Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    1) // SPDX-License-Identifier: GPL-2.0-only
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    2) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    3)  * Driver for Pondicherry2 memory controller.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    4)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    5)  * Copyright (c) 2016, Intel Corporation.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    6)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    7)  * [Derived from sb_edac.c]
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    8)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    9)  * Translation of system physical addresses to DIMM addresses
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   10)  * is a two stage process:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   11)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   12)  * First the Pondicherry 2 memory controller handles slice and channel interleaving
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   13)  * in "sys2pmi()". This is (almost) completley common between platforms.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   14)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   15)  * Then a platform specific dunit (DIMM unit) completes the process to provide DIMM,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   16)  * rank, bank, row and column using the appropriate "dunit_ops" functions/parameters.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   17)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   18) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   19) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   20) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   21) #include <linux/pci.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   22) #include <linux/pci_ids.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   23) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   24) #include <linux/delay.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   25) #include <linux/edac.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   26) #include <linux/mmzone.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   27) #include <linux/smp.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   28) #include <linux/bitmap.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   29) #include <linux/math64.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   30) #include <linux/mod_devicetable.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   31) #include <asm/cpu_device_id.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   32) #include <asm/intel-family.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   33) #include <asm/processor.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   34) #include <asm/mce.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   35) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   36) #include "edac_mc.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   37) #include "edac_module.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   38) #include "pnd2_edac.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   39) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   40) #define EDAC_MOD_STR		"pnd2_edac"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   41) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   42) #define APL_NUM_CHANNELS	4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   43) #define DNV_NUM_CHANNELS	2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   44) #define DNV_MAX_DIMMS		2 /* Max DIMMs per channel */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   45) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   46) enum type {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   47) 	APL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   48) 	DNV, /* All requests go to PMI CH0 on each slice (CH1 disabled) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   49) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   50) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   51) struct dram_addr {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   52) 	int chan;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   53) 	int dimm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   54) 	int rank;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   55) 	int bank;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   56) 	int row;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   57) 	int col;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   58) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   59) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   60) struct pnd2_pvt {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   61) 	int dimm_geom[APL_NUM_CHANNELS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   62) 	u64 tolm, tohm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   63) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   64) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   65) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   66)  * System address space is divided into multiple regions with
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   67)  * different interleave rules in each. The as0/as1 regions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   68)  * have no interleaving at all. The as2 region is interleaved
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   69)  * between two channels. The mot region is magic and may overlap
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   70)  * other regions, with its interleave rules taking precedence.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   71)  * Addresses not in any of these regions are interleaved across
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   72)  * all four channels.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   73)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   74) static struct region {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   75) 	u64	base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   76) 	u64	limit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   77) 	u8	enabled;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   78) } mot, as0, as1, as2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   79) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   80) static struct dunit_ops {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   81) 	char *name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   82) 	enum type type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   83) 	int pmiaddr_shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   84) 	int pmiidx_shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   85) 	int channels;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   86) 	int dimms_per_channel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   87) 	int (*rd_reg)(int port, int off, int op, void *data, size_t sz, char *name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   88) 	int (*get_registers)(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   89) 	int (*check_ecc)(void);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   90) 	void (*mk_region)(char *name, struct region *rp, void *asym);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   91) 	void (*get_dimm_config)(struct mem_ctl_info *mci);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   92) 	int (*pmi2mem)(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   93) 				   struct dram_addr *daddr, char *msg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   94) } *ops;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   95) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   96) static struct mem_ctl_info *pnd2_mci;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   97) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   98) #define PND2_MSG_SIZE	256
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   99) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  100) /* Debug macros */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  101) #define pnd2_printk(level, fmt, arg...)			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  102) 	edac_printk(level, "pnd2", fmt, ##arg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  103) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  104) #define pnd2_mc_printk(mci, level, fmt, arg...)	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  105) 	edac_mc_chipset_printk(mci, level, "pnd2", fmt, ##arg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  106) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  107) #define MOT_CHAN_INTLV_BIT_1SLC_2CH 12
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  108) #define MOT_CHAN_INTLV_BIT_2SLC_2CH 13
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  109) #define SELECTOR_DISABLED (-1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  110) #define _4GB (1ul << 32)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  111) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  112) #define PMI_ADDRESS_WIDTH	31
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  113) #define PND_MAX_PHYS_BIT	39
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  114) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  115) #define APL_ASYMSHIFT		28
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  116) #define DNV_ASYMSHIFT		31
