)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1287) static int mc_probe(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1288) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1289) 	const struct synps_platform_data *p_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1290) 	struct edac_mc_layer layers[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1291) 	struct synps_edac_priv *priv;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1292) 	struct mem_ctl_info *mci;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1293) 	void __iomem *baseaddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1294) 	struct resource *res;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1295) 	int rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1296) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1297) 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1298) 	baseaddr = devm_ioremap_resource(&pdev->dev, res);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1299) 	if (IS_ERR(baseaddr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1300) 		return PTR_ERR(baseaddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1301) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1302) 	p_data = of_device_get_match_data(&pdev->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1303) 	if (!p_data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1304) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1305) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1306) 	if (!p_data->get_ecc_state(baseaddr)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1307) 		edac_printk(KERN_INFO, EDAC_MC, "ECC not enabled\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1308) 		return -ENXIO;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1309) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1310) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1311) 	layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1312) 	layers[0].size = SYNPS_EDAC_NR_CSROWS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1313) 	layers[0].is_virt_csrow = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1314) 	layers[1].type = EDAC_MC_LAYER_CHANNEL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1315) 	layers[1].size = SYNPS_EDAC_NR_CHANS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1316) 	layers[1].is_virt_csrow = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1317) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1318) 	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1319) 			    sizeof(struct synps_edac_priv));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1320) 	if (!mci) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1321) 		edac_printk(KERN_ERR, EDAC_MC,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1322) 			    "Failed memory allocation for mc instance\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1323) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1324) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1325) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1326) 	priv = mci->pvt_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1327) 	priv->baseaddr = baseaddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1328) 	priv->p_data = p_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1329) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1330) 	mc_init(mci, pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1331) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1332) 	if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1333) 		rc = setup_irq(mci, pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1334) 		if (rc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1335) 			goto free_edac_mc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1336) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1337) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1338) 	rc = edac_mc_add_mc(mci);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1339) 	if (rc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1340) 		edac_printk(KERN_ERR, EDAC_MC,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1341) 			    "Failed to register with EDAC core\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1342) 		goto free_edac_mc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1343) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1344) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1345) #ifdef CONFIG_EDAC_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1346) 	if (priv->p_data->quirks & DDR_ECC_DATA_POISON_SUPPORT) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1347) 		if (edac_create_sysfs_attributes(mci)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1348) 			edac_printk(KERN_ERR, EDAC_MC,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1349) 					"Failed to create sysfs entries\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1350) 			goto free_edac_mc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1351) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1352) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1353) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1354) 	if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1355) 		setup_address_map(priv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1356) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1357) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1358) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1359) 	 * Start capturing the correctable and uncorrectable errors. A write of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1360) 	 * 0 starts the counters.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1361) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1362) 	if (!(priv->p_data->quirks & DDR_ECC_INTR_SUPPORT))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1363) 		writel(0x0, baseaddr + ECC_CTRL_OFST);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1364) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1365) 	return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1366) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1367) free_edac_mc:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1368) 	edac_mc_free(mci);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1369) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1370) 	return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1371) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1372) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1373) /**
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1374)  * mc_remove - Unbind driver from controller.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1375)  * @pdev:	Platform device.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1376)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1377)  * Return: Unconditionally 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1378)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1379) static int mc_remove(struct platform_device *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1380) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1381) 	struct mem_ctl_info *mci = platform_get_drvdata(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1382) 	struct synps_edac_priv *priv = mci->pvt_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1383) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1384) 	if (priv->p_data->quirks & DDR_ECC_INTR_SUPPORT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1385) 		disable_intr(priv);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1386) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1387) #ifdef CONFIG_EDAC_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1388) 	if (priv->p_data->quirks & DDR_ECC_DATA_POISON_SUPPORT)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1389) 		edac_remove_sysfs_attributes(mci);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1390) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1391) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1392) 	edac_mc_del_mc(&pdev->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1393) 	edac_mc_free(mci);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1394) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1395) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1396) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1397) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1398) static struct platform_driver synps_edac_mc_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1399) 	.driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1400) 		   .name = "synopsys-edac",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1401) 		   .of_match_table = synps_edac_match,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1402) 		   },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1403) 	.probe = mc_probe,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1404) 	.remove = mc_remove,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1405) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1406) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1407) module_platform_driver(synps_edac_mc_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1408) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1409) MODULE_AUTHOR("Xilinx Inc");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1410) MODULE_DESCRIPTION("Synopsys DDR ECC driver");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1411) MODULE_LICENSE("GPL v2");