Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    1) // SPDX-License-Identifier: GPL-2.0-only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    2) /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    3)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    4)  * This driver supports the memory controllers found on the Intel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    5)  * processor family Sandy Bridge.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    6)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    7)  * Copyright (c) 2011 by:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    8)  *	 Mauro Carvalho Chehab
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    9)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   10) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   11) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   12) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   13) #include <linux/pci.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   14) #include <linux/pci_ids.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   15) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   16) #include <linux/delay.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   17) #include <linux/edac.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   18) #include <linux/mmzone.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   19) #include <linux/smp.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   20) #include <linux/bitmap.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   21) #include <linux/math64.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   22) #include <linux/mod_devicetable.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   23) #include <asm/cpu_device_id.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   24) #include <asm/intel-family.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   25) #include <asm/processor.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   26) #include <asm/mce.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   27) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   28) #include "edac_module.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   29) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   30) /* Static vars */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   31) static LIST_HEAD(sbridge_edac_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   32) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   33) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   34)  * Alter this version for the module when modifications are made
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   35)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   36) #define SBRIDGE_REVISION    " Ver: 1.1.2 "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   37) #define EDAC_MOD_STR	    "sb_edac"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   38) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   39) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   40)  * Debug macros
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   41)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   42) #define sbridge_printk(level, fmt, arg...)			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   43) 	edac_printk(level, "sbridge", fmt, ##arg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   44) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   45) #define sbridge_mc_printk(mci, level, fmt, arg...)		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   46) 	edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   47) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   48) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   49)  * Get a bit field at register value <v>, from bit <lo> to bit <hi>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   50)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   51) #define GET_BITFIELD(v, lo, hi)	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   52) 	(((v) & GENMASK_ULL(hi, lo)) >> (lo))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   53) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   54) /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   55) static const u32 sbridge_dram_rule[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   56) 	0x80, 0x88, 0x90, 0x98, 0xa0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   57) 	0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   58) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   59) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   60) static const u32 ibridge_dram_rule[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   61) 	0x60, 0x68, 0x70, 0x78, 0x80,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   62) 	0x88, 0x90, 0x98, 0xa0,	0xa8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   63) 	0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   64) 	0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   65) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   66) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   67) static const u32 knl_dram_rule[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   68) 	0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   69) 	0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   70) 	0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   71) 	0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   72) 	0x100, 0x108, 0x110, 0x118,   /* 20-23 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   73) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   74) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   75) #define DRAM_RULE_ENABLE(reg)	GET_BITFIELD(reg, 0,  0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   76) #define A7MODE(reg)		GET_BITFIELD(reg, 26, 26)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   77) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   78) static char *show_dram_attr(u32 attr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   79) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   80) 	switch (attr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   81) 		case 0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   82) 			return "DRAM";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   83) 		case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   84) 			return "MMCFG";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   85) 		case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   86) 			return "NXM";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   87) 		default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   88) 			return "unknown";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   89) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   90) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   91) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   92) static const u32 sbridge_interleave_list[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   93) 	0x84, 0x8c, 0x94, 0x9c, 0xa4,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   94) 	0xac, 0xb4, 0xbc, 0xc4, 0xcc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   95) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   96) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   97) static const u32 ibridge_interleave_list[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   98) 	0x64, 0x6c, 0x74, 0x7c, 0x84,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   99) 	0x8c, 0x94, 0x9c, 0xa4, 0xac,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  100) 	0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  101) 	0xdc, 0xe4, 0xec, 0xf4, 0xfc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  102) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  103) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  104) static const u32 knl_interleave_list[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  105) 	0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  106) 	0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  107) 	0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  108) 	0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  109) 	0x104, 0x10c, 0x114, 0x11c,   /* 20-23 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  110) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  111) #define MAX_INTERLEAVE							\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  112) 	(max_t(unsigned int, ARRAY_SIZE(sbridge_interleave_list),	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  113) 	       max_t(unsigned int, ARRAY_SIZE(ibridge_interleave_list),	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  114) 		     ARRAY_SIZE(knl_interleave_list))))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  115) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  116) struct interleave_pkg {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  117) 	unsigned char start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  118) 	unsigned char end;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  119) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  120) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  121) static const struct interleave_pkg sbridge_interleave_pkg[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  122) 	{ 0, 2 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  123) 	{ 3, 5 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  124) 	{ 8, 10 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  125) 	{ 11, 13 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  126) 	{ 16, 18 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  127) 	{ 19, 21 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  128) 	{ 24, 26 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  129) 	{ 27, 29 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  130) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  131) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  132) static const struct interleave_pkg ibridge_interleave_pkg[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  133) 	{ 0, 3 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  134) 	{ 4, 7 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  135) 	{ 8, 11 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  136) 	{ 12, 15 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  137) 	{ 16, 19 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  138) 	{ 20, 23 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  139) 	{ 24, 27 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  140) 	{ 28, 31 },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  141) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  142) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  143) static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  144) 			  int interleave)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  145) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  146) 	return GET_BITFIELD(reg, table[interleave].start,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  147) 			    table[interleave].end);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  148) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  149) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  150) /* Devices 12 Function 7 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  151) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  152) #define TOLM		0x80
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  153) #define TOHM		0x84
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  154) #define HASWELL_TOLM	0xd0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  155) #define HASWELL_TOHM_0	0xd4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  156) #define HASWELL_TOHM_1	0xd8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  157) #define KNL_TOLM	0xd0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  158) #define KNL_TOHM_0	0xd4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  159) #define KNL_TOHM_1	0xd8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  160) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  161) #define GET_TOLM(reg)		((GET_BITFIELD(reg, 0,  3) << 28) | 0x3ffffff)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  162) #define GET_TOHM(reg)		((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  163) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  164) /* Device 13 Function 6 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  165) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  166) #define SAD_TARGET	0xf0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  167) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  168) #define SOURCE_ID(reg)		GET_BITFIELD(reg, 9, 11)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  169) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  170) #define SOURCE_ID_KNL(reg)	GET_BITFIELD(reg, 12, 14)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  171) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  172) #define SAD_CONTROL	0xf4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  173) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  174) /* Device 14 function 0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  175) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  176) static const u32 tad_dram_rule[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  177) 	0x40, 0x44, 0x48, 0x4c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  178) 	0x50, 0x54, 0x58, 0x5c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  179) 	0x60, 0x64, 0x68, 0x6c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  180) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  181) #define MAX_TAD	ARRAY_SIZE(tad_dram_rule)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  182) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  183) #define TAD_LIMIT(reg)		((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  184) #define TAD_SOCK(reg)		GET_BITFIELD(reg, 10, 11)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  185) #define TAD_CH(reg)		GET_BITFIELD(reg,  8,  9)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  186) #define TAD_TGT3(reg)		GET_BITFIELD(reg,  6,  7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  187) #define TAD_TGT2(reg)		GET_BITFIELD(reg,  4,  5)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  188) #define TAD_TGT1(reg)		GET_BITFIELD(reg,  2,  3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  189) #define TAD_TGT0(reg)		GET_BITFIELD(reg,  0,  1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  190) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  191) /* Device 15, function 0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  192) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  193) #define MCMTR			0x7c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  194) #define KNL_MCMTR		0x624
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  195) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  196) #define IS_ECC_ENABLED(mcmtr)		GET_BITFIELD(mcmtr, 2, 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  197) #define IS_LOCKSTEP_ENABLED(mcmtr)	GET_BITFIELD(mcmtr, 1, 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  198) #define IS_CLOSE_PG(mcmtr)		GET_BITFIELD(mcmtr, 0, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  199) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  200) /* Device 15, function 1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  201) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  202) #define RASENABLES		0xac
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  203) #define IS_MIRROR_ENABLED(reg)		GET_BITFIELD(reg, 0, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  204) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  205) /* Device 15, functions 2-5 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  206) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  207) static const int mtr_regs[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  208) 	0x80, 0x84, 0x88,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  209) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  210) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  211) static const int knl_mtr_reg = 0xb60;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  212) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  213) #define RANK_DISABLE(mtr)		GET_BITFIELD(mtr, 16, 19)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  214) #define IS_DIMM_PRESENT(mtr)		GET_BITFIELD(mtr, 14, 14)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  215) #define RANK_CNT_BITS(mtr)		GET_BITFIELD(mtr, 12, 13)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  216) #define RANK_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 2, 4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  217) #define COL_WIDTH_BITS(mtr)		GET_BITFIELD(mtr, 0, 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  218) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  219) static const u32 tad_ch_nilv_offset[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  220) 	0x90, 0x94, 0x98, 0x9c,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  221) 	0xa0, 0xa4, 0xa8, 0xac,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  222) 	0xb0, 0xb4, 0xb8, 0xbc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  223) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  224) #define CHN_IDX_OFFSET(reg)		GET_BITFIELD(reg, 28, 29)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  225) #define TAD_OFFSET(reg)			(GET_BITFIELD(reg,  6, 25) << 26)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  226) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  227) static const u32 rir_way_limit[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  228) 	0x108, 0x10c, 0x110, 0x114, 0x118,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  229) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  230) #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  231) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  232) #define IS_RIR_VALID(reg)	GET_BITFIELD(reg, 31, 31)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  233) #define RIR_WAY(reg)		GET_BITFIELD(reg, 28, 29)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  234) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  235) #define MAX_RIR_WAY	8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  236) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  237) static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  238) 	{ 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  239) 	{ 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  240) 	{ 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  241) 	{ 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  242) 	{ 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  243) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  244) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  245) #define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  246) 	GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  247) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  248) #define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  249) 	GET_BITFIELD(reg,  2, 15) : GET_BITFIELD(reg,  2, 14))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  250) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  251) /* Device 16, functions 2-7 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  252) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  253) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  254)  * FIXME: Implement the error count reads directly
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  255)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  256) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  257) #define RANK_ODD_OV(reg)		GET_BITFIELD(reg, 31, 31)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  258) #define RANK_ODD_ERR_CNT(reg)		GET_BITFIELD(reg, 16, 30)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  259) #define RANK_EVEN_OV(reg)		GET_BITFIELD(reg, 15, 15)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  260) #define RANK_EVEN_ERR_CNT(reg)		GET_BITFIELD(reg,  0, 14)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  261) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  262) #if 0 /* Currently unused*/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  263) static const u32 correrrcnt[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  264) 	0x104, 0x108, 0x10c, 0x110,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  265) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  266) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  267) static const u32 correrrthrsld[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  268) 	0x11c, 0x120, 0x124, 0x128,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  269) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  270) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  271) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  272) #define RANK_ODD_ERR_THRSLD(reg)	GET_BITFIELD(reg, 16, 30)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  273) #define RANK_EVEN_ERR_THRSLD(reg)	GET_BITFIELD(reg,  0, 14)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  274) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  275) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  276) /* Device 17, function 0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  277) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  278) #define SB_RANK_CFG_A		0x0328
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  279) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  280) #define IB_RANK_CFG_A		0x0320
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  281) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  282) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  283)  * sbridge structs
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  284)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  285) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  286) #define NUM_CHANNELS		6	/* Max channels per MC */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  287) #define MAX_DIMMS		3	/* Max DIMMS per channel */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  288) #define KNL_MAX_CHAS		38	/* KNL max num. of Cache Home Agents */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  289) #define KNL_MAX_CHANNELS	6	/* KNL max num. of PCI channels */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  290) #define KNL_MAX_EDCS		8	/* Embedded DRAM controllers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  291) #define CHANNEL_UNSPECIFIED	0xf	/* Intel IA32 SDM 15-14 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  292) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  293) enum type {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  294) 	SANDY_BRIDGE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  295) 	IVY_BRIDGE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  296) 	HASWELL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  297) 	BROADWELL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  298) 	KNIGHTS_LANDING,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  299) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  300) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  301) enum domain {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  302) 	IMC0 = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  303) 	IMC1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  304) 	SOCK,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  305) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  306) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  307) enum mirroring_mode {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  308) 	NON_MIRRORING,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  309) 	ADDR_RANGE_MIRRORING,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  310) 	FULL_MIRRORING,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  311) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  312) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  313) struct sbridge_pvt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  314) struct sbridge_info {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  315) 	enum type	type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  316) 	u32		mcmtr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  317) 	u32		rankcfgr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  318) 	u64		(*get_tolm)(struct sbridge_pvt *pvt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  319) 	u64		(*get_tohm)(struct sbridge_pvt *pvt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  320) 	u64		(*rir_limit)(u32 reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  321) 	u64		(*sad_limit)(u32 reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  322) 	u32		(*interleave_mode)(u32 reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  323) 	u32		(*dram_attr)(u32 reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  324) 	const u32	*dram_rule;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  325) 	const u32	*interleave_list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  326) 	const struct interleave_pkg *interleave_pkg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  327) 	u8		max_sad;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  328) 	u8		(*get_node_id)(struct sbridge_pvt *pvt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  329) 	u8		(*get_ha)(u8 bank);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  330) 	enum mem_type	(*get_memory_type)(struct sbridge_pvt *pvt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  331) 	enum dev_type	(*get_width)(struct sbridge_pvt *pvt, u32 mtr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  332) 	struct pci_dev	*pci_vtd;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  333) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  334) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  335) struct sbridge_channel {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  336) 	u32		ranks;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  337) 	u32		dimms;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  338) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  339) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  340) struct pci_id_descr {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  341) 	int			dev_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  342) 	int			optional;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  343) 	enum domain		dom;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  344) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  345) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  346) struct pci_id_table {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  347) 	const struct pci_id_descr	*descr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  348) 	int				n_devs_per_imc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  349) 	int				n_devs_per_sock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  350) 	int				n_imcs_per_sock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  351) 	enum type			type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  352) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  353) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  354) struct sbridge_dev {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  355) 	struct list_head	list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  356) 	int			seg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  357) 	u8			bus, mc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  358) 	u8			node_id, source_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  359) 	struct pci_dev		**pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  360) 	enum domain		dom;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  361) 	int			n_devs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  362) 	int			i_devs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  363) 	struct mem_ctl_info	*mci;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  364) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  365) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  366) struct knl_pvt {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  367) 	struct pci_dev          *pci_cha[KNL_MAX_CHAS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  368) 	struct pci_dev          *pci_channel[KNL_MAX_CHANNELS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  369) 	struct pci_dev          *pci_mc0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  370) 	struct pci_dev          *pci_mc1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  371) 	struct pci_dev          *pci_mc0_misc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  372) 	struct pci_dev          *pci_mc1_misc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  373) 	struct pci_dev          *pci_mc_info; /* tolm, tohm */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  374) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  375) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  376) struct sbridge_pvt {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  377) 	/* Devices per socket */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  378) 	struct pci_dev		*pci_ddrio;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  379) 	struct pci_dev		*pci_sad0, *pci_sad1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  380) 	struct pci_dev		*pci_br0, *pci_br1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  381) 	/* Devices per memory controller */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  382) 	struct pci_dev		*pci_ha, *pci_ta, *pci_ras;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  383) 	struct pci_dev		*pci_tad[NUM_CHANNELS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  384) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  385) 	struct sbridge_dev	*sbridge_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  386) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  387) 	struct sbridge_info	info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  388) 	struct sbridge_channel	channel[NUM_CHANNELS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  389) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  390) 	/* Memory type detection */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  391) 	bool			is_cur_addr_mirrored, is_lockstep, is_close_pg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  392) 	bool			is_chan_hash;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  393) 	enum mirroring_mode	mirror_mode;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  394) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  395) 	/* Memory description */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  396) 	u64			tolm, tohm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  397) 	struct knl_pvt knl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  398) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  399) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  400) #define PCI_DESCR(device_id, opt, domain)	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  401) 	.dev_id = (device_id),		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  402) 	.optional = opt,	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  403) 	.dom = domain
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  404) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  405) static const struct pci_id_descr pci_dev_descr_sbridge[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  406) 		/* Processor Home Agent */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  407) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0,   0, IMC0) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  408) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  409) 		/* Memory controller */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  410) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA,    0, IMC0) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  411) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS,   0, IMC0) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  412) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0,  0, IMC0) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  413) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1,  0, IMC0) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  414) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2,  0, IMC0) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  415) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3,  0, IMC0) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  416) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1, SOCK) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  417) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  418) 		/* System Address Decoder */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  419) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0,      0, SOCK) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  420) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1,      0, SOCK) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  421) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  422) 		/* Broadcast Registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  423) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR,        0, SOCK) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  424) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  425) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  426) #define PCI_ID_TABLE_ENTRY(A, N, M, T) {	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  427) 	.descr = A,			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  428) 	.n_devs_per_imc = N,	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  429) 	.n_devs_per_sock = ARRAY_SIZE(A),	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  430) 	.n_imcs_per_sock = M,	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  431) 	.type = T			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  432) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  433) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  434) static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  435) 	PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, ARRAY_SIZE(pci_dev_descr_sbridge), 1, SANDY_BRIDGE),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  436) 	{0,}			/* 0 terminated list. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  437) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  438) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  439) /* This changes depending if 1HA or 2HA:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  440)  * 1HA:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  441)  *	0x0eb8 (17.0) is DDRIO0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  442)  * 2HA:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  443)  *	0x0ebc (17.4) is DDRIO0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  444)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  445) #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0	0x0eb8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  446) #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0	0x0ebc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  447) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  448) /* pci ids */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  449) #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0		0x0ea0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  450) #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA		0x0ea8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  451) #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS		0x0e71