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  117) #define CH_HASH_MASK_LSB	6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  118) #define SLICE_HASH_MASK_LSB	6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  119) #define MOT_SLC_INTLV_BIT	12
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  120) #define LOG2_PMI_ADDR_GRANULARITY	5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  121) #define MOT_SHIFT	24
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  122) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  123) #define GET_BITFIELD(v, lo, hi)	(((v) & GENMASK_ULL(hi, lo)) >> (lo))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  124) #define U64_LSHIFT(val, s)	((u64)(val) << (s))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  125) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  126) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  127)  * On Apollo Lake we access memory controller registers via a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  128)  * side-band mailbox style interface in a hidden PCI device
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  129)  * configuration space.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  130)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  131) static struct pci_bus	*p2sb_bus;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  132) #define P2SB_DEVFN	PCI_DEVFN(0xd, 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  133) #define P2SB_ADDR_OFF	0xd0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  134) #define P2SB_DATA_OFF	0xd4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  135) #define P2SB_STAT_OFF	0xd8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  136) #define P2SB_ROUT_OFF	0xda
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  137) #define P2SB_EADD_OFF	0xdc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  138) #define P2SB_HIDE_OFF	0xe1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  139) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  140) #define P2SB_BUSY	1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  141) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  142) #define P2SB_READ(size, off, ptr) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  143) 	pci_bus_read_config_##size(p2sb_bus, P2SB_DEVFN, off, ptr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  144) #define P2SB_WRITE(size, off, val) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  145) 	pci_bus_write_config_##size(p2sb_bus, P2SB_DEVFN, off, val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  146) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  147) static bool p2sb_is_busy(u16 *status)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  148) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  149) 	P2SB_READ(word, P2SB_STAT_OFF, status);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  150) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  151) 	return !!(*status & P2SB_BUSY);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  152) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  153) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  154) static int _apl_rd_reg(int port, int off, int op, u32 *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  155) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  156) 	int retries = 0xff, ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  157) 	u16 status;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  158) 	u8 hidden;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  159) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  160) 	/* Unhide the P2SB device, if it's hidden */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  161) 	P2SB_READ(byte, P2SB_HIDE_OFF, &hidden);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  162) 	if (hidden)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  163) 		P2SB_WRITE(byte, P2SB_HIDE_OFF, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  164) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  165) 	if (p2sb_is_busy(&status)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  166) 		ret = -EAGAIN;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  167) 		goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  168) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  169) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  170) 	P2SB_WRITE(dword, P2SB_ADDR_OFF, (port << 24) | off);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  171) 	P2SB_WRITE(dword, P2SB_DATA_OFF, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  172) 	P2SB_WRITE(dword, P2SB_EADD_OFF, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  173) 	P2SB_WRITE(word, P2SB_ROUT_OFF, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  174) 	P2SB_WRITE(word, P2SB_STAT_OFF, (op << 8) | P2SB_BUSY);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  175) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  176) 	while (p2sb_is_busy(&status)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  177) 		if (retries-- == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  178) 			ret = -EBUSY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  179) 			goto out;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  180) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  181) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  182) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  183) 	P2SB_READ(dword, P2SB_DATA_OFF, data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  184) 	ret = (status >> 1) & 0x3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  185) out:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  186) 	/* Hide the P2SB device, if it was hidden before */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  187) 	if (hidden)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  188) 		P2SB_WRITE(byte, P2SB_HIDE_OFF, hidden);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  189) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  190) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  191) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  192) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  193) static int apl_rd_reg(int port, int off, int op, void *data, size_t sz, char *name)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  194) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  195) 	int ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  196) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  197) 	edac_dbg(2, "Read %s port=%x off=%x op=%x\n", name, port, off, op);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  198) 	switch (sz) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  199) 	case 8:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  200) 		ret = _apl_rd_reg(port, off + 4, op, (u32 *)(data + 4));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  201) 		fallthrough;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  202) 	case 4:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  203) 		ret |= _apl_rd_reg(port, off, op, (u32 *)data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  204) 		pnd2_printk(KERN_DEBUG, "%s=%x%08x ret=%d\n", name,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  205) 					sz == 8 ? *((u32 *)(data + 4)) : 0, *((u32 *)data), ret);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  206) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  207) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  208) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  209) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  210) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  211) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  212) static u64 get_mem_ctrl_hub_base_addr(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  213) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  214) 	struct b_cr_mchbar_lo_pci lo;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  215) 	struct b_cr_mchbar_hi_pci hi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  216) 	struct pci_dev *pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  217) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  218) 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x1980, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  219) 	if (pdev) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  220) 		pci_read_config_dword(pdev, 0x48, (u32 *)&lo);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  221) 		pci_read_config_dword(pdev, 0x4c, (u32 *)&hi);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  222) 		pci_dev_put(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  223) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  224) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  225) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  226) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  227) 	if (!lo.enable) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  228) 		edac_dbg(2, "MMIO via memory controller hub base address is disabled!