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  452) #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0	0x0eaa
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  453) #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1	0x0eab
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  454) #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2	0x0eac
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  455) #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3	0x0ead
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  456) #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD			0x0ec8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  457) #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0			0x0ec9
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  458) #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1			0x0eca
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  459) #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1		0x0e60
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  460) #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA		0x0e68
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  461) #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS		0x0e79
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  462) #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0	0x0e6a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  463) #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1	0x0e6b
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  464) #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2	0x0e6c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  465) #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3	0x0e6d
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  466) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  467) static const struct pci_id_descr pci_dev_descr_ibridge[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  468) 		/* Processor Home Agent */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  469) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0,        0, IMC0) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  470) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1,        1, IMC1) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  471) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  472) 		/* Memory controller */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  473) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA,     0, IMC0) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  474) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS,    0, IMC0) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  475) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0,   0, IMC0) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  476) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1,   0, IMC0) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  477) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2,   0, IMC0) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  478) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3,   0, IMC0) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  479) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  480) 		/* Optional, mode 2HA */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  481) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA,     1, IMC1) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  482) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS,    1, IMC1) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  483) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0,   1, IMC1) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  484) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1,   1, IMC1) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  485) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2,   1, IMC1) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  486) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3,   1, IMC1) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  487) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  488) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1, SOCK) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  489) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1, SOCK) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  490) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  491) 		/* System Address Decoder */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  492) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD,            0, SOCK) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  493) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  494) 		/* Broadcast Registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  495) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0,            1, SOCK) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  496) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1,            0, SOCK) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  497) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  498) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  499) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  500) static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  501) 	PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, 12, 2, IVY_BRIDGE),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  502) 	{0,}			/* 0 terminated list. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  503) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  504) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  505) /* Haswell support */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  506) /* EN processor:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  507)  *	- 1 IMC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  508)  *	- 3 DDR3 channels, 2 DPC per channel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  509)  * EP processor:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  510)  *	- 1 or 2 IMC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  511)  *	- 4 DDR4 channels, 3 DPC per channel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  512)  * EP 4S processor:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  513)  *	- 2 IMC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  514)  *	- 4 DDR4 channels, 3 DPC per channel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  515)  * EX processor:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  516)  *	- 2 IMC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  517)  *	- each IMC interfaces with a SMI 2 channel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  518)  *	- each SMI channel interfaces with a scalable memory buffer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  519)  *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  520)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  521) #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  522) #define HASWELL_HASYSDEFEATURE2 0x84
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  523) #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  524) #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0	0x2fa0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  525) #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1	0x2f60
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  526) #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA	0x2fa8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  527) #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM	0x2f71
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  528) #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA	0x2f68
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  529) #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM	0x2f79
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  530) #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  531) #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  532) #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  533) #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  534) #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  535) #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  536) #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  537) #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  538) #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  539) #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  540) #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  541) #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  542) #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  543) #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  544) static const struct pci_id_descr pci_dev_descr_haswell[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  545) 	/* first item must be the HA */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  546) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0,      0, IMC0) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  547) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1,      1, IMC1) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  548) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  549) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA,   0, IMC0) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  550) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM,   0, IMC0) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  551) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0, IMC0) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  552) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0, IMC0) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  553) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1, IMC0) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  554) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1, IMC0) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  555) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  556) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA,   1, IMC1) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  557) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM,   1, IMC1) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  558) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1, IMC1) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  559) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1, IMC1) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  560) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1, IMC1) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  561) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1, IMC1) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  562) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  563) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0, SOCK) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  564) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0, SOCK) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  565) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0,   1, SOCK) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  566) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1,   1, SOCK) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  567) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2,   1, SOCK) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  568) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3,   1, SOCK) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  569) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  570) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  571) static const struct pci_id_table pci_dev_descr_haswell_table[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  572) 	PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, 13, 2, HASWELL),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  573) 	{0,}			/* 0 terminated list. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  574) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  575) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  576) /* Knight's Landing Support */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  577) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  578)  * KNL's memory channels are swizzled between memory controllers.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  579)  * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  580)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  581) #define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  582) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  583) /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  584) #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC       0x7840
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  585) /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  586) #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN     0x7843
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  587) /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  588) #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA       0x7844
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  589) /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  590) #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0     0x782a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  591) /* SAD target - 1-29-1 (1 of these) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  592) #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1     0x782b
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  593) /* Caching / Home Agent */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  594) #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA      0x782c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  595) /* Device with TOLM and TOHM, 0-5-0 (1 of these) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  596) #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM    0x7810
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  597) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  598) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  599)  * KNL differs from SB, IB, and Haswell in that it has multiple
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  600)  * instances of the same device with the same device ID, so we handle that
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  601)  * by creating as many copies in the table as we expect to find.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  602)  * (Like device ID must be grouped together.)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  603)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  604) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  605) static const struct pci_id_descr pci_dev_descr_knl[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  606) 	[0 ... 1]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC,    0, IMC0)},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  607) 	[2 ... 7]   = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN,  0, IMC0) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  608) 	[8]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA,    0, IMC0) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  609) 	[9]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0, IMC0) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  610) 	[10]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0,  0, SOCK) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  611) 	[11]	    = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1,  0, SOCK) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  612) 	[12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA,   0, SOCK) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  613) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  614) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  615) static const struct pci_id_table pci_dev_descr_knl_table[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  616) 	PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, ARRAY_SIZE(pci_dev_descr_knl), 1, KNIGHTS_LANDING),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  617) 	{0,}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  618) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  619) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  620) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  621)  * Broadwell support
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  622)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  623)  * DE processor:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  624)  *	- 1 IMC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  625)  *	- 2 DDR3 channels, 2 DPC per channel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  626)  * EP processor:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  627)  *	- 1 or 2 IMC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  628)  *	- 4 DDR4 channels, 3 DPC per channel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  629)  * EP 4S processor:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  630)  *	- 2 IMC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  631)  *	- 4 DDR4 channels, 3 DPC per channel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  632)  * EX processor:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  633)  *	- 2 IMC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  634)  *	- each IMC interfaces with a SMI 2 channel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  635)  *	- each SMI channel interfaces with a scalable memory buffer
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  636)  *	- each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  637)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  638) #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  639) #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0	0x6fa0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  640) #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1	0x6f60
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  641) #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA	0x6fa8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  642) #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM	0x6f71
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  643) #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA	0x6f68
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  644) #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM	0x6f79
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  645) #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  646) #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  647) #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  648) #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  649) #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  650) #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  651) #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  652) #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  653) #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  654) #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  655) #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  656) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  657) static const struct pci_id_descr pci_dev_descr_broadwell[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  658) 	/* first item must be the HA */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  659) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0,      0, IMC0) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  660) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1,      1, IMC1) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  661) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  662) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA,   0, IMC0) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  663) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM,   0, IMC0) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  664) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0, IMC0) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  665) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0, IMC0) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  666) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1, IMC0) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  667) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1, IMC0) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  668) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  669) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA,   1, IMC1) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  670) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM,   1, IMC1) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  671) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1, IMC1) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  672) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1, IMC1) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  673) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1, IMC1) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  674) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1, IMC1) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  675) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  676) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0, SOCK) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  677) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0, SOCK) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  678) 	{ PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0,   1, SOCK) },
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  679) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  680) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  681) static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  682) 	PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, 10, 2, BROADWELL),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  683) 	{0,}			/* 0 terminated list. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  684) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  685) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  686) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  687) /****************************************************************************
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  688) 			Ancillary status routines
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  689)  ****************************************************************************/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  690) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  691) static inline int numrank(enum type type, u32 mtr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  692) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  693) 	int ranks = (1 << RANK_CNT_BITS(mtr));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  694) 	int max = 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  695) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  696) 	if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  697) 		max = 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  698) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  699) 	if (ranks > max) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  700) 		edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  701) 			 ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  702) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  703) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  704) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  705) 	return ranks;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  706) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  707) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  708) static inline int numrow(u32 mtr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  709) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  710) 	int rows = (RANK_WIDTH_BITS(mtr) + 12);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  711) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  712) 	if (rows < 13 || rows > 18) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  713) 		edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  714) 			 rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  715) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  716) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  717) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  718) 	return 1 << rows;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  719) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  720) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  721) static inline int numcol(u32 mtr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  722) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  723) 	int cols = (COL_WIDTH_BITS(mtr) + 10);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  724) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  725) 	if (cols > 12) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  726) 		edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  727) 			 cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  728) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  729) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  730) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  731) 	return 1 << cols;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  732) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  733) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  734) static struct sbridge_dev *get_sbridge_dev(int seg, u8 bus, enum domain dom,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  735) 					   int multi_bus,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  736) 					   struct sbridge_dev *prev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  737) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  738) 	struct sbridge_dev *sbridge_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  739) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  740) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  741) 	 * If we have devices scattered across several busses that pertain
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  742) 	 * to the same memory controller, we'll lump them all together.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  743) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  744) 	if (multi_bus) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  745) 		return list_first_entry_or_null(&sbridge_edac_list,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  746) 				struct sbridge_dev, list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  747) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  748) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  749) 	sbridge_dev = list_entry(prev ? prev->list.next
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  750) 				      : sbridge_edac_list.next, struct sbridge_dev, list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  751) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  752) 	list_for_each_entry_from(sbridge_dev, &sbridge_edac_list, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  753) 		if ((sbridge_dev->seg == seg) && (sbridge_dev->bus == bus) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  754) 				(dom == SOCK || dom == sbridge_dev->dom))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  755) 			return sbridge_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  756) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  757) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  758) 	return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  759) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  760) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  761) static struct sbridge_dev *alloc_sbridge_dev(int seg, u8 bus, enum domain dom,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  762) 					     const struct pci_id_table *table)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  763) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  764) 	struct sbridge_dev *sbridge_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  765) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  766) 	sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  767) 	if (!sbridge_dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  768) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  769) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  770) 	sbridge_dev->pdev = kcalloc(table->n_devs_per_imc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  771) 				    sizeof(*sbridge_dev->pdev),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  772) 				    GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  773) 	if (!sbridge_dev->pdev) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  774) 		kfree(sbridge_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  775) 		return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  776) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  777) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  778) 	sbridge_dev->seg = seg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  779) 	sbridge_dev->bus = bus;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  780) 	sbridge_dev->dom = dom;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  781) 	sbridge_dev->n_devs = table->n_devs_per_imc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  782) 	list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  783) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  784) 	return sbridge_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  785) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  786) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  787) static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  788) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  789) 	list_del(&sbridge_dev->list);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  790) 	kfree(sbridge_dev->pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  791) 	kfree(sbridge_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  792) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  793) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  794) static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  795) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  796) 	u32 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  797) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  798) 	/* Address range is 32:28 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  799) 	pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  800) 	return GET_TOLM(reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  801) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  802) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  803) static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  804) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  805) 	u32 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  806) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  807) 	pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  808) 	return GET_TOHM(reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  809) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  810) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  811) static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  812) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  813) 	u32 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  814) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  815) 	pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  816) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  817) 	return GET_TOLM(reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  818) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  819) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  820) static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  821) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  822) 	u32 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  823) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  824) 	pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  825) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  826) 	return GET_TOHM(reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  827) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  828) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  829) static u64 rir_limit(u32 reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  830) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  831) 	return ((u64)GET_BITFIELD(reg,  1, 10) << 29) | 0x1fffffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  832) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  833) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  834) static u64 sad_limit(u32 reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  835) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  836) 	return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  837) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  838) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  839) static u32 interleave_mode(u32 reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  840) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  841) 	return GET_BITFIELD(reg, 1, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  842) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  843) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  844) static u32 dram_attr(u32 reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  845) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  846) 	return GET_BITFIELD(reg, 2, 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  847) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  848) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  849) static u64 knl_sad_limit(u32 reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  850) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  851) 	return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  852) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  853) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  854) static u32 knl_interleave_mode(u32 reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  855) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  856) 	return GET_BITFIELD(reg, 1, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  857) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  858) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  859) static const char * const knl_intlv_mode[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  860) 	"[8:6]", "[10:8]", "[14:12]", "[32:30]"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  861) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  862) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  863) static const char *get_intlv_mode_str(u32 reg, enum type t)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  864) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  865) 	if (t == KNIGHTS_LANDING)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  866) 		return knl_intlv_mode[knl_interleave_mode(reg)];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  867) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  868) 		return interleave_mode(reg) ? "[8:6]" : "[8:6]XOR[18:16]";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  869) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  870) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  871) static u32 dram_attr_knl(u32 reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  872) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  873) 	return GET_BITFIELD(reg, 3, 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  874) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  875) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  876) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  877) static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  878) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  879) 	u32 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  880) 	enum mem_type mtype;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  881) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  882) 	if (pvt->pci_ddrio) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  883) 		pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  884) 				      &reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  885) 		if (GET_BITFIELD(reg, 11, 11))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  886) 			/* FIXME: Can also be LRDIMM */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  887) 			mtype = MEM_RDDR3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  888) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  889) 			mtype = MEM_DDR3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  890) 	} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  891) 		mtype = MEM_UNKNOWN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  892) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  893) 	return mtype;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  894) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  895) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  896) static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  897) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  898) 	u32 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  899) 	bool registered = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  900) 	enum mem_type mtype = MEM_UNKNOWN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  901) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  902) 	if (!pvt->pci_ddrio)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  903) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  904) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  905) 	pci_read_config_dword(pvt->pci_ddrio,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  906) 			      HASWELL_DDRCRCLKCONTROLS, &reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  907) 	/* Is_Rdimm */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  908) 	if (GET_BITFIELD(reg, 16, 16))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  909) 		registered = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  910) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  911) 	pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  912) 	if (GET_BITFIELD(reg, 14, 14)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  913) 		if (registered)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  914) 			mtype = MEM_RDDR4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  915) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  916) 			mtype = MEM_DDR4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  917) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  918) 		if (registered)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  919) 			mtype = MEM_RDDR3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  920) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  921) 			mtype = MEM_DDR3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  922) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  923) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  924) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  925) 	return mtype;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  926) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  927) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  928) static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  929) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  930) 	/* for KNL value is fixed */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  931) 	return DEV_X16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  932) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  933) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  934) static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  935) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  936) 	/* there's no way to figure out */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  937) 	return DEV_UNKNOWN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  938) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  939) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  940) static enum dev_type __ibridge_get_width(u32 mtr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  941) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  942) 	enum dev_type type = DEV_UNKNOWN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  943) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  944) 	switch (mtr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  945) 	case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  946) 		type = DEV_X16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  947) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  948) 	case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  949) 		type = DEV_X8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  950) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  951) 	case 0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  952) 		type = DEV_X4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  953) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  954) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  955) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  956) 	return type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  957) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  958) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  959) static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  960) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  961) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  962) 	 * ddr3_width on the documentation but also valid for DDR4 on
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  963) 	 * Haswell
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  964) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  965) 	return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  966) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  967) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  968) static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  969) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  970) 	/* ddr3_width on the documentation but also valid for DDR4 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  971) 	return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  972) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  973) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  974) static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  975) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  976) 	/* DDR4 RDIMMS and LRDIMMS are supported */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  977) 	return MEM_RDDR4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  978) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  979) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  980) static u8 get_node_id(struct sbridge_pvt *pvt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  981) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  982) 	u32 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  983) 	pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  984) 	return GET_BITFIELD(reg, 0, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  985) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  986) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  987) static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  988) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  989) 	u32 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  990) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  991) 	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  992) 	return GET_BITFIELD(reg, 0, 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  993) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  994) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  995) static u8 knl_get_node_id(struct sbridge_pvt *pvt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  996) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  997) 	u32 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  998) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  999) 	pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) 	return GET_BITFIELD(reg, 0, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004)  * Use the reporting bank number to determine which memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005)  * controller (also known as "ha" for "home agent"). Sandy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006)  * Bridge only has one memory controller per socket, so the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007)  * answer is always zero.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) static u8 sbridge_get_ha(u8 bank)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015)  * On Ivy Bridge, Haswell and Broadwell the error may be in a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016)  * home agent bank (7, 8), or one of the per-channel memory
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017)  * controller banks (9 .. 16).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019) static u8 ibridge_get_ha(u8 bank)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021) 	switch (bank) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022) 	case 7 ... 8:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) 		return bank - 7;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) 	case 9 ... 16:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) 		return (bank - 9) / 4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027) 		return 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031) /* Not used, but included for safety/symmetry */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032) static u8 knl_get_ha(u8 bank)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) 	return 0xff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037) static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039) 	u32 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041) 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042) 	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045) static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047) 	u64 rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048) 	u32 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050) 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051) 	rc = GET_BITFIELD(reg, 26, 31);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052) 	pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053) 	rc = ((reg << 6) | rc) << 26;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055) 	return rc | 0x3ffffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058) static u64 knl_get_tolm(struct sbridge_pvt *pvt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060) 	u32 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) 	return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) static u64 knl_get_tohm(struct sbridge_pvt *pvt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) 	u64 rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) 	u32 reg_lo, reg_hi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) 	pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) 	rc = ((u64)reg_hi << 32) | reg_lo;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) 	return rc | 0x3ffffff;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078) static u64 haswell_rir_limit(u32 reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) 	return (((u64)GET_BITFIELD(reg,  1, 11) + 1) << 29) - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) static inline u8 sad_pkg_socket(u8 pkg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) 	/* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086) 	return ((pkg >> 3) << 2) | (pkg & 0x3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) static inline u8 sad_pkg_ha(u8 pkg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) 	return (pkg >> 2) & 0x1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) static int haswell_chan_hash(int idx, u64 addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099) 	 * XOR even bits from 12:26 to bit0 of idx,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100) 	 *     odd bits from 13:27 to bit1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102) 	for (i = 12; i < 28; i += 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103) 		idx ^= (addr >> i) & 3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105) 	return idx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108) /* Low bits of TAD limit, and some metadata. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109) static const u32 knl_tad_dram_limit_lo[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110) 	0x400, 0x500, 0x600, 0x700,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111) 	0x800, 0x900, 0xa00, 0xb00,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114) /* Low bits of TAD offset. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115) static const u32 knl_tad_dram_offset_lo[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116) 	0x404, 0x504, 0x604, 0x704,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) 	0x804, 0x904, 0xa04, 0xb04,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) /* High 16 bits of TAD limit and offset. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) static const u32 knl_tad_dram_hi[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122) 	0x408, 0x508, 0x608, 0x708,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123) 	0x808, 0x908, 0xa08, 0xb08,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126) /* Number of ways a tad entry is interleaved. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127) static const u32 knl_tad_ways[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128) 	8, 6, 4, 3, 2, 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132)  * Retrieve the n'th Target Address Decode table entry
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133)  * from the memory controller's TAD table.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135)  * @pvt:	driver private data
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136)  * @entry:	which entry you want to retrieve
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137)  * @mc:		which memory controller (0 or 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138)  * @offset:	output tad range offset
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139)  * @limit:	output address of first byte above tad range
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140)  * @ways:	output number of interleave ways
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142)  * The offset value has curious semantics.  It's a sort of running total
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143)  * of the sizes of all the memory regions that aren't mapped in this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144)  * tad table.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146) static int knl_get_tad(const struct sbridge_pvt *pvt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147) 		const int entry,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148) 		const int mc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149) 		u64 *offset,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150) 		u64 *limit,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151) 		int *ways)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153) 	u32 reg_limit_lo, reg_offset_lo, reg_hi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154) 	struct pci_dev *pci_mc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155) 	int way_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157) 	switch (mc) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158) 	case 0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159) 		pci_mc = pvt->knl.pci_mc0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161) 	case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1162) 		pci_mc = pvt->knl.pci_mc1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1163) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1164) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1165) 		WARN_ON(1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1166) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1167) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1168) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1169) 	pci_read_config_dword(pci_mc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1170) 			knl_tad_dram_limit_lo[entry], &reg_limit_lo);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1171) 	pci_read_config_dword(pci_mc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1172) 			knl_tad_dram_offset_lo[entry], &reg_offset_lo);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1173) 	pci_read_config_dword(pci_mc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1174) 			knl_tad_dram_hi[entry], &reg_hi);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1175) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1176) 	/* Is this TAD entry enabled? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1177) 	if (!GET_BITFIELD(reg_limit_lo, 0, 0))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1178) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1179) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1180) 	way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1181) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1182) 	if (way_id < ARRAY_SIZE(knl_tad_ways)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1183) 		*ways = knl_tad_ways[way_id];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1184) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1185) 		*ways = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1186) 		sbridge_printk(KERN_ERR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1187) 				"Unexpected value %d in mc_tad_limit_lo wayness field\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1188) 				way_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1189) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1190) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1191) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1192) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1193) 	 * The least significant 6 bits of base and limit are truncated.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1194) 	 * For limit, we fill the missing bits with 1s.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1195) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1196) 	*offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1197) 				((u64) GET_BITFIELD(reg_hi, 0,  15) << 32);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1198) 	*limit = ((u64) GET_BITFIELD(reg_limit_lo,  6, 31) << 6) | 63 |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1199) 				((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1200) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1201) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1202) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1203) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1204) /* Determine which memory controller is responsible for a given channel. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1205) static int knl_channel_mc(int channel)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1206) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1207) 	WARN_ON(channel < 0 || channel >= 6);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1208) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1209) 	return channel < 3 ? 1 : 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1210) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1211) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1212) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1213)  * Get the Nth entry from EDC_ROUTE_TABLE register.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1214)  * (This is the per-tile mapping of logical interleave targets to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1215)  *  physical EDC modules.)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1216)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1217)  * entry 0: 0:2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1218)  *       1: 3:5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1219)  *       2: 6:8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1220)  *       3: 9:11
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1221)  *       4: 12:14
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1222)  *       5: 15:17
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1223)  *       6: 18:20
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1224)  *       7: 21:23
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1225)  * reserved: 24:31
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1226)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1227) static u32 knl_get_edc_route(int entry, u32 reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1228) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1229) 	WARN_ON(entry >= KNL_MAX_EDCS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1230) 	return GET_BITFIELD(reg, entry*3, (entry*3)+2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1231) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1232) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1233) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1234)  * Get the Nth entry from MC_ROUTE_TABLE register.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1235)  * (This is the per-tile mapping of logical interleave targets to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1236)  *  physical DRAM channels modules.)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1237)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1238)  * entry 0: mc 0:2   channel 18:19
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1239)  *       1: mc 3:5   channel 20:21
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1240)  *       2: mc 6:8   channel 22:23
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1241)  *       3: mc 9:11  channel 24:25
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1242)  *       4: mc 12:14 channel 26:27
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1243)  *       5: mc 15:17 channel 28:29
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1244)  * reserved: 30:31
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1245)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1246)  * Though we have 3 bits to identify the MC, we should only see
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1247)  * the values 0 or 1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1248)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1249) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1250) static u32 knl_get_mc_route(int entry, u32 reg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1251) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1252) 	int mc, chan;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1253) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1254) 	WARN_ON(entry >= KNL_MAX_CHANNELS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1255) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1256) 	mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1257) 	chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1258) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1259) 	return knl_channel_remap(mc, chan);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1260) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1261) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1262) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1263)  * Render the EDC_ROUTE register in human-readable form.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1264)  * Output string s should be at least KNL_MAX_EDCS*2 bytes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1265)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1266) static void knl_show_edc_route(u32 reg, char *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1267) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1268) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1269) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1270) 	for (i = 0; i < KNL_MAX_EDCS; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1271) 		s[i*2] = knl_get_edc_route(i, reg) + '0';
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1272) 		s[i*2+1] = '-';
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1273) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1274) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1275) 	s[KNL_MAX_EDCS*2 - 1] = '\0';
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1276) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1277) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1278) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1279)  * Render the MC_ROUTE register in human-readable form.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1280)  * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1281)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1282) static void knl_show_mc_route(u32 reg, char *s)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1283) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1284) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1285) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1286) 	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1287) 		s[i*2] = knl_get_mc_route(i, reg) + '0';
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1288) 		s[i*2+1] = '-';
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1289) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1290) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1291) 	s[KNL_MAX_CHANNELS*2 - 1] = '\0';
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1292) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1293) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1294) #define KNL_EDC_ROUTE 0xb8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1295) #define KNL_MC_ROUTE 0xb4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1296) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1297) /* Is this dram rule backed by regular DRAM in flat mode? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1298) #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1299) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1300) /* Is this dram rule cached? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1301) #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1302) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1303) /* Is this rule backed by edc ? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1304) #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1305) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1306) /* Is this rule backed by DRAM, cacheable in EDRAM? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1307) #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1308) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1309) /* Is this rule mod3? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1310) #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1311) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1312) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1313)  * Figure out how big our RAM modules are.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1314)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1315)  * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1316)  * have to figure this out from the SAD rules, interleave lists, route tables,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1317)  * and TAD rules.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1318)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1319)  * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1320)  * inspect the TAD rules to figure out how large the SAD regions really are.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1321)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1322)  * When we know the real size of a SAD region and how many ways it's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1323)  * interleaved, we know the individual contribution of each channel to
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1324)  * TAD is size/ways.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1325)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1326)  * Finally, we have to check whether each channel participates in each SAD
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1327)  * region.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1328)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1329)  * Fortunately, KNL only supports one DIMM per channel, so once we know how
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1330)  * much memory the channel uses, we know the DIMM is at least that large.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1331)  * (The BIOS might possibly choose not to map all available memory, in which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1332)  * case we will underreport the size of the DIMM.)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1333)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1334)  * In theory, we could try to determine the EDC sizes as well, but that would