\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  229) 		return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  230) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  231) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  232) 	return U64_LSHIFT(hi.base, 32) | U64_LSHIFT(lo.base, 15);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  233) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  234) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  235) static u64 get_sideband_reg_base_addr(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  236) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  237) 	struct pci_dev *pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  238) 	u32 hi, lo;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  239) 	u8 hidden;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  240) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  241) 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x19dd, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  242) 	if (pdev) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  243) 		/* Unhide the P2SB device, if it's hidden */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  244) 		pci_read_config_byte(pdev, 0xe1, &hidden);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  245) 		if (hidden)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  246) 			pci_write_config_byte(pdev, 0xe1, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  247) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  248) 		pci_read_config_dword(pdev, 0x10, &lo);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  249) 		pci_read_config_dword(pdev, 0x14, &hi);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  250) 		lo &= 0xfffffff0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  251) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  252) 		/* Hide the P2SB device, if it was hidden before */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  253) 		if (hidden)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  254) 			pci_write_config_byte(pdev, 0xe1, hidden);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  255) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  256) 		pci_dev_put(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  257) 		return (U64_LSHIFT(hi, 32) | U64_LSHIFT(lo, 0));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  258) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  259) 		return 0xfd000000;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  260) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  261) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  262) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  263) #define DNV_MCHBAR_SIZE  0x8000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  264) #define DNV_SB_PORT_SIZE 0x10000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  265) static int dnv_rd_reg(int port, int off, int op, void *data, size_t sz, char *name)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  266) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  267) 	struct pci_dev *pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  268) 	char *base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  269) 	u64 addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  270) 	unsigned long size;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  271) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  272) 	if (op == 4) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  273) 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x1980, NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  274) 		if (!pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  275) 			return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  276) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  277) 		pci_read_config_dword(pdev, off, data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  278) 		pci_dev_put(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  279) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  280) 		/* MMIO via memory controller hub base address */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  281) 		if (op == 0 && port == 0x4c) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  282) 			addr = get_mem_ctrl_hub_base_addr();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  283) 			if (!addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  284) 				return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  285) 			size = DNV_MCHBAR_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  286) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  287) 			/* MMIO via sideband register base address */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  288) 			addr = get_sideband_reg_base_addr();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  289) 			if (!addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  290) 				return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  291) 			addr += (port << 16);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  292) 			size = DNV_SB_PORT_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  293) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  294) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  295) 		base = ioremap((resource_size_t)addr, size);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  296) 		if (!base)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  297) 			return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  298) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  299) 		if (sz == 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  300) 			*(u32 *)(data + 4) = *(u32 *)(base + off + 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  301) 		*(u32 *)data = *(u32 *)(base + off);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  302) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  303) 		iounmap(base);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  304) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  305) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  306) 	edac_dbg(2, "Read %s=%.8x_%.8x\n", name,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  307) 			(sz == 8) ? *(u32 *)(data + 4) : 0, *(u32 *)data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  308) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  309) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  310) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  311) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  312) #define RD_REGP(regp, regname, port)	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  313) 	ops->rd_reg(port,					\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  314) 		regname##_offset,				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  315) 		regname##_r_opcode,				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  316) 		regp, sizeof(struct regname),	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  317) 		#regname)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  318) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  319) #define RD_REG(regp, regname)			\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  320) 	ops->rd_reg(regname ## _port,		\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  321) 		regname##_offset,				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  322) 		regname##_r_opcode,				\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  323) 		regp, sizeof(struct regname),	\
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  324) 		#regname)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  325) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  326) static u64 top_lm, top_hm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  327) static bool two_slices;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  328) static bool two_channels; /* Both PMI channels in one slice enabled */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  329) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  330) static u8 sym_chan_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  331) static u8 asym_chan_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  332) static u8 chan_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  333) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  334) static int slice_selector = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  335) static int chan_selector = -1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  336) static u64 slice_hash_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  337) static u64 chan_hash_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  338) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  339) static void mk_region(char *name, struct region *rp, u64 base, u64 limit)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  340) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  341) 	rp->enabled = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  342) 	rp->base = base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  343) 	rp->limit = limit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  344) 	edac_dbg(2, "Region:%s [%llx, %llx]\n", name, base, limit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  345) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  346) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  347) static void mk_region_mask(char *name, struct region *rp, u64 base, u64 mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  348) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  349) 	if (mask == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  350) 		pr_info(FW_BUG "MOT mask cannot be zero\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  351) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  352) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  353) 	if (mask != GENMASK_ULL(PND_MAX_PHYS_BIT, __ffs(mask))) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  354) 		pr_info(FW_BUG "MOT mask not power of two\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  355) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  356) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  357) 	if (base & ~mask) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  358) 		pr_info(FW_BUG "MOT region base/mask alignment error\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  359) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  360) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  361) 	rp->base = base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  362) 	rp->limit = (base | ~mask) & GENMASK_ULL(PND_MAX_PHYS_BIT, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  363) 	rp->enabled = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  364) 	edac_dbg(2, "Region:%s [%llx, %llx]\n", name, base, rp->limit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  365) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  366) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  367) static bool in_region(struct region *rp, u64 addr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  368) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  369) 	if (!rp->enabled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  370) 		return false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  371) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  372) 	return rp->base <= addr && addr <= rp->limit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  373) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  374) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  375) static int gen_sym_mask(struct b_cr_slice_channel_hash *p)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  376) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  377) 	int mask = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  378) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  379) 	if (!p->slice_0_mem_disabled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  380) 		mask |= p->sym_slice0_channel_enabled;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  381) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  382) 	if (!p->slice_1_disabled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  383) 		mask |= p->sym_slice1_channel_enabled << 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  384) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  385) 	if (p->ch_1_disabled || p->enable_pmi_dual_data_mode)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  386) 		mask &= 0x5;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  387) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  388) 	return mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  389) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  390) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  391) static int gen_asym_mask(struct b_cr_slice_channel_hash *p,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  392) 			 struct b_cr_asym_mem_region0_mchbar *as0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  393) 			 struct b_cr_asym_mem_region1_mchbar *as1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  394) 			 struct b_cr_asym_2way_mem_region_mchbar *as2way)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  395) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  396) 	const int intlv[] = { 0x5, 0xA, 0x3, 0xC };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  397) 	int mask = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  398) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  399) 	if (as2way->asym_2way_interleave_enable)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  400) 		mask = intlv[as2way->asym_2way_intlv_mode];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  401) 	if (as0->slice0_asym_enable)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  402) 		mask |= (1 << as0->slice0_asym_channel_select);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  403) 	if (as1->slice1_asym_enable)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  404) 		mask |= (4 << as1->slice1_asym_channel_select);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  405) 	if (p->slice_0_mem_disabled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  406) 		mask &= 0xc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  407) 	if (p->slice_1_disabled)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  408) 		mask &= 0x3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  409) 	if (p->ch_1_disabled || p->enable_pmi_dual_data_mode)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  410) 		mask &= 0x5;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  411) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  412) 	return mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  413) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  414) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  415) static struct b_cr_tolud_pci tolud;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  416) static struct b_cr_touud_lo_pci touud_lo;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  417) static struct b_cr_touud_hi_pci touud_hi;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  418) static struct b_cr_asym_mem_region0_mchbar asym0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  419) static struct b_cr_asym_mem_region1_mchbar asym1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  420) static struct b_cr_asym_2way_mem_region_mchbar asym_2way;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  421) static struct b_cr_mot_out_base_mchbar mot_base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  422) static struct b_cr_mot_out_mask_mchbar mot_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  423) static struct b_cr_slice_channel_hash chash;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  424) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  425) /* Apollo Lake dunit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  426) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  427)  * Validated on board with just two DIMMs in the [0] and [2] positions
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  428)  * in this array. Other port number matches documentation, but caution
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  429)  * advised.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  430)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  431) static const int apl_dports[APL_NUM_CHANNELS] = { 0x18, 0x10, 0x11, 0x19 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  432) static struct d_cr_drp0 drp0[APL_NUM_CHANNELS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  433) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  434) /* Denverton dunit */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  435) static const int dnv_dports[DNV_NUM_CHANNELS] = { 0x10, 0x12 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  436) static struct d_cr_dsch dsch;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  437) static struct d_cr_ecc_ctrl ecc_ctrl[DNV_NUM_CHANNELS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  438) static struct d_cr_drp drp[DNV_NUM_CHANNELS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  439) static struct d_cr_dmap dmap[DNV_NUM_CHANNELS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  440) static struct d_cr_dmap1 dmap1[DNV_NUM_CHANNELS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  441) static struct d_cr_dmap2 dmap2[DNV_NUM_CHANNELS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  442) static struct d_cr_dmap3 dmap3[DNV_NUM_CHANNELS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  443) static struct d_cr_dmap4 dmap4[DNV_NUM_CHANNELS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  444) static struct d_cr_dmap5 dmap5[DNV_NUM_CHANNELS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  445) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  446) static void apl_mk_region(char *name, struct region *rp, void *asym)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  447) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  448) 	struct b_cr_asym_mem_region0_mchbar *a = asym;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  449) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  450) 	mk_region(name, rp,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  451) 			  U64_LSHIFT(a->slice0_asym_base, APL_ASYMSHIFT),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  452) 			  U64_LSHIFT(a->slice0_asym_limit, APL_ASYMSHIFT) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  453) 			  GENMASK_ULL(APL_ASYMSHIFT - 1, 0));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  454) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  455) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  456) static void dnv_mk_region(char *name, struct region *rp, void *asym)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  457) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  458) 	struct b_cr_asym_mem_region_denverton *a = asym;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  459) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  460) 	mk_region(name, rp,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  461) 			  U64_LSHIFT(a->slice_asym_base, DNV_ASYMSHIFT),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  462) 			  U64_LSHIFT(a->slice_asym_limit, DNV_ASYMSHIFT) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  463) 			  GENMASK_ULL(DNV_ASYMSHIFT - 1, 0));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  464) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  465) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  466) static int apl_get_registers(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  467) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  468) 	int ret = -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  469) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  470) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  471) 	if (RD_REG(&asym_2way, b_cr_asym_2way_mem_region_mchbar))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  472) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  473) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  474) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  475) 	 * RD_REGP() will fail for unpopulated or non-existent