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1335)  * only work in flat mode, not in cache mode.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1336)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1337)  * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1338)  *            elements)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1339)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1340) static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1341) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1342) 	u64 sad_base, sad_limit = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1343) 	u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1344) 	int sad_rule = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1345) 	int tad_rule = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1346) 	int intrlv_ways, tad_ways;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1347) 	u32 first_pkg, pkg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1348) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1349) 	u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1350) 	u32 dram_rule, interleave_reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1351) 	u32 mc_route_reg[KNL_MAX_CHAS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1352) 	u32 edc_route_reg[KNL_MAX_CHAS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1353) 	int edram_only;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1354) 	char edc_route_string[KNL_MAX_EDCS*2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1355) 	char mc_route_string[KNL_MAX_CHANNELS*2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1356) 	int cur_reg_start;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1357) 	int mc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1358) 	int channel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1359) 	int participants[KNL_MAX_CHANNELS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1360) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1361) 	for (i = 0; i < KNL_MAX_CHANNELS; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1362) 		mc_sizes[i] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1363) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1364) 	/* Read the EDC route table in each CHA. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1365) 	cur_reg_start = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1366) 	for (i = 0; i < KNL_MAX_CHAS; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1367) 		pci_read_config_dword(pvt->knl.pci_cha[i],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1368) 				KNL_EDC_ROUTE, &edc_route_reg[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1369) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1370) 		if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1371) 			knl_show_edc_route(edc_route_reg[i-1],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1372) 					edc_route_string);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1373) 			if (cur_reg_start == i-1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1374) 				edac_dbg(0, "edc route table for CHA %d: %s\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1375) 					cur_reg_start, edc_route_string);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1376) 			else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1377) 				edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1378) 					cur_reg_start, i-1, edc_route_string);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1379) 			cur_reg_start = i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1380) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1381) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1382) 	knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1383) 	if (cur_reg_start == i-1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1384) 		edac_dbg(0, "edc route table for CHA %d: %s\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1385) 			cur_reg_start, edc_route_string);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1386) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1387) 		edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1388) 			cur_reg_start, i-1, edc_route_string);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1389) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1390) 	/* Read the MC route table in each CHA. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1391) 	cur_reg_start = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1392) 	for (i = 0; i < KNL_MAX_CHAS; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1393) 		pci_read_config_dword(pvt->knl.pci_cha[i],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1394) 			KNL_MC_ROUTE, &mc_route_reg[i]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1395) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1396) 		if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1397) 			knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1398) 			if (cur_reg_start == i-1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1399) 				edac_dbg(0, "mc route table for CHA %d: %s\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1400) 					cur_reg_start, mc_route_string);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1401) 			else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1402) 				edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1403) 					cur_reg_start, i-1, mc_route_string);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1404) 			cur_reg_start = i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1405) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1406) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1407) 	knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1408) 	if (cur_reg_start == i-1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1409) 		edac_dbg(0, "mc route table for CHA %d: %s\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1410) 			cur_reg_start, mc_route_string);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1411) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1412) 		edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1413) 			cur_reg_start, i-1, mc_route_string);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1414) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1415) 	/* Process DRAM rules */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1416) 	for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1417) 		/* previous limit becomes the new base */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1418) 		sad_base = sad_limit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1419) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1420) 		pci_read_config_dword(pvt->pci_sad0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1421) 			pvt->info.dram_rule[sad_rule], &dram_rule);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1422) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1423) 		if (!DRAM_RULE_ENABLE(dram_rule))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1424) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1425) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1426) 		edram_only = KNL_EDRAM_ONLY(dram_rule);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1427) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1428) 		sad_limit = pvt->info.sad_limit(dram_rule)+1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1429) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1430) 		pci_read_config_dword(pvt->pci_sad0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1431) 			pvt->info.interleave_list[sad_rule], &interleave_reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1432) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1433) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1434) 		 * Find out how many ways this dram rule is interleaved.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1435) 		 * We stop when we see the first channel again.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1436) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1437) 		first_pkg = sad_pkg(pvt->info.interleave_pkg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1438) 						interleave_reg, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1439) 		for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1440) 			pkg = sad_pkg(pvt->info.interleave_pkg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1441) 						interleave_reg, intrlv_ways);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1442) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1443) 			if ((pkg & 0x8) == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1444) 				/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1445) 				 * 0 bit means memory is non-local,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1446) 				 * which KNL doesn't support
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1447) 				 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1448) 				edac_dbg(0, "Unexpected interleave target %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1449) 					pkg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1450) 				return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1451) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1452) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1453) 			if (pkg == first_pkg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1454) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1455) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1456) 		if (KNL_MOD3(dram_rule))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1457) 			intrlv_ways *= 3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1458) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1459) 		edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1460) 			sad_rule,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1461) 			sad_base,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1462) 			sad_limit,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1463) 			intrlv_ways,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1464) 			edram_only ? ", EDRAM" : "");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1465) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1466) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1467) 		 * Find out how big the SAD region really is by iterating
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1468) 		 * over TAD tables (SAD regions may contain holes).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1469) 		 * Each memory controller might have a different TAD table, so
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1470) 		 * we have to look at both.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1471) 		 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1472) 		 * Livespace is the memory that's mapped in this TAD table,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1473) 		 * deadspace is the holes (this could be the MMIO hole, or it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1474) 		 * could be memory that's mapped by the other TAD table but
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1475) 		 * not this one).
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1476) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1477) 		for (mc = 0; mc < 2; mc++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1478) 			sad_actual_size[mc] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1479) 			tad_livespace = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1480) 			for (tad_rule = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1481) 					tad_rule < ARRAY_SIZE(
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1482) 						knl_tad_dram_limit_lo);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1483) 					tad_rule++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1484) 				if (knl_get_tad(pvt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1485) 						tad_rule,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1486) 						mc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1487) 						&tad_deadspace,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1488) 						&tad_limit,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1489) 						&tad_ways))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1490) 					break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1491) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1492) 				tad_size = (tad_limit+1) -
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1493) 					(tad_livespace + tad_deadspace);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1494) 				tad_livespace += tad_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1495) 				tad_base = (tad_limit+1) - tad_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1496) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1497) 				if (tad_base < sad_base) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1498) 					if (tad_limit > sad_base)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1499) 						edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1500) 				} else if (tad_base < sad_limit) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1501) 					if (tad_limit+1 > sad_limit) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1502) 						edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1503) 					} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1504) 						/* TAD region is completely inside SAD region */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1505) 						edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1506) 							tad_rule, tad_base,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1507) 							tad_limit, tad_size,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1508) 							mc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1509) 						sad_actual_size[mc] += tad_size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1510) 					}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1511) 				}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1512) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1513) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1514) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1515) 		for (mc = 0; mc < 2; mc++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1516) 			edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1517) 				mc, sad_actual_size[mc], sad_actual_size[mc]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1518) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1519) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1520) 		/* Ignore EDRAM rule */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1521) 		if (edram_only)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1522) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1523) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1524) 		/* Figure out which channels participate in interleave. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1525) 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1526) 			participants[channel] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1527) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1528) 		/* For each channel, does at least one CHA have
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1529) 		 * this channel mapped to the given target?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1530) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1531) 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1532) 			int target;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1533) 			int cha;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1534) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1535) 			for (target = 0; target < KNL_MAX_CHANNELS; target++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1536) 				for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1537) 					if (knl_get_mc_route(target,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1538) 						mc_route_reg[cha]) == channel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1539) 						&& !participants[channel]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1540) 						participants[channel] = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1541) 						break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1542) 					}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1543) 				}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1544) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1545) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1546) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1547) 		for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1548) 			mc = knl_channel_mc(channel);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1549) 			if (participants[channel]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1550) 				edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1551) 					channel,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1552) 					sad_actual_size[mc]/intrlv_ways,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1553) 					sad_rule);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1554) 				mc_sizes[channel] +=
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1555) 					sad_actual_size[mc]/intrlv_ways;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1556) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1557) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1558) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1559) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1560) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1561) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1562) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1563) static void get_source_id(struct mem_ctl_info *mci)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1564) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1565) 	struct sbridge_pvt *pvt = mci->pvt_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1566) 	u32 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1567) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1568) 	if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1569) 	    pvt->info.type == KNIGHTS_LANDING)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1570) 		pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1571) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1572) 		pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1573) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1574) 	if (pvt->info.type == KNIGHTS_LANDING)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1575) 		pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1576) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1577) 		pvt->sbridge_dev->source_id = SOURCE_ID(reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1578) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1579) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1580) static int __populate_dimms(struct mem_ctl_info *mci,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1581) 			    u64 knl_mc_sizes[KNL_MAX_CHANNELS],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1582) 			    enum edac_type mode)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1583) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1584) 	struct sbridge_pvt *pvt = mci->pvt_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1585) 	int channels = pvt->info.type == KNIGHTS_LANDING ? KNL_MAX_CHANNELS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1586) 							 : NUM_CHANNELS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1587) 	unsigned int i, j, banks, ranks, rows, cols, npages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1588) 	struct dimm_info *dimm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1589) 	enum mem_type mtype;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1590) 	u64 size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1591) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1592) 	mtype = pvt->info.get_memory_type(pvt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1593) 	if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1594) 		edac_dbg(0, "Memory is registered\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1595) 	else if (mtype == MEM_UNKNOWN)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1596) 		edac_dbg(0, "Cannot determine memory type\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1597) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1598) 		edac_dbg(0, "Memory is unregistered\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1599) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1600) 	if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1601) 		banks = 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1602) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1603) 		banks = 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1604) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1605) 	for (i = 0; i < channels; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1606) 		u32 mtr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1607) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1608) 		int max_dimms_per_channel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1609) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1610) 		if (pvt->info.type == KNIGHTS_LANDING) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1611) 			max_dimms_per_channel = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1612) 			if (!pvt->knl.pci_channel[i])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1613) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1614) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1615) 			max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1616) 			if (!pvt->pci_tad[i])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1617) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1618) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1619) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1620) 		for (j = 0; j < max_dimms_per_channel; j++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1621) 			dimm = edac_get_dimm(mci, i, j, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1622) 			if (pvt->info.type == KNIGHTS_LANDING) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1623) 				pci_read_config_dword(pvt->knl.pci_channel[i],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1624) 					knl_mtr_reg, &mtr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1625) 			} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1626) 				pci_read_config_dword(pvt->pci_tad[i],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1627) 					mtr_regs[j], &mtr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1628) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1629) 			edac_dbg(4, "Channel #%d  MTR%d = %x\n", i, j, mtr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1630) 			if (IS_DIMM_PRESENT(mtr)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1631) 				if (!IS_ECC_ENABLED(pvt->info.mcmtr)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1632) 					sbridge_printk(KERN_ERR, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1633) 						       pvt->sbridge_dev->source_id,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1634) 						       pvt->sbridge_dev->dom, i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1635) 					return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1636) 				}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1637) 				pvt->channel[i].dimms++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1638) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1639) 				ranks = numrank(pvt->info.type, mtr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1640) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1641) 				if (pvt->info.type == KNIGHTS_LANDING) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1642) 					/* For DDR4, this is fixed. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1643) 					cols = 1 << 10;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1644) 					rows = knl_mc_sizes[i] /
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1645) 						((u64) cols * ranks * banks * 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1646) 				} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1647) 					rows = numrow(mtr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1648) 					cols = numcol(mtr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1649) 				}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1650) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1651) 				size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1652) 				npages = MiB_TO_PAGES(size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1653) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1654) 				edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1655) 					 pvt->sbridge_dev->mc, pvt->sbridge_dev->dom, i, j,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1656) 					 size, npages,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1657) 					 banks, ranks, rows, cols);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1658) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1659) 				dimm->nr_pages = npages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1660) 				dimm->grain = 32;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1661) 				dimm->dtype = pvt->info.get_width(pvt, mtr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1662) 				dimm->mtype = mtype;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1663) 				dimm->edac_mode = mode;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1664) 				snprintf(dimm->label, sizeof(dimm->label),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1665) 						 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1666) 						 pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom, i, j);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1667) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1668) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1669) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1670) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1671) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1672) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1673) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1674) static int get_dimm_config(struct mem_ctl_info *mci)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1675) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1676) 	struct sbridge_pvt *pvt = mci->pvt_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1677) 	u64 knl_mc_sizes[KNL_MAX_CHANNELS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1678) 	enum edac_type mode;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1679) 	u32 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1680) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1681) 	pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1682) 	edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1683) 		 pvt->sbridge_dev->mc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1684) 		 pvt->sbridge_dev->node_id,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1685) 		 pvt->sbridge_dev->source_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1686) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1687) 	/* KNL doesn't support mirroring or lockstep,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1688) 	 * and is always closed page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1689) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1690) 	if (pvt->info.type == KNIGHTS_LANDING) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1691) 		mode = EDAC_S4ECD4ED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1692) 		pvt->mirror_mode = NON_MIRRORING;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1693) 		pvt->is_cur_addr_mirrored = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1694) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1695) 		if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1696) 			return -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1697) 		if (pci_read_config_dword(pvt->pci_ta, KNL_MCMTR, &pvt->info.mcmtr)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1698) 			edac_dbg(0, "Failed to read KNL_MCMTR register\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1699) 			return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1700) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1701) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1702) 		if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1703) 			if (pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1704) 				edac_dbg(0, "Failed to read HASWELL_HASYSDEFEATURE2 register\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1705) 				return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1706) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1707) 			pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1708) 			if (GET_BITFIELD(reg, 28, 28)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1709) 				pvt->mirror_mode = ADDR_RANGE_MIRRORING;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1710) 				edac_dbg(0, "Address range partial memory mirroring is enabled\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1711) 				goto next;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1712) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1713) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1714) 		if (pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1715) 			edac_dbg(0, "Failed to read RASENABLES register\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1716) 			return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1717) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1718) 		if (IS_MIRROR_ENABLED(reg)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1719) 			pvt->mirror_mode = FULL_MIRRORING;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1720) 			edac_dbg(0, "Full memory mirroring is enabled\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1721) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1722) 			pvt->mirror_mode = NON_MIRRORING;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1723) 			edac_dbg(0, "Memory mirroring is disabled\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1724) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1725) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1726) next:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1727) 		if (pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1728) 			edac_dbg(0, "Failed to read MCMTR register\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1729) 			return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1730) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1731) 		if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1732) 			edac_dbg(0, "Lockstep is enabled\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1733) 			mode = EDAC_S8ECD8ED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1734) 			pvt->is_lockstep = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1735) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1736) 			edac_dbg(0, "Lockstep is disabled\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1737) 			mode = EDAC_S4ECD4ED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1738) 			pvt->is_lockstep = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1739) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1740) 		if (IS_CLOSE_PG(pvt->info.mcmtr)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1741) 			edac_dbg(0, "address map is on closed page mode\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1742) 			pvt->is_close_pg = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1743) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1744) 			edac_dbg(0, "address map is on open page mode\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1745) 			pvt->is_close_pg = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1746) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1747) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1748) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1749) 	return __populate_dimms(mci, knl_mc_sizes, mode);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1750) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1751) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1752) static void get_memory_layout(const struct mem_ctl_info *mci)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1753) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1754) 	struct sbridge_pvt *pvt = mci->pvt_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1755) 	int i, j, k, n_sads, n_tads, sad_interl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1756) 	u32 reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1757) 	u64 limit, prv = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1758) 	u64 tmp_mb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1759) 	u32 gb, mb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1760) 	u32 rir_way;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1761) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1762) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1763) 	 * Step 1) Get TOLM/TOHM ranges
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1764) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1765) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1766) 	pvt->tolm = pvt->info.get_tolm(pvt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1767) 	tmp_mb = (1 + pvt->tolm) >> 20;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1768) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1769) 	gb = div_u64_rem(tmp_mb, 1024, &mb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1770) 	edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1771) 		gb, (mb*1000)/1024, (u64)pvt->tolm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1772) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1773) 	/* Address range is already 45:25 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1774) 	pvt->tohm = pvt->info.get_tohm(pvt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1775) 	tmp_mb = (1 + pvt->tohm) >> 20;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1776) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1777) 	gb = div_u64_rem(tmp_mb, 1024, &mb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1778) 	edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1779) 		gb, (mb*1000)/1024, (u64)pvt->tohm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1780) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1781) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1782) 	 * Step 2) Get SAD range and SAD Interleave list
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1783) 	 * TAD registers contain the interleave wayness. However, it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1784) 	 * seems simpler to just discover it indirectly, with the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1785) 	 * algorithm bellow.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1786) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1787) 	prv = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1788) 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1789) 		/* SAD_LIMIT Address range is 45:26 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1790) 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1791) 				      &reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1792) 		limit = pvt->info.sad_limit(reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1793) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1794) 		if (!DRAM_RULE_ENABLE(reg))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1795) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1796) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1797) 		if (limit <= prv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1798) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1799) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1800) 		tmp_mb = (limit + 1) >> 20;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1801) 		gb = div_u64_rem(tmp_mb, 1024, &mb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1802) 		edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1803) 			 n_sads,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1804) 			 show_dram_attr(pvt->info.dram_attr(reg)),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1805) 			 gb, (mb*1000)/1024,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1806) 			 ((u64)tmp_mb) << 20L,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1807) 			 get_intlv_mode_str(reg, pvt->info.type),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1808) 			 reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1809) 		prv = limit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1810) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1811) 		pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1812) 				      &reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1813) 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1814) 		for (j = 0; j < 8; j++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1815) 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1816) 			if (j > 0 && sad_interl == pkg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1817) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1818) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1819) 			edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1820) 				 n_sads, j, pkg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1821) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1822) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1823) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1824) 	if (pvt->info.type == KNIGHTS_LANDING)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1825) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1826) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1827) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1828) 	 * Step 3) Get TAD range