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  476) 	 * DIMM slots. Return success if we find at least one DIMM.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  477) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  478) 	for (i = 0; i < APL_NUM_CHANNELS; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  479) 		if (!RD_REGP(&drp0[i], d_cr_drp0, apl_dports[i]))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  480) 			ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  481) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  482) 	return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  483) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  484) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  485) static int dnv_get_registers(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  486) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  487) 	int i;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  488) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  489) 	if (RD_REG(&dsch, d_cr_dsch))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  490) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  491) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  492) 	for (i = 0; i < DNV_NUM_CHANNELS; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  493) 		if (RD_REGP(&ecc_ctrl[i], d_cr_ecc_ctrl, dnv_dports[i]) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  494) 			RD_REGP(&drp[i], d_cr_drp, dnv_dports[i]) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  495) 			RD_REGP(&dmap[i], d_cr_dmap, dnv_dports[i]) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  496) 			RD_REGP(&dmap1[i], d_cr_dmap1, dnv_dports[i]) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  497) 			RD_REGP(&dmap2[i], d_cr_dmap2, dnv_dports[i]) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  498) 			RD_REGP(&dmap3[i], d_cr_dmap3, dnv_dports[i]) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  499) 			RD_REGP(&dmap4[i], d_cr_dmap4, dnv_dports[i]) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  500) 			RD_REGP(&dmap5[i], d_cr_dmap5, dnv_dports[i]))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  501) 			return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  502) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  503) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  504) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  505) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  506) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  507)  * Read all the h/w config registers once here (they don't
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  508)  * change at run time. Figure out which address ranges have
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  509)  * which interleave characteristics.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  510)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  511) static int get_registers(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  512) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  513) 	const int intlv[] = { 10, 11, 12, 12 };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  514) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  515) 	if (RD_REG(&tolud, b_cr_tolud_pci) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  516) 		RD_REG(&touud_lo, b_cr_touud_lo_pci) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  517) 		RD_REG(&touud_hi, b_cr_touud_hi_pci) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  518) 		RD_REG(&asym0, b_cr_asym_mem_region0_mchbar) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  519) 		RD_REG(&asym1, b_cr_asym_mem_region1_mchbar) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  520) 		RD_REG(&mot_base, b_cr_mot_out_base_mchbar) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  521) 		RD_REG(&mot_mask, b_cr_mot_out_mask_mchbar) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  522) 		RD_REG(&chash, b_cr_slice_channel_hash))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  523) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  524) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  525) 	if (ops->get_registers())
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  526) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  527) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  528) 	if (ops->type == DNV) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  529) 		/* PMI channel idx (always 0) for asymmetric region */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  530) 		asym0.slice0_asym_channel_select = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  531) 		asym1.slice1_asym_channel_select = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  532) 		/* PMI channel bitmap (always 1) for symmetric region */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  533) 		chash.sym_slice0_channel_enabled = 0x1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  534) 		chash.sym_slice1_channel_enabled = 0x1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  535) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  536) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  537) 	if (asym0.slice0_asym_enable)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  538) 		ops->mk_region("as0", &as0, &asym0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  539) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  540) 	if (asym1.slice1_asym_enable)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  541) 		ops->mk_region("as1", &as1, &asym1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  542) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  543) 	if (asym_2way.asym_2way_interleave_enable) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  544) 		mk_region("as2way", &as2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  545) 				  U64_LSHIFT(asym_2way.asym_2way_base, APL_ASYMSHIFT),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  546) 				  U64_LSHIFT(asym_2way.asym_2way_limit, APL_ASYMSHIFT) +
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  547) 				  GENMASK_ULL(APL_ASYMSHIFT - 1, 0));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  548) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  549) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  550) 	if (mot_base.imr_en) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  551) 		mk_region_mask("mot", &mot,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  552) 					   U64_LSHIFT(mot_base.mot_out_base, MOT_SHIFT),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  553) 					   U64_LSHIFT(mot_mask.mot_out_mask, MOT_SHIFT));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  554) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  555) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  556) 	top_lm = U64_LSHIFT(tolud.tolud, 20);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  557) 	top_hm = U64_LSHIFT(touud_hi.touud, 32) | U64_LSHIFT(touud_lo.touud, 20);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  558) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  559) 	two_slices = !chash.slice_1_disabled &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  560) 				 !chash.slice_0_mem_disabled &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  561) 				 (chash.sym_slice0_channel_enabled != 0) &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  562) 				 (chash.sym_slice1_channel_enabled != 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  563) 	two_channels = !chash.ch_1_disabled &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  564) 				 !chash.enable_pmi_dual_data_mode &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  565) 				 ((chash.sym_slice0_channel_enabled == 3) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  566) 				 (chash.sym_slice1_channel_enabled == 3));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  567) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  568) 	sym_chan_mask = gen_sym_mask(&chash);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  569) 	asym_chan_mask = gen_asym_mask(&chash, &asym0, &asym1, &asym_2way);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  570) 	chan_mask = sym_chan_mask | asym_chan_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  571) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  572) 	if (two_slices && !two_channels) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  573) 		if (chash.hvm_mode)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  574) 			slice_selector = 29;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  575) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  576) 			slice_selector = intlv[chash.interleave_mode];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  577) 	} else if (!two_slices && two_channels) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  578) 		if (chash.hvm_mode)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  579) 			chan_selector = 29;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  580) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  581) 			chan_selector = intlv[chash.interleave_mode];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  582) 	} else if (two_slices && two_channels) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  583) 		if (chash.hvm_mode) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  584) 			slice_selector = 29;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  585) 			chan_selector = 30;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  586) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  587) 			slice_selector = intlv[chash.interleave_mode];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  588) 			chan_selector = intlv[chash.interleave_mode] + 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  589) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  590) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  591) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  592) 	if (two_slices) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  593) 		if (!chash.hvm_mode)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  594) 			slice_hash_mask = chash.slice_hash_mask << SLICE_HASH_MASK_LSB;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  595) 		if (!two_channels)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  596) 			slice_hash_mask |= BIT_ULL(slice_selector);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  597) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  598) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  599) 	if (two_channels) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  600) 		if (!chash.hvm_mode)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  601) 			chan_hash_mask = chash.ch_hash_mask << CH_HASH_MASK_LSB;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  602) 		if (!two_slices)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  603) 			chan_hash_mask |= BIT_ULL(chan_selector);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  604) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  605) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  606) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  607) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  608) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  609) /* Get a contiguous memory address (remove the MMIO gap) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  610) static u64 remove_mmio_gap(u64 sys)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  611) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  612) 	return (sys < _4GB) ? sys : sys - (_4GB - top_lm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  613) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  614) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  615) /* Squeeze out one address bit, shift upper part down to fill gap */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  616) static void remove_addr_bit(u64 *addr, int bitidx)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  617) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  618) 	u64	mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  619) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  620) 	if (bitidx == -1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  621) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  622) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  623) 	mask = (1ull << bitidx) - 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  624) 	*addr = ((*addr >> 1) & ~mask) | (*addr & mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  625) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  626) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  627) /* XOR all the bits from addr specified in mask */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  628) static int hash_by_mask(u64 addr, u64 mask)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  629) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  630) 	u64 result = addr & mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  631) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  632) 	result = (result >> 32) ^ result;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  633) 	result = (result >> 16) ^ result;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  634) 	result = (result >> 8) ^ result;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  635) 	result = (result >> 4) ^ result;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  636) 	result = (result >> 2) ^ result;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  637) 	result = (result >> 1) ^ result;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  638) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  639) 	return (int)result & 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  640) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  641) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  642) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  643)  * First stage decode. Take the system address and figure out which
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  644)  * second stage will deal with it based on interleave modes.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  645)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  646) static int sys2pmi(const u64 addr, u32 *pmiidx, u64 *pmiaddr, char *msg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  647) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  648) 	u64 contig_addr, contig_base, contig_offset, contig_base_adj;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  649) 	int mot_intlv_bit = two_slices ? MOT_CHAN_INTLV_BIT_2SLC_2CH :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  650) 						MOT_CHAN_INTLV_BIT_1SLC_2CH;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  651) 	int slice_intlv_bit_rm = SELECTOR_DISABLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  652) 	int chan_intlv_bit_rm = SELECTOR_DISABLED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  653) 	/* Determine if address is in the MOT region. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  654) 	bool mot_hit = in_region(&mot, addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  655) 	/* Calculate the number of symmetric regions enabled. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  656) 	int sym_channels = hweight8(sym_chan_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  657) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  658) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  659) 	 * The amount we need to shift the asym base can be determined by the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  660) 	 * number of enabled symmetric channels.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  661) 	 * NOTE: This can only work because symmetric memory is not supposed
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  662) 	 * to do a 3-way interleave.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  663) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  664) 	int sym_chan_shift = sym_channels >> 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  665) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  666) 	/* Give up if address is out of range, or in MMIO gap */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  667) 	if (addr >= (1ul << PND_MAX_PHYS_BIT) ||
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  668) 	   (addr >= top_lm && addr < _4GB) || addr >= top_hm) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  669) 		snprintf(msg, PND2_MSG_SIZE, "Error address 0x%llx is not DRAM", addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  670) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  671) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  672) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  673) 	/* Get a contiguous memory address (remove the MMIO gap) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  674) 	contig_addr = remove_mmio_gap(addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  675) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  676) 	if (in_region(&as0, addr)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  677) 		*pmiidx = asym0.slice0_asym_channel_select;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  678) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  679) 		contig_base = remove_mmio_gap(as0.base);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  680) 		contig_offset = contig_addr - contig_base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  681) 		contig_base_adj = (contig_base >> sym_chan_shift) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  682) 						  ((chash.sym_slice0_channel_enabled >> (*pmiidx & 1)) & 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  683) 		contig_addr = contig_offset + ((sym_channels > 0) ? contig_base_adj : 0ull);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  684) 	} else if (in_region(&as1, addr)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  685) 		*pmiidx = 2u + asym1.slice1_asym_channel_select;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  686) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  687) 		contig_base = remove_mmio_gap(as1.base);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  688) 		contig_offset = contig_addr - contig_base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  689) 		contig_base_adj = (contig_base >> sym_chan_shift) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  690) 						  ((chash.sym_slice1_channel_enabled >> (*pmiidx & 1)) & 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  691) 		contig_addr = contig_offset + ((sym_channels > 0) ? contig_base_adj : 0ull);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  692) 	} else if (in_region(&as2, addr) && (asym_2way.asym_2way_intlv_mode == 0x3ul)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  693) 		bool channel1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  694) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  695) 		mot_intlv_bit = MOT_CHAN_INTLV_BIT_1SLC_2CH;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  696) 		*pmiidx = (asym_2way.asym_2way_intlv_mode & 1) << 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  697) 		channel1 = mot_hit ? ((bool)((addr >> mot_intlv_bit) & 1)) :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  698) 			hash_by_mask(contig_addr, chan_hash_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  699) 		*pmiidx |= (u32)channel1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  700) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  701) 		contig_base = remove_mmio_gap(as2.base);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  702) 		chan_intlv_bit_rm = mot_hit ? mot_intlv_bit : chan_selector;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  703) 		contig_offset = contig_addr - contig_base;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  704) 		remove_addr_bit(&contig_offset, chan_intlv_bit_rm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  705) 		contig_addr = (contig_base >> sym_chan_shift) + contig_offset;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  706) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  707) 		/* Otherwise we're in normal, boring symmetric mode. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  708) 		*pmiidx = 0u;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  709) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  710) 		if (two_slices) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  711) 			bool slice1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  712) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  713) 			if (mot_hit) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  714) 				slice_intlv_bit_rm = MOT_SLC_INTLV_BIT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  715) 				slice1 = (addr >> MOT_SLC_INTLV_BIT) & 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  716) 			} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  717) 				slice_intlv_bit_rm = slice_selector;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  718) 				slice1 = hash_by_mask(addr, slice_hash_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  719) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  720) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  721) 			*pmiidx = (u32)slice1 << 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  722) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  723) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  724) 		if (two_channels) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  725) 			bool channel1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  726) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  727) 			mot_intlv_bit = two_slices ? MOT_CHAN_INTLV_BIT_2SLC_2CH :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  728) 							MOT_CHAN_INTLV_BIT_1SLC_2CH;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  729) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  730) 			if (mot_hit) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  731) 				chan_intlv_bit_rm = mot_intlv_bit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  732) 				channel1 = (addr >> mot_intlv_bit) & 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  733) 			} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  734) 				chan_intlv_bit_rm = chan_selector;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  735) 				channel1 = hash_by_mask(contig_addr, chan_hash_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  736) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  737) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  738) 			*pmiidx |= (u32)channel1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  739) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  740) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  741) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  742) 	/* Remove the chan_selector bit first */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  743) 	remove_addr_bit(&contig_addr, chan_intlv_bit_rm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  744) 	/* Remove the slice bit (we remove it second because it must be lower */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  745) 	remove_addr_bit(&contig_addr, slice_intlv_bit_rm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  746) 	*pmiaddr = contig_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  747) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  748) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  749) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  750) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  751) /* Translate PMI address to memory (rank, row, bank, column) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  752) #define C(n) (0x10 | (n))	/* column */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  753) #define B(n) (0x20 | (n))	/* bank */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  754) #define R(n) (0x40 | (n))	/* row */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  755) #define RS   (0x80)			/* rank */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  756) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  757) /* addrdec values */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  758) #define AMAP_1KB	0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  759) #define AMAP_2KB	1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  760) #define AMAP_4KB	2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  761) #define AMAP_RSVD	3
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  762) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  763) /* dden values */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  764) #define DEN_4Gb		0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  765) #define DEN_8Gb		2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  766) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  767) /* dwid values */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  768) #define X8		0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  769) #define X16		1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  770) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  771) static struct dimm_geometry {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  772) 	u8	addrdec;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  773) 	u8	dden;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  774) 	u8	dwid;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  775) 	u8	rowbits, colbits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  776) 	u16	bits[PMI_ADDRESS_WIDTH];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  777) } dimms[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  778) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  779) 		.addrdec = AMAP_1KB, .dden = DEN_4Gb, .dwid = X16,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  780) 		.rowbits = 15, .colbits = 10,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  781) 		.bits = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  782) 			C(2),  C(3),  C(4),  C(5),  C(6),  B(0),  B(1),  B(2),  R(0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  783) 			R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),  R(9),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  784) 			R(10), C(7),  C(8),  C(9),  R(11), RS,    R(12), R(13), R(14),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  785) 			0,     0,     0,     0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  786) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  787) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  788) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  789) 		.addrdec = AMAP_1KB, .dden = DEN_4Gb, .dwid = X8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  790) 		.rowbits = 16, .colbits = 10,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  791) 		.bits = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  792) 			C(2),  C(3),  C(4),  C(5),  C(6),  B(0),  B(1),  B(2),  R(0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  793) 			R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),  R(9),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  794) 			R(10), C(7),  C(8),  C(9),  R(11), RS,    R(12), R(13), R(14),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  795) 			R(15), 0,     0,     