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1829) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1830) 	prv = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1831) 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1832) 		pci_read_config_dword(pvt->pci_ha, tad_dram_rule[n_tads], &reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1833) 		limit = TAD_LIMIT(reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1834) 		if (limit <= prv)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1835) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1836) 		tmp_mb = (limit + 1) >> 20;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1837) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1838) 		gb = div_u64_rem(tmp_mb, 1024, &mb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1839) 		edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1840) 			 n_tads, gb, (mb*1000)/1024,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1841) 			 ((u64)tmp_mb) << 20L,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1842) 			 (u32)(1 << TAD_SOCK(reg)),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1843) 			 (u32)TAD_CH(reg) + 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1844) 			 (u32)TAD_TGT0(reg),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1845) 			 (u32)TAD_TGT1(reg),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1846) 			 (u32)TAD_TGT2(reg),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1847) 			 (u32)TAD_TGT3(reg),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1848) 			 reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1849) 		prv = limit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1850) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1851) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1852) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1853) 	 * Step 4) Get TAD offsets, per each channel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1854) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1855) 	for (i = 0; i < NUM_CHANNELS; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1856) 		if (!pvt->channel[i].dimms)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1857) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1858) 		for (j = 0; j < n_tads; j++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1859) 			pci_read_config_dword(pvt->pci_tad[i],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1860) 					      tad_ch_nilv_offset[j],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1861) 					      &reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1862) 			tmp_mb = TAD_OFFSET(reg) >> 20;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1863) 			gb = div_u64_rem(tmp_mb, 1024, &mb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1864) 			edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1865) 				 i, j,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1866) 				 gb, (mb*1000)/1024,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1867) 				 ((u64)tmp_mb) << 20L,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1868) 				 reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1869) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1870) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1871) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1872) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1873) 	 * Step 6) Get RIR Wayness/Limit, per each channel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1874) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1875) 	for (i = 0; i < NUM_CHANNELS; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1876) 		if (!pvt->channel[i].dimms)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1877) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1878) 		for (j = 0; j < MAX_RIR_RANGES; j++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1879) 			pci_read_config_dword(pvt->pci_tad[i],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1880) 					      rir_way_limit[j],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1881) 					      &reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1882) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1883) 			if (!IS_RIR_VALID(reg))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1884) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1885) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1886) 			tmp_mb = pvt->info.rir_limit(reg) >> 20;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1887) 			rir_way = 1 << RIR_WAY(reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1888) 			gb = div_u64_rem(tmp_mb, 1024, &mb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1889) 			edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1890) 				 i, j,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1891) 				 gb, (mb*1000)/1024,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1892) 				 ((u64)tmp_mb) << 20L,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1893) 				 rir_way,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1894) 				 reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1895) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1896) 			for (k = 0; k < rir_way; k++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1897) 				pci_read_config_dword(pvt->pci_tad[i],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1898) 						      rir_offset[j][k],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1899) 						      &reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1900) 				tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1901) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1902) 				gb = div_u64_rem(tmp_mb, 1024, &mb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1903) 				edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1904) 					 i, j, k,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1905) 					 gb, (mb*1000)/1024,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1906) 					 ((u64)tmp_mb) << 20L,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1907) 					 (u32)RIR_RNK_TGT(pvt->info.type, reg),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1908) 					 reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1909) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1910) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1911) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1912) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1913) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1914) static struct mem_ctl_info *get_mci_for_node_id(u8 node_id, u8 ha)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1915) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1916) 	struct sbridge_dev *sbridge_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1917) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1918) 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1919) 		if (sbridge_dev->node_id == node_id && sbridge_dev->dom == ha)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1920) 			return sbridge_dev->mci;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1921) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1922) 	return NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1923) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1924) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1925) static int get_memory_error_data(struct mem_ctl_info *mci,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1926) 				 u64 addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1927) 				 u8 *socket, u8 *ha,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1928) 				 long *channel_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1929) 				 u8 *rank,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1930) 				 char **area_type, char *msg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1931) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1932) 	struct mem_ctl_info	*new_mci;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1933) 	struct sbridge_pvt *pvt = mci->pvt_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1934) 	struct pci_dev		*pci_ha;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1935) 	int			n_rir, n_sads, n_tads, sad_way, sck_xch;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1936) 	int			sad_interl, idx, base_ch;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1937) 	int			interleave_mode, shiftup = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1938) 	unsigned int		sad_interleave[MAX_INTERLEAVE];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1939) 	u32			reg, dram_rule;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1940) 	u8			ch_way, sck_way, pkg, sad_ha = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1941) 	u32			tad_offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1942) 	u32			rir_way;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1943) 	u32			mb, gb;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1944) 	u64			ch_addr, offset, limit = 0, prv = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1945) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1946) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1947) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1948) 	 * Step 0) Check if the address is at special memory ranges
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1949) 	 * The check bellow is probably enough to fill all cases where
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1950) 	 * the error is not inside a memory, except for the legacy
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1951) 	 * range (e. g. VGA addresses). It is unlikely, however, that the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1952) 	 * memory controller would generate an error on that range.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1953) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1954) 	if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1955) 		sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1956) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1957) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1958) 	if (addr >= (u64)pvt->tohm) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1959) 		sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1960) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1961) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1962) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1963) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1964) 	 * Step 1) Get socket
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1965) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1966) 	for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1967) 		pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1968) 				      &reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1969) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1970) 		if (!DRAM_RULE_ENABLE(reg))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1971) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1972) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1973) 		limit = pvt->info.sad_limit(reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1974) 		if (limit <= prv) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1975) 			sprintf(msg, "Can't discover the memory socket");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1976) 			return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1977) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1978) 		if  (addr <= limit)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1979) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1980) 		prv = limit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1981) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1982) 	if (n_sads == pvt->info.max_sad) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1983) 		sprintf(msg, "Can't discover the memory socket");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1984) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1985) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1986) 	dram_rule = reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1987) 	*area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1988) 	interleave_mode = pvt->info.interleave_mode(dram_rule);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1989) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1990) 	pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1991) 			      &reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1992) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1993) 	if (pvt->info.type == SANDY_BRIDGE) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1994) 		sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1995) 		for (sad_way = 0; sad_way < 8; sad_way++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1996) 			u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1997) 			if (sad_way > 0 && sad_interl == pkg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1998) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1999) 			sad_interleave[sad_way] = pkg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2000) 			edac_dbg(0, "SAD interleave #%d: %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2001) 				 sad_way, sad_interleave[sad_way]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2002) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2003) 		edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2004) 			 pvt->sbridge_dev->mc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2005) 			 n_sads,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2006) 			 addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2007) 			 limit,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2008) 			 sad_way + 7,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2009) 			 !interleave_mode ? "" : "XOR[18:16]");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2010) 		if (interleave_mode)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2011) 			idx = ((addr >> 6) ^ (addr >> 16)) & 7;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2012) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2013) 			idx = (addr >> 6) & 7;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2014) 		switch (sad_way) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2015) 		case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2016) 			idx = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2017) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2018) 		case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2019) 			idx = idx & 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2020) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2021) 		case 4:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2022) 			idx = idx & 3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2023) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2024) 		case 8:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2025) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2026) 		default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2027) 			sprintf(msg, "Can't discover socket interleave");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2028) 			return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2029) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2030) 		*socket = sad_interleave[idx];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2031) 		edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2032) 			 idx, sad_way, *socket);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2033) 	} else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2034) 		int bits, a7mode = A7MODE(dram_rule);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2035) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2036) 		if (a7mode) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2037) 			/* A7 mode swaps P9 with P6 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2038) 			bits = GET_BITFIELD(addr, 7, 8) << 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2039) 			bits |= GET_BITFIELD(addr, 9, 9);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2040) 		} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2041) 			bits = GET_BITFIELD(addr, 6, 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2042) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2043) 		if (interleave_mode == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2044) 			/* interleave mode will XOR {8,7,6} with {18,17,16} */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2045) 			idx = GET_BITFIELD(addr, 16, 18);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2046) 			idx ^= bits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2047) 		} else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2048) 			idx = bits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2049) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2050) 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2051) 		*socket = sad_pkg_socket(pkg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2052) 		sad_ha = sad_pkg_ha(pkg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2053) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2054) 		if (a7mode) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2055) 			/* MCChanShiftUpEnable */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2056) 			pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2057) 			shiftup = GET_BITFIELD(reg, 22, 22);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2058) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2059) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2060) 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2061) 			 idx, *socket, sad_ha, shiftup);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2062) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2063) 		/* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2064) 		idx = (addr >> 6) & 7;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2065) 		pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2066) 		*socket = sad_pkg_socket(pkg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2067) 		sad_ha = sad_pkg_ha(pkg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2068) 		edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2069) 			 idx, *socket, sad_ha);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2070) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2071) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2072) 	*ha = sad_ha;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2073) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2074) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2075) 	 * Move to the proper node structure, in order to access the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2076) 	 * right PCI registers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2077) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2078) 	new_mci = get_mci_for_node_id(*socket, sad_ha);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2079) 	if (!new_mci) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2080) 		sprintf(msg, "Struct for socket #%u wasn't initialized",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2081) 			*socket);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2082) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2083) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2084) 	mci = new_mci;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2085) 	pvt = mci->pvt_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2086) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2087) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2088) 	 * Step 2) Get memory channel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2089) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2090) 	prv = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2091) 	pci_ha = pvt->pci_ha;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2092) 	for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2093) 		pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2094) 		limit = TAD_LIMIT(reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2095) 		if (limit <= prv) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2096) 			sprintf(msg, "Can't discover the memory channel");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2097) 			return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2098) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2099) 		if  (addr <= limit)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2100) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2101) 		prv = limit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2102) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2103) 	if (n_tads == MAX_TAD) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2104) 		sprintf(msg, "Can't discover the memory channel");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2105) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2106) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2107) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2108) 	ch_way = TAD_CH(reg) + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2109) 	sck_way = TAD_SOCK(reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2110) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2111) 	if (ch_way == 3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2112) 		idx = addr >> 6;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2113) 	else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2114) 		idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2115) 		if (pvt->is_chan_hash)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2116) 			idx = haswell_chan_hash(idx, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2117) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2118) 	idx = idx % ch_way;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2119) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2120) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2121) 	 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2122) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2123) 	switch (idx) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2124) 	case 0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2125) 		base_ch = TAD_TGT0(reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2126) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2127) 	case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2128) 		base_ch = TAD_TGT1(reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2129) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2130) 	case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2131) 		base_ch = TAD_TGT2(reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2132) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2133) 	case 3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2134) 		base_ch = TAD_TGT3(reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2135) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2136) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2137) 		sprintf(msg, "Can't discover the TAD target");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2138) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2139) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2140) 	*channel_mask = 1 << base_ch;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2141) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2142) 	pci_read_config_dword(pvt->pci_tad[base_ch], tad_ch_nilv_offset[n_tads], &tad_offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2143) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2144) 	if (pvt->mirror_mode == FULL_MIRRORING ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2145) 	    (pvt->mirror_mode == ADDR_RANGE_MIRRORING && n_tads == 0)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2146) 		*channel_mask |= 1 << ((base_ch + 2) % 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2147) 		switch(ch_way) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2148) 		case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2149) 		case 4:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2150) 			sck_xch = (1 << sck_way) * (ch_way >> 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2151) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2152) 		default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2153) 			sprintf(msg, "Invalid mirror set. Can't decode addr");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2154) 			return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2155) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2156) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2157) 		pvt->is_cur_addr_mirrored = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2158) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2159) 		sck_xch = (1 << sck_way) * ch_way;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2160) 		pvt->is_cur_addr_mirrored = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2161) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2162) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2163) 	if (pvt->is_lockstep)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2164) 		*channel_mask |= 1 << ((base_ch + 1) % 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2165) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2166) 	offset = TAD_OFFSET(tad_offset);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2167) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2168) 	edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2169) 		 n_tads,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2170) 		 addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2171) 		 limit,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2172) 		 sck_way,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2173) 		 ch_way,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2174) 		 offset,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2175) 		 idx,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2176) 		 base_ch,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2177) 		 *channel_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2178) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2179) 	/* Calculate channel address */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2180) 	/* Remove the TAD offset */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2181) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2182) 	if (offset > addr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2183) 		sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2184) 			offset, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2185) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2186) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2187) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2188) 	ch_addr = addr - offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2189) 	ch_addr >>= (6 + shiftup);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2190) 	ch_addr /= sck_xch;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2191) 	ch_addr <<= (6 + shiftup);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2192) 	ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2193) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2194) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2195) 	 * Step 3) Decode rank
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2196) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2197) 	for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2198) 		pci_read_config_dword(pvt->pci_tad[base_ch], rir_way_limit[n_rir], &reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2199) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2200) 		if (!IS_RIR_VALID(reg))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2201) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2202) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2203) 		limit = pvt->info.rir_limit(reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2204) 		gb = div_u64_rem(limit >> 20, 1024, &mb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2205) 		edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2206) 			 n_rir,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2207) 			 gb, (mb*1000)/1024,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2208) 			 limit,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2209) 			 1 << RIR_WAY(reg));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2210) 		if  (ch_addr <= limit)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2211) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2212) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2213) 	if (n_rir == MAX_RIR_RANGES) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2214) 		sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2215) 			ch_addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2216) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2217) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2218) 	rir_way = RIR_WAY(reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2219) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2220) 	if (pvt->is_close_pg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2221) 		idx = (ch_addr >> 6);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2222) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2223) 		idx = (ch_addr >> 13);	/* FIXME: Datasheet says to shift by 15 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2224) 	idx %= 1 << rir_way;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2225) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2226) 	pci_read_config_dword(pvt->pci_tad[base_ch], rir_offset[n_rir][idx], &reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2227) 	*rank = RIR_RNK_TGT(pvt->info.type, reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2228) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2229) 	edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2230) 		 n_rir,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2231) 		 ch_addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2232) 		 limit,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2233) 		 rir_way,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2234) 		 idx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2235) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2236) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2237) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2238) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2239) static int get_memory_error_data_from_mce(struct mem_ctl_info *mci,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2240) 					  const struct mce *m, u8 *socket,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2241) 					  u8 *ha, long *channel_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2242) 					  char *msg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2243) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2244) 	u32 reg, channel = GET_BITFIELD(m->status, 0, 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2245) 	struct mem_ctl_info *new_mci;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2246) 	struct sbridge_pvt *pvt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2247) 	struct pci_dev *pci_ha;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2248) 	bool tad0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2249) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2250) 	if (channel >= NUM_CHANNELS) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2251) 		sprintf(msg, "Invalid channel 0x%x", channel);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2252) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2253) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2254) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2255) 	pvt = mci->pvt_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2256) 	if (!pvt->info.get_ha) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2257) 		sprintf(msg, "No get_ha()");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2258) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2259) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2260) 	*ha = pvt->info.get_ha(m->bank);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2261) 	if (*ha != 0 && *ha != 1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2262) 		sprintf(msg, "Impossible bank %d", m->bank);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2263) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2264) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2265) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2266) 	*socket = m->socketid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2267) 	new_mci = get_mci_for_node_id(*socket, *ha);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2268) 	if (!new_mci) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2269) 		strcpy(msg, "mci socket got corrupted!");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2270) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2271) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2272) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2273) 	pvt = new_mci->pvt_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2274) 	pci_ha = pvt->pci_ha;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2275) 	pci_read_config_dword(pci_ha, tad_dram_rule[0], &reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2276) 	tad0 = m->addr <= TAD_LIMIT(reg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2277) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2278) 	*channel_mask = 1 << channel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2279) 	if (pvt->mirror_mode == FULL_MIRRORING ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2280) 	    (pvt->mirror_mode == ADDR_RANGE_MIRRORING && tad0)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2281) 		*channel_mask |= 1 << ((channel + 2) % 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2282) 		pvt->is_cur_addr_mirrored = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2283) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2284) 		pvt->is_cur_addr_mirrored = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2285) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2286) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2287) 	if (pvt->is_lockstep)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2288) 		*channel_mask |= 1 << ((channel + 1) % 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2289) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2290) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2291) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2292) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2293) /****************************************************************************
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2294) 	Device initialization routines: put/get, init/exit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2295)  ****************************************************************************/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2296) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2297) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2298)  *	sbridge_put_all_devices	'put' all the devices that we have
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2299)  *				reserved via 'get'
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2300)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2301) static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2302) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2303) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2304) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2305) 	edac_dbg(0, "\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2306) 	for (i = 0; i < sbridge_dev->n_devs; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2307) 		struct pci_dev *pdev = sbridge_dev->pdev[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2308) 		if (!pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2309) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2310) 		edac_dbg(0, "Removing dev %02x:%02x.%d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2311) 			 pdev->bus->number,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2312) 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2313) 		pci_dev_put(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2314) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2315) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2316) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2317) static void sbridge_put_all_devices(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2318) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2319) 	struct sbridge_dev *sbridge_dev, *tmp;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2320) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2321) 	list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2322) 		sbridge_put_devices(sbridge_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2323) 		free_sbridge_dev(sbridge_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2324) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2325) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2326) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2327) static int sbridge_get_onedevice(struct pci_dev **prev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2328) 				 u8 *num_mc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2329) 				 const struct pci_id_table *table,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2330) 				 const unsigned devno,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2331) 				 const int multi_bus)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2332) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2333) 	struct sbridge_dev *sbridge_dev = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2334) 	const struct pci_id_descr *dev_descr = &table->descr[devno];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2335) 	struct pci_dev *pdev = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2336) 	int seg = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2337) 	u8 bus = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2338) 	int i = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2339) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2340) 	sbridge_printk(KERN_DEBUG,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2341) 		"Seeking for: PCI ID %04x:%04x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2342) 		PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2343) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2344) 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2345) 			      dev_descr->dev_id, *prev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2346) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2347) 	if (!pdev) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2348) 		if (*prev) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2349) 			*prev = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2350) 			return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2351) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2352) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2353) 		if (dev_descr->optional)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2354) 			return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2355) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2356) 		/* if the HA wasn't found */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2357) 		if (devno == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2358) 			return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2359) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2360) 		sbridge_printk(KERN_INFO,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2361) 			"Device not found: %04x:%04x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2362) 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2363) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2364) 		/* End of list, leave */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2365) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2366) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2367) 	seg = pci_domain_nr(pdev->bus);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2368) 	bus = pdev->bus->number;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2369) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2370) next_imc:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2371) 	sbridge_dev = get_sbridge_dev(seg, bus, dev_descr->dom,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2372) 				      multi_bus, sbridge_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2373) 	if (!sbridge_dev) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2374) 		/* If the HA1 wasn't found, don't create EDAC second memory controller */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2375) 		if (dev_descr->dom == IMC1 && devno != 1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2376) 			edac_dbg(0, "Skip IMC1: %04x:%04x (since HA1 was absent)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2377) 				 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2378) 			pci_dev_put(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2379) 			return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2380) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2381) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2382) 		if (dev_descr->dom == SOCK)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2383) 			goto out_imc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2384) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2385) 		sbridge_dev = alloc_sbridge_dev(seg, bus, dev_descr->dom, table);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2386) 		if (!sbridge_dev) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2387) 			pci_dev_put(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2388) 			return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2389) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2390) 		(*num_mc)++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2391) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2392) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2393) 	if (sbridge_dev->pdev[sbridge_dev->i_devs]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2394) 		sbridge_printk(KERN_ERR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2395) 			"Duplicated device for %04x:%04x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2396) 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2397) 		pci_dev_put(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2398) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2399) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2400) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2401) 	sbridge_dev->pdev[sbridge_dev->i_devs++] = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2402) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2403) 	/* pdev belongs to more than one IMC, do extra gets */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2404) 	if (++i > 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2405) 		pci_dev_get(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2406) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2407) 	if (dev_descr->dom == SOCK && i < table->n_imcs_per_sock)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2408) 		goto next_imc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2409) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2410) out_imc:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2411) 	/* Be sure that the device is enabled */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2412) 	if (unlikely(pci_enable_device(pdev) < 0)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2413) 		sbridge_printk(KERN_ERR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2414) 			"Couldn't enable %04x:%04x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2415) 			PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2416) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2417) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2418) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2419) 	edac_dbg(0, "Detected %04x:%04x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2420) 		 PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2421) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2422) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2423) 	 * As stated on drivers/pci/search.c, the reference count for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2424) 	 * @from is always decremented if it is not %NULL. So, as we need
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2425) 	 * to get all devices up to null, we need to do a get for the device
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2426) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2427) 	pci_dev_get(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2428) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2429) 	*prev = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2430) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2431) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2432) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2433) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2434) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2435)  * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2436)  *			     devices we want to reference for this driver.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2437)  * @num_mc: pointer to the memory controllers count, to be incremented in case
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2438)  *	    of success.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2439)  * @table: model specific table
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2440)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2441)  * returns 0 in case of success or error code
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2442)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2443) static int sbridge_get_all_devices(u8 *num_mc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2444) 					const struct pci_id_table *table)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2445) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2446) 	int i, rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2447) 	struct pci_dev *pdev = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2448) 	int allow_dups = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2449) 	int multi_bus = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2450) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2451) 	if (table->type == KNIGHTS_LANDING)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2452) 		allow_dups = multi_bus = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2453) 	while (table && table->descr) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2454) 		for (i = 0; i < table->n_devs_per_sock; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2455) 			if (!allow_dups || i == 0 ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2456) 					table->descr[i].dev_id !=
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2457) 						table->descr[i-1].dev_id) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2458) 				pdev = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2459) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2460) 			do {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2461) 				rc = sbridge_get_onedevice(&pdev, num_mc,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2462) 							   table, i, multi_bus);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2463) 				if (rc < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2464) 					if (i == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2465) 						i = table->n_devs_per_sock;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2466) 						break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2467) 					}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2468) 					sbridge_put_all_devices();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2469) 					return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2470) 				}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2471) 			} while (pdev && !allow_dups);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2472) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2473) 		table++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2474) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2475) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2476) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2477) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2478) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2479) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2480)  * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2481)  * the format: XXXa. So we can convert from a device to the corresponding
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2482)  * channel like this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2483)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2484) #define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2485) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2486) static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2487) 				 struct sbridge_dev *sbridge_dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2488) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2489) 	struct sbridge_pvt *pvt = mci->pvt_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2490) 	struct pci_dev *pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2491) 	u8 saw_chan_mask = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2492) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2493) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2494) 	for (i = 0; i < sbridge_dev->n_devs; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2495) 		pdev = sbridge_dev->pdev[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2496) 		if (!pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2497) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2498) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2499) 		switch (pdev->device) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2500) 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2501) 			pvt->pci_sad0 = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2502) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2503) 		case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2504) 			pvt->pci_sad1 = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2505) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2506) 		case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2507) 			pvt->pci_br0 = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2508) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2509) 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2510) 			pvt->pci_ha = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2511) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2512) 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2513) 			pvt->pci_ta = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2514) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2515) 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2516) 			pvt->pci_ras = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2517) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2518) 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2519) 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2520) 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2521) 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2522) 		{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2523) 			int id = TAD_DEV_TO_CHAN(pdev->device);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2524) 			pvt->pci_tad[id] = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2525) 			saw_chan_mask |= 1 << id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2526) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2527) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2528) 		case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2529) 			pvt->pci_ddrio = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2530) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2531) 		default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2532) 			goto error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2533) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2534) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2535) 		edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2536) 			 pdev->vendor, pdev->device,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2537) 			 sbridge_dev->bus,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2538) 			 pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2539) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2540) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2541) 	/* Check if everything were registered */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2542) 	if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2543) 	    !pvt->pci_ras || !pvt->pci_ta)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2544) 		goto enodev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2545) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2546) 	if (saw_chan_mask != 0x0f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2547) 		goto enodev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2548) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2549) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2550) enodev:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2551) 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2552) 	return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2553) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2554) error:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2555) 	sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2556) 		       PCI_VENDOR_ID_INTEL, pdev->device);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2557) 	return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2558) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2559) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2560) static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2561) 				 struct sbridge_dev *sbridge_dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2562) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2563) 	struct sbridge_pvt *pvt = mci->pvt_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2564) 	struct pci_dev *pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2565) 	u8 saw_chan_mask = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2566) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2567) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2568) 	for (i = 0; i < sbridge_dev->n_devs; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2569) 		pdev = sbridge_dev->pdev[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2570) 		if (!pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2571) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2572) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2573) 		switch (pdev->device) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2574) 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2575) 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2576) 			pvt->pci_ha = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2577) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2578) 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2579) 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2580) 			pvt->pci_ta = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2581) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2582) 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2583) 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2584) 			pvt->pci_ras = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2585) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2586) 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2587) 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2588) 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2589) 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2590) 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2591) 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2592) 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2593) 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2594) 		{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2595) 			int id = TAD_DEV_TO_CHAN(pdev->device);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2596) 			pvt->pci_tad[id] = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2597) 			saw_chan_mask |= 1 << id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2598) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2599) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2600) 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2601) 			pvt->pci_ddrio = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2602) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2603) 		case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2604) 			pvt->pci_ddrio = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2605) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2606) 		case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2607) 			pvt->pci_sad0 = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2608) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2609) 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2610) 			pvt->pci_br0 = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2611) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2612) 		case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2613) 			pvt->pci_br1 = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2614) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2615) 		default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2616) 			goto error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2617) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2618) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2619) 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2620) 			 sbridge_dev->bus,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2621) 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2622) 			 pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2623) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2624) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2625) 	/* Check if everything were registered */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2626) 	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_br0 ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2627) 	    !pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2628) 		goto enodev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2629) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2630) 	if (saw_chan_mask != 0x0f && /* -EN/-EX */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2631) 	    saw_chan_mask != 0x03)   /* -EP */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2632) 		goto enodev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2633) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2634) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2635) enodev:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2636) 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2637) 	return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2638) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2639) error:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2640) 	sbridge_printk(KERN_ERR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2641) 		       "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2642) 			pdev->device);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2643) 	return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2644) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2645) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2646) static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2647) 				 struct sbridge_dev *sbridge_dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2648) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2649) 	struct sbridge_pvt *pvt = mci->pvt_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2650) 	struct pci_dev *pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2651) 	u8 saw_chan_mask = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2652) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2653) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2654) 	/* there's only one device per system; not tied to any bus */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2655) 	if (pvt->info.pci_vtd == NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2656) 		/* result will be checked later */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2657) 		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2658) 						   PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2659) 						   NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2660) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2661) 	for (i = 0; i < sbridge_dev->n_devs; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2662) 		pdev = sbridge_dev->pdev[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2663) 		if (!pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2664) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2665) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2666) 		switch (pdev->device) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2667) 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2668) 			pvt->pci_sad0 = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2669) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2670) 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2671) 			pvt->pci_sad1 = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2672) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2673) 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2674) 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2675) 			pvt->pci_ha = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2676) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2677) 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2678) 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2679) 			pvt->pci_ta = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2680) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2681) 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2682) 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2683) 			pvt->pci_ras = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2684) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2685) 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2686) 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2687) 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2688) 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2689) 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2690) 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2691) 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2692) 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2693) 		{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2694) 			int id = TAD_DEV_TO_CHAN(pdev->device);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2695) 			pvt->pci_tad[id] = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2696) 			saw_chan_mask |= 1 << id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2697) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2698) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2699) 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2700) 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2701) 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2702) 		case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2703) 			if (!pvt->pci_ddrio)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2704) 				pvt->pci_ddrio = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2705) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2706) 		default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2707) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2708) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2709) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2710) 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2711) 			 sbridge_dev->bus,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2712) 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2713) 			 pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2714) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2715) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2716) 	/* Check if everything were registered */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2717) 	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2718) 	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2719) 		goto enodev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2720) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2721) 	if (saw_chan_mask != 0x0f && /* -EN/-EX */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2722) 	    saw_chan_mask != 0x03)   /* -EP */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2723) 		goto enodev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2724) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2725) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2726) enodev:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2727) 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2728) 	return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2729) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2730) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2731) static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2732) 				 struct sbridge_dev *sbridge_dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2733) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2734) 	struct sbridge_pvt *pvt = mci->pvt_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2735) 	struct pci_dev *pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2736) 	u8 saw_chan_mask = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2737) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2738) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2739) 	/* there's only one device per system; not tied to any bus */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2740) 	if (pvt->info.pci_vtd == NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2741) 		/* result will be checked later */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2742) 		pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2743) 						   PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2744) 						   NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2745) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2746) 	for (i = 0; i < sbridge_dev->n_devs; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2747) 		pdev = sbridge_dev->pdev[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2748) 		if (!pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2749) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2750) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2751) 		switch (pdev->device) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2752) 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2753) 			pvt->pci_sad0 = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2754) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2755) 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2756) 			pvt->pci_sad1 = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2757) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2758) 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2759) 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2760) 			pvt->pci_ha = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2761) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2762) 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2763) 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2764) 			pvt->pci_ta = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2765) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2766) 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2767) 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2768) 			pvt->pci_ras = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2769) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2770) 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2771) 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2772) 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2773) 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2774) 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2775) 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2776) 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2777) 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2778) 		{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2779) 			int id = TAD_DEV_TO_CHAN(pdev->device);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2780) 			pvt->pci_tad[id] = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2781) 			saw_chan_mask |= 1 << id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2782) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2783) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2784) 		case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2785) 			pvt->pci_ddrio = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2786) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2787) 		default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2788) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2789) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2790) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2791) 		edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2792) 			 sbridge_dev->bus,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2793) 			 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2794) 			 pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2795) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2796) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2797) 	/* Check if everything were registered */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2798) 	if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2799) 	    !pvt->pci_ras  || !pvt->pci_ta || !pvt->info.pci_vtd)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2800) 		goto enodev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2801) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2802) 	if (saw_chan_mask != 0x0f && /* -EN/-EX */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2803) 	    saw_chan_mask != 0x03)   /* -EP */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2804) 		goto enodev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2805) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2806) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2807) enodev:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2808) 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2809) 	return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2810) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2811) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2812) static int knl_mci_bind_devs(struct mem_ctl_info *mci,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2813) 			struct sbridge_dev *sbridge_dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2814) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2815) 	struct sbridge_pvt *pvt = mci->pvt_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2816) 	struct pci_dev *pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2817) 	int dev, func;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2818) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2819) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2820) 	int devidx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2821) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2822) 	for (i = 0; i < sbridge_dev->n_devs; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2823) 		pdev = sbridge_dev->pdev[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2824) 		if (!pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2825) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2826) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2827) 		/* Extract PCI device and function. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2828) 		dev = (pdev->devfn >> 3) & 0x1f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2829) 		func = pdev->devfn & 0x7;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2830) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2831) 		switch (pdev->device) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2832) 		case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2833) 			if (dev == 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2834) 				pvt->knl.pci_mc0 = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2835) 			else if (dev == 9)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2836) 				pvt->knl.pci_mc1 = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2837) 			else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2838) 				sbridge_printk(KERN_ERR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2839) 					"Memory controller in unexpected place! (dev %d, fn %d)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2840) 					dev, func);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2841) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2842) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2843) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2844) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2845) 		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2846) 			pvt->pci_sad0 = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2847) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2848) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2849) 		case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2850) 			pvt->pci_sad1 = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2851) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2852) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2853) 		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2854) 			/* There are one of these per tile, and range from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2855) 			 * 1.14.0 to 1.18.5.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2856) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2857) 			devidx = ((dev-14)*8)+func;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2858) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2859) 			if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2860) 				sbridge_printk(KERN_ERR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2861) 					"Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2862) 					dev, func);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2863) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2864) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2865) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2866) 			WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2867) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2868) 			pvt->knl.pci_cha[devidx] = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2869) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2870) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2871) 		case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2872) 			devidx = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2873) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2874) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2875) 			 *  MC0 channels 0-2 are device 9 function 2-4,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2876) 			 *  MC1 channels 3-5 are device 8 function 2-4.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2877) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2878) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2879) 			if (dev == 9)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2880) 				devidx = func-2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2881) 			else if (dev == 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2882) 				devidx = 3 + (func-2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2883) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2884) 			if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2885) 				sbridge_printk(KERN_ERR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2886) 					"DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2887) 					dev, func);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2888) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2889) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2890) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2891) 			WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2892) 			pvt->knl.pci_channel[devidx] = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2893) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2894) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2895) 		case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2896) 			pvt->knl.pci_mc_info = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2897) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2898) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2899) 		case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2900) 			pvt->pci_ta = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2901) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2902) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2903) 		default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2904) 			sbridge_printk(KERN_ERR, "Unexpected device %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2905) 				pdev->device);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2906) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2907) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2908) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2909) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2910) 	if (!pvt->knl.pci_mc0  || !pvt->knl.pci_mc1 ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2911) 	    !pvt->pci_sad0     || !pvt->pci_sad1    ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2912) 	    !pvt->pci_ta) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2913) 		goto enodev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2914) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2915) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2916) 	for (i = 0; i < KNL_MAX_CHANNELS; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2917) 		if (!pvt->knl.pci_channel[i]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2918) 			sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2919) 			goto enodev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2920) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2921) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2922) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2923) 	for (i = 0; i < KNL_MAX_CHAS; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2924) 		if (!pvt->knl.pci_cha[i]) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2925) 			sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2926) 			goto enodev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2927) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2928) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2929) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2930) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2931) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2932) enodev:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2933) 	sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2934) 	return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2935) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2936) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2937) /****************************************************************************
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2938) 			Error check routines
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2939)  ****************************************************************************/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2940) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2941) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2942)  * While Sandy Bridge has error count registers, SMI BIOS read values from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2943)  * and resets the counters. So, they are not reliable for the OS to read
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2944)  * from them. So, we have no option but to just trust on whatever MCE is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2945)  * telling us about the errors.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2946)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2947) static void sbridge_mce_output_error(struct mem_ctl_info *mci,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2948) 				    const struct mce *m)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2949) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2950) 	struct mem_ctl_info *new_mci;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2951) 	struct sbridge_pvt *pvt = mci->pvt_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2952) 	enum hw_event_mc_err_type tp_event;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2953) 	char *optype, msg[256];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2954) 	bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2955) 	bool overflow = GET_BITFIELD(m->status, 62, 62);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2956) 	bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2957) 	bool recoverable;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2958) 	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2959) 	u32 mscod = GET_BITFIELD(m->status, 16, 31);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2960) 	u32 errcode = GET_BITFIELD(m->status, 0, 15);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2961) 	u32 channel = GET_BITFIELD(m->status, 0, 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2962) 	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2963) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2964) 	 * Bits 5-0 of MCi_MISC give the least significant bit that is valid.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2965) 	 * A value 6 is for cache line aligned address, a value 12 is for page
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2966) 	 * aligned address reported by patrol scrubber.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2967) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2968) 	u32 lsb = GET_BITFIELD(m->misc, 0, 5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2969) 	long channel_mask, first_channel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2970) 	u8  rank = 0xff, socket, ha;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2971) 	int rc, dimm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2972) 	char *area_type = "DRAM";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2973) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2974) 	if (pvt->info.type != SANDY_BRIDGE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2975) 		recoverable = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2976) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2977) 		recoverable = GET_BITFIELD(m->status, 56, 56);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2978) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2979) 	if (uncorrected_error) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2980) 		core_err_cnt = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2981) 		if (ripv) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2982) 			tp_event = HW_EVENT_ERR_UNCORRECTED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2983) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2984) 			tp_event = HW_EVENT_ERR_FATAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2985) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2986) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2987) 		tp_event = HW_EVENT_ERR_CORRECTED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2988) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2989) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2990) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2991) 	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2992) 	 * memory errors should fit in this mask:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2993) 	 *	000f 0000 1mmm cccc (binary)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2994) 	 * where:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2995) 	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2996) 	 *	    won't be shown
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2997) 	 *	mmm = error type
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2998) 	 *	cccc = channel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 2999) 	 * If the mask doesn't match, report an error to the parsing logic
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3000) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3001) 	switch (optypenum) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3002) 	case 0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3003) 		optype = "generic undef request error";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3004) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3005) 	case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3006) 		optype = "memory read error";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3007) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3008) 	case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3009) 		optype = "memory write error";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3010) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3011) 	case 3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3012) 		optype = "addr/cmd error";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3013) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3014) 	case 4:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3015) 		optype = "memory scrubbing error";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3016) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3017) 	default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3018) 		optype = "reserved";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3019) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3020) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3021) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3022) 	if (pvt->info.type == KNIGHTS_LANDING) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3023) 		if (channel == 14) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3024) 			edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3025) 				overflow ? " OVERFLOW" : "",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3026) 				(uncorrected_error && recoverable)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3027) 				? " recoverable" : "",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3028) 				mscod, errcode,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3029) 				m->bank);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3030) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3031) 			char A = *("A");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3032) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3033) 			/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3034) 			 * Reported channel is in range 0-2, so we can't map it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3035) 			 * back to mc. To figure out mc we check machine check
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3036) 			 * bank register that reported this error.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3037) 			 * bank15 means mc0 and bank16 means mc1.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3038) 			 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3039) 			channel = knl_channel_remap(m->bank == 16, channel);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3040) 			channel_mask = 1 << channel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3041) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3042) 			snprintf(msg, sizeof(msg),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3043) 				"%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3044) 				overflow ? " OVERFLOW" : "",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3045) 				(uncorrected_error && recoverable)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3046) 				? " recoverable" : " ",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3047) 				mscod, errcode, channel, A + channel);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3048) 			edac_mc_handle_error(tp_event, mci, core_err_cnt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3049) 				m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3050) 				channel, 0, -1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3051) 				optype, msg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3052) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3053) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3054) 	} else if (lsb < 12) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3055) 		rc = get_memory_error_data(mci, m->addr, &socket, &ha,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3056) 					   &channel_mask, &rank,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3057) 					   &area_type, msg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3058) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3059) 		rc = get_memory_error_data_from_mce(mci, m, &socket, &ha,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3060) 						    &channel_mask, msg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3061) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3062) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3063) 	if (rc < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3064) 		goto err_parsing;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3065) 	new_mci = get_mci_for_node_id(socket, ha);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3066) 	if (!new_mci) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3067) 		strcpy(msg, "Error: socket got corrupted!");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3068) 		goto err_parsing;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3069) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3070) 	mci = new_mci;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3071) 	pvt = mci->pvt_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3072) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3073) 	first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3074) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3075) 	if (rank == 0xff)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3076) 		dimm = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3077) 	else if (rank < 4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3078) 		dimm = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3079) 	else if (rank < 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3080) 		dimm = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3081) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3082) 		dimm = 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3083) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3084) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3085) 	 * FIXME: On some memory configurations (mirror, lockstep), the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3086) 	 * Memory Controller can't point the error to a single DIMM. The
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3087) 	 * EDAC core should be handling the channel mask, in order to point
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3088) 	 * to the group of dimm's where the error may be happening.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3089) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3090) 	if (!pvt->is_lockstep && !pvt->is_cur_addr_mirrored && !pvt->is_close_pg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3091) 		channel = first_channel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3092) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3093) 	snprintf(msg, sizeof(msg),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3094) 		 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3095) 		 overflow ? " OVERFLOW" : "",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3096) 		 (uncorrected_error && recoverable) ? " recoverable" : "",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3097) 		 area_type,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3098) 		 mscod, errcode,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3099) 		 socket, ha,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3100) 		 channel_mask,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3101) 		 rank);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3102) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3103) 	edac_dbg(0, "%s\n", msg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3104) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3105) 	/* FIXME: need support for channel mask */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3106) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3107) 	if (channel == CHANNEL_UNSPECIFIED)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3108) 		channel = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3109) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3110) 	/* Call the helper to output message */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3111) 	edac_mc_handle_error(tp_event, mci, core_err_cnt,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3112) 			     m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3113) 			     channel, dimm, -1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3114) 			     optype, msg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3115) 	return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3116) err_parsing:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3117) 	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3118) 			     -1, -1, -1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3119) 			     msg, "");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3120) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3121) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3122) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3123) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3124)  * Check that logging is enabled and that this is the right type
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3125)  * of error for us to handle.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3126)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3127) static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3128) 				   void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3129) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3130) 	struct mce *mce = (struct mce *)data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3131) 	struct mem_ctl_info *mci;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3132) 	char *type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3133) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3134) 	if (mce->kflags & MCE_HANDLED_CEC)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3135) 		return NOTIFY_DONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3136) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3137) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3138) 	 * Just let mcelog handle it if the error is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3139) 	 * outside the memory controller. A memory error
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3140) 	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3141) 	 * bit 12 has an special meaning.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3142) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3143) 	if ((mce->status & 0xefff) >> 7 != 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3144) 		return NOTIFY_DONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3145) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3146) 	/* Check ADDRV bit in STATUS */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3147) 	if (!GET_BITFIELD(mce->status, 58, 58))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3148) 		return NOTIFY_DONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3149) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3150) 	/* Check MISCV bit in STATUS */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3151) 	if (!GET_BITFIELD(mce->status, 59, 59))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3152) 		return NOTIFY_DONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3153) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3154) 	/* Check address type in MISC (physical address only) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3155) 	if (GET_BITFIELD(mce->misc, 6, 8) != 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3156) 		return NOTIFY_DONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3157) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3158) 	mci = get_mci_for_node_id(mce->socketid, IMC0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3159) 	if (!mci)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3160) 		return NOTIFY_DONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3161) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3162) 	if (mce->mcgstatus & MCG_STATUS_MCIP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3163) 		type = "Exception";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3164) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3165) 		type = "Event";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3166) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3167) 	sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3168) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3169) 	sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3170) 			  "Bank %d: %016Lx\n", mce->extcpu, type,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3171) 			  mce->mcgstatus, mce->bank, mce->status);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3172) 	sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3173) 	sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3174) 	sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3175) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3176) 	sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3177) 			  "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3178) 			  mce->time, mce->socketid, mce->apicid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3179) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3180) 	sbridge_mce_output_error(mci, mce);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3181) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3182) 	/* Advice mcelog that the error were handled */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3183) 	mce->kflags |= MCE_HANDLED_EDAC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3184) 	return NOTIFY_OK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3185) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3186) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3187) static struct notifier_block sbridge_mce_dec = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3188) 	.notifier_call	= sbridge_mce_check_error,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3189) 	.priority	= MCE_PRIO_EDAC,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3190) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3191) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3192) /****************************************************************************
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3193) 			EDAC register/unregister logic
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3194)  ****************************************************************************/
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3195) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3196) static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3197) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3198) 	struct mem_ctl_info *mci = sbridge_dev->mci;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3199) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3200) 	if (unlikely(!mci || !mci->pvt_info)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3201) 		edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3202) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3203) 		sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3204) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3205) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3206) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3207) 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3208) 		 mci, &sbridge_dev->pdev[0]->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3209) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3210) 	/* Remove MC sysfs nodes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3211) 	edac_mc_del_mc(mci->pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3212) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3213) 	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3214) 	kfree(mci->ctl_name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3215) 	edac_mc_free(mci);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3216) 	sbridge_dev->mci = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3217) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3218) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3219) static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3220) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3221) 	struct mem_ctl_info *mci;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3222) 	struct edac_mc_layer layers[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3223) 	struct sbridge_pvt *pvt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3224) 	struct pci_dev *pdev = sbridge_dev->pdev[0];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3225) 	int rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3226) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3227) 	/* allocate a new MC control structure */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3228) 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3229) 	layers[0].size = type == KNIGHTS_LANDING ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3230) 		KNL_MAX_CHANNELS : NUM_CHANNELS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3231) 	layers[0].is_virt_csrow = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3232) 	layers[1].type = EDAC_MC_LAYER_SLOT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3233) 	layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3234) 	layers[1].is_virt_csrow = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3235) 	mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3236) 			    sizeof(*pvt));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3237) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3238) 	if (unlikely(!mci))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3239) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3240) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3241) 	edac_dbg(0, "MC: mci = %p, dev = %p\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3242) 		 mci, &pdev->dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3243) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3244) 	pvt = mci->pvt_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3245) 	memset(pvt, 0, sizeof(*pvt));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3246) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3247) 	/* Associate sbridge_dev and mci for future usage */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3248) 	pvt->sbridge_dev = sbridge_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3249) 	sbridge_dev->mci = mci;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3250) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3251) 	mci->mtype_cap = type == KNIGHTS_LANDING ?
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3252) 		MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3253) 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3254) 	mci->edac_cap = EDAC_FLAG_NONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3255) 	mci->mod_name = EDAC_MOD_STR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3256) 	mci->dev_name = pci_name(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3257) 	mci->ctl_page_to_phys = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3258) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3259) 	pvt->info.type = type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3260) 	switch (type) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3261) 	case IVY_BRIDGE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3262) 		pvt->info.rankcfgr = IB_RANK_CFG_A;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3263) 		pvt->info.get_tolm = ibridge_get_tolm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3264) 		pvt->info.get_tohm = ibridge_get_tohm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3265) 		pvt->info.dram_rule = ibridge_dram_rule;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3266) 		pvt->info.get_memory_type = get_memory_type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3267) 		pvt->info.get_node_id = get_node_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3268) 		pvt->info.get_ha = ibridge_get_ha;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3269) 		pvt->info.rir_limit = rir_limit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3270) 		pvt->info.sad_limit = sad_limit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3271) 		pvt->info.interleave_mode = interleave_mode;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3272) 		pvt->info.dram_attr = dram_attr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3273) 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3274) 		pvt->info.interleave_list = ibridge_interleave_list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3275) 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3276) 		pvt->info.get_width = ibridge_get_width;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3277) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3278) 		/* Store pci devices at mci for faster access */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3279) 		rc = ibridge_mci_bind_devs(mci, sbridge_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3280) 		if (unlikely(rc < 0))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3281) 			goto fail0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3282) 		get_source_id(mci);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3283) 		mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge SrcID#%d_Ha#%d",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3284) 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3285) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3286) 	case SANDY_BRIDGE:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3287) 		pvt->info.rankcfgr = SB_RANK_CFG_A;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3288) 		pvt->info.get_tolm = sbridge_get_tolm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3289) 		pvt->info.get_tohm = sbridge_get_tohm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3290) 		pvt->info.dram_rule = sbridge_dram_rule;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3291) 		pvt->info.get_memory_type = get_memory_type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3292) 		pvt->info.get_node_id = get_node_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3293) 		pvt->info.get_ha = sbridge_get_ha;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3294) 		pvt->info.rir_limit = rir_limit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3295) 		pvt->info.sad_limit = sad_limit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3296) 		pvt->info.interleave_mode = interleave_mode;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3297) 		pvt->info.dram_attr = dram_attr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3298) 		pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3299) 		pvt->info.interleave_list = sbridge_interleave_list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3300) 		pvt->info.interleave_pkg = sbridge_interleave_pkg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3301) 		pvt->info.get_width = sbridge_get_width;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3302) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3303) 		/* Store pci devices at mci for faster access */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3304) 		rc = sbridge_mci_bind_devs(mci, sbridge_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3305) 		if (unlikely(rc < 0))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3306) 			goto fail0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3307) 		get_source_id(mci);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3308) 		mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge SrcID#%d_Ha#%d",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3309) 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3310) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3311) 	case HASWELL:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3312) 		/* rankcfgr isn't used */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3313) 		pvt->info.get_tolm = haswell_get_tolm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3314) 		pvt->info.get_tohm = haswell_get_tohm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3315) 		pvt->info.dram_rule = ibridge_dram_rule;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3316) 		pvt->info.get_memory_type = haswell_get_memory_type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3317) 		pvt->info.get_node_id = haswell_get_node_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3318) 		pvt->info.get_ha = ibridge_get_ha;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3319) 		pvt->info.rir_limit = haswell_rir_limit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3320) 		pvt->info.sad_limit = sad_limit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3321) 		pvt->info.interleave_mode = interleave_mode;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3322) 		pvt->info.dram_attr = dram_attr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3323) 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3324) 		pvt->info.interleave_list = ibridge_interleave_list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3325) 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3326) 		pvt->info.get_width = ibridge_get_width;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3327) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3328) 		/* Store pci devices at mci for faster access */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3329) 		rc = haswell_mci_bind_devs(mci, sbridge_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3330) 		if (unlikely(rc < 0))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3331) 			goto fail0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3332) 		get_source_id(mci);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3333) 		mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell SrcID#%d_Ha#%d",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3334) 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3335) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3336) 	case BROADWELL:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3337) 		/* rankcfgr isn't used */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3338) 		pvt->info.get_tolm = haswell_get_tolm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3339) 		pvt->info.get_tohm = haswell_get_tohm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3340) 		pvt->info.dram_rule = ibridge_dram_rule;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3341) 		pvt->info.get_memory_type = haswell_get_memory_type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3342) 		pvt->info.get_node_id = haswell_get_node_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3343) 		pvt->info.get_ha = ibridge_get_ha;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3344) 		pvt->info.rir_limit = haswell_rir_limit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3345) 		pvt->info.sad_limit = sad_limit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3346) 		pvt->info.interleave_mode = interleave_mode;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3347) 		pvt->info.dram_attr = dram_attr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3348) 		pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3349) 		pvt->info.interleave_list = ibridge_interleave_list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3350) 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3351) 		pvt->info.get_width = broadwell_get_width;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3352) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3353) 		/* Store pci devices at mci for faster access */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3354) 		rc = broadwell_mci_bind_devs(mci, sbridge_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3355) 		if (unlikely(rc < 0))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3356) 			goto fail0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3357) 		get_source_id(mci);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3358) 		mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell SrcID#%d_Ha#%d",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3359) 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3360) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3361) 	case KNIGHTS_LANDING:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3362) 		/* pvt->info.rankcfgr == ??? */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3363) 		pvt->info.get_tolm = knl_get_tolm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3364) 		pvt->info.get_tohm = knl_get_tohm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3365) 		pvt->info.dram_rule = knl_dram_rule;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3366) 		pvt->info.get_memory_type = knl_get_memory_type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3367) 		pvt->info.get_node_id = knl_get_node_id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3368) 		pvt->info.get_ha = knl_get_ha;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3369) 		pvt->info.rir_limit = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3370) 		pvt->info.sad_limit = knl_sad_limit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3371) 		pvt->info.interleave_mode = knl_interleave_mode;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3372) 		pvt->info.dram_attr = dram_attr_knl;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3373) 		pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3374) 		pvt->info.interleave_list = knl_interleave_list;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3375) 		pvt->info.interleave_pkg = ibridge_interleave_pkg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3376) 		pvt->info.get_width = knl_get_width;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3377) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3378) 		rc = knl_mci_bind_devs(mci, sbridge_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3379) 		if (unlikely(rc < 0))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3380) 			goto fail0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3381) 		get_source_id(mci);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3382) 		mci->ctl_name = kasprintf(GFP_KERNEL, "Knights Landing SrcID#%d_Ha#%d",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3383) 			pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3384) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3385) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3386) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3387) 	if (!mci->ctl_name) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3388) 		rc = -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3389) 		goto fail0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3390) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3391) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3392) 	/* Get dimm basic config and the memory layout */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3393) 	rc = get_dimm_config(mci);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3394) 	if (rc < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3395) 		edac_dbg(0, "MC: failed to get_dimm_config()\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3396) 		goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3397) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3398) 	get_memory_layout(mci);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3399) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3400) 	/* record ptr to the generic device */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3401) 	mci->pdev = &pdev->dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3402) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3403) 	/* add this new MC control structure to EDAC's list of MCs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3404) 	if (unlikely(edac_mc_add_mc(mci))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3405) 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3406) 		rc = -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3407) 		goto fail;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3408) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3409) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3410) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3411) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3412) fail:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3413) 	kfree(mci->ctl_name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3414) fail0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3415) 	edac_mc_free(mci);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3416) 	sbridge_dev->mci = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3417) 	return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3418) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3419) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3420) static const struct x86_cpu_id sbridge_cpuids[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3421) 	X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X, &pci_dev_descr_sbridge_table),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3422) 	X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X,	  &pci_dev_descr_ibridge_table),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3423) 	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X,	  &pci_dev_descr_haswell_table),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3424) 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X,	  &pci_dev_descr_broadwell_table),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3425) 	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D,	  &pci_dev_descr_broadwell_table),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3426) 	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL,  &pci_dev_descr_knl_table),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3427) 	X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM,  &pci_dev_descr_knl_table),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3428) 	{ }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3429) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3430) MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3431) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3432) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3433)  *	sbridge_probe	Get all devices and register memory controllers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3434)  *			present.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3435)  *	return:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3436)  *		0 for FOUND a device
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3437)  *		< 0 for error code
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3438)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3439) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3440) static int sbridge_probe(const struct x86_cpu_id *id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3441) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3442) 	int rc = -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3443) 	u8 mc, num_mc = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3444) 	struct sbridge_dev *sbridge_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3445) 	struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3446) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3447) 	/* get the pci devices we want to reserve for our use */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3448) 	rc = sbridge_get_all_devices(&num_mc, ptable);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3449) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3450) 	if (unlikely(rc < 0)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3451) 		edac_dbg(0, "couldn't get all devices\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3452) 		goto fail0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3453) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3454) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3455) 	mc = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3456) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3457) 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3458) 		edac_dbg(0, "Registering MC#%d (%d of %d)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3459) 			 mc, mc + 1, num_mc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3460) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3461) 		sbridge_dev->mc = mc++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3462) 		rc = sbridge_register_mci(sbridge_dev, ptable->type);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3463) 		if (unlikely(rc < 0))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3464) 			goto fail1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3465) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3466) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3467) 	sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3468) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3469) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3470) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3471) fail1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3472) 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3473) 		sbridge_unregister_mci(sbridge_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3474) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3475) 	sbridge_put_all_devices();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3476) fail0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3477) 	return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3478) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3479) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3480) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3481)  *	sbridge_remove	cleanup
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3482)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3483)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3484) static void sbridge_remove(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3485) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3486) 	struct sbridge_dev *sbridge_dev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3487) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3488) 	edac_dbg(0, "\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3489) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3490) 	list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3491) 		sbridge_unregister_mci(sbridge_dev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3492) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3493) 	/* Release PCI resources */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3494) 	sbridge_put_all_devices();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3495) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3496) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3497) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3498)  *	sbridge_init		Module entry function
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3499)  *			Try to initialize this module for its devices
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3500)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3501) static int __init sbridge_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3502) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3503) 	const struct x86_cpu_id *id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3504) 	const char *owner;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3505) 	int rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3506) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3507) 	edac_dbg(2, "\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3508) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3509) 	owner = edac_get_owner();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3510) 	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3511) 		return -EBUSY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3512) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3513) 	if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3514) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3515) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3516) 	id = x86_match_cpu(sbridge_cpuids);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3517) 	if (!id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3518) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3519) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3520) 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3521) 	opstate_init();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3522) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3523) 	rc = sbridge_probe(id);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3524) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3525) 	if (rc >= 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3526) 		mce_register_decode_chain(&sbridge_mce_dec);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3527) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3528) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3529) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3530) 	sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3531) 		      rc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3532) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3533) 	return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3534) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3535) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3536) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3537)  *	sbridge_exit()	Module exit function
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3538)  *			Unregister the driver
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3539)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3540) static void __exit sbridge_exit(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3541) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3542) 	edac_dbg(2, "\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3543) 	sbridge_remove();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3544) 	mce_unregister_decode_chain(&sbridge_mce_dec);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3545) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3546) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3547) module_init(sbridge_init);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3548) module_exit(sbridge_exit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3549) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3550) module_param(edac_op_state, int, 0444);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3551) MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3552) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3553) MODULE_LICENSE("GPL");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3554) MODULE_AUTHOR("Mauro Carvalho Chehab");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3555) MODULE_AUTHOR("Red Hat Inc. (https://www.redhat.com)");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3556) MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 3557) 		   SBRIDGE_REVISION);