0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  796) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  797) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  798) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  799) 		.addrdec = AMAP_1KB, .dden = DEN_8Gb, .dwid = X16,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  800) 		.rowbits = 16, .colbits = 10,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  801) 		.bits = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  802) 			C(2),  C(3),  C(4),  C(5),  C(6),  B(0),  B(1),  B(2),  R(0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  803) 			R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),  R(9),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  804) 			R(10), C(7),  C(8),  C(9),  R(11), RS,    R(12), R(13), R(14),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  805) 			R(15), 0,     0,     0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  806) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  807) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  808) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  809) 		.addrdec = AMAP_1KB, .dden = DEN_8Gb, .dwid = X8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  810) 		.rowbits = 16, .colbits = 11,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  811) 		.bits = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  812) 			C(2),  C(3),  C(4),  C(5),  C(6),  B(0),  B(1),  B(2),  R(0),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  813) 			R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),  R(9),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  814) 			R(10), C(7),  C(8),  C(9),  R(11), RS,    C(11), R(12), R(13),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  815) 			R(14), R(15), 0,     0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  816) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  817) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  818) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  819) 		.addrdec = AMAP_2KB, .dden = DEN_4Gb, .dwid = X16,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  820) 		.rowbits = 15, .colbits = 10,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  821) 		.bits = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  822) 			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  B(0),  B(1),  B(2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  823) 			R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  824) 			R(9),  R(10), C(8),  C(9),  R(11), RS,    R(12), R(13), R(14),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  825) 			0,     0,     0,     0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  826) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  827) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  828) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  829) 		.addrdec = AMAP_2KB, .dden = DEN_4Gb, .dwid = X8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  830) 		.rowbits = 16, .colbits = 10,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  831) 		.bits = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  832) 			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  B(0),  B(1),  B(2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  833) 			R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  834) 			R(9),  R(10), C(8),  C(9),  R(11), RS,    R(12), R(13), R(14),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  835) 			R(15), 0,     0,     0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  836) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  837) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  838) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  839) 		.addrdec = AMAP_2KB, .dden = DEN_8Gb, .dwid = X16,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  840) 		.rowbits = 16, .colbits = 10,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  841) 		.bits = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  842) 			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  B(0),  B(1),  B(2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  843) 			R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  844) 			R(9),  R(10), C(8),  C(9),  R(11), RS,    R(12), R(13), R(14),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  845) 			R(15), 0,     0,     0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  846) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  847) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  848) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  849) 		.addrdec = AMAP_2KB, .dden = DEN_8Gb, .dwid = X8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  850) 		.rowbits = 16, .colbits = 11,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  851) 		.bits = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  852) 			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  B(0),  B(1),  B(2),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  853) 			R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),  R(8),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  854) 			R(9),  R(10), C(8),  C(9),  R(11), RS,    C(11), R(12), R(13),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  855) 			R(14), R(15), 0,     0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  856) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  857) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  858) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  859) 		.addrdec = AMAP_4KB, .dden = DEN_4Gb, .dwid = X16,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  860) 		.rowbits = 15, .colbits = 10,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  861) 		.bits = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  862) 			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  C(8),  B(0),  B(1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  863) 			B(2),  R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  864) 			R(8),  R(9),  R(10), C(9),  R(11), RS,    R(12), R(13), R(14),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  865) 			0,     0,     0,     0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  866) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  867) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  868) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  869) 		.addrdec = AMAP_4KB, .dden = DEN_4Gb, .dwid = X8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  870) 		.rowbits = 16, .colbits = 10,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  871) 		.bits = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  872) 			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  C(8),  B(0),  B(1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  873) 			B(2),  R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  874) 			R(8),  R(9),  R(10), C(9),  R(11), RS,    R(12), R(13), R(14),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  875) 			R(15), 0,     0,     0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  876) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  877) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  878) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  879) 		.addrdec = AMAP_4KB, .dden = DEN_8Gb, .dwid = X16,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  880) 		.rowbits = 16, .colbits = 10,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  881) 		.bits = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  882) 			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  C(8),  B(0),  B(1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  883) 			B(2),  R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  884) 			R(8),  R(9),  R(10), C(9),  R(11), RS,    R(12), R(13), R(14),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  885) 			R(15), 0,     0,     0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  886) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  887) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  888) 	{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  889) 		.addrdec = AMAP_4KB, .dden = DEN_8Gb, .dwid = X8,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  890) 		.rowbits = 16, .colbits = 11,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  891) 		.bits = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  892) 			C(2),  C(3),  C(4),  C(5),  C(6),  C(7),  C(8),  B(0),  B(1),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  893) 			B(2),  R(0),  R(1),  R(2),  R(3),  R(4),  R(5),  R(6),  R(7),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  894) 			R(8),  R(9),  R(10), C(9),  R(11), RS,    C(11), R(12), R(13),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  895) 			R(14), R(15), 0,     0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  896) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  897) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  898) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  899) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  900) static int bank_hash(u64 pmiaddr, int idx, int shft)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  901) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  902) 	int bhash = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  903) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  904) 	switch (idx) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  905) 	case 0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  906) 		bhash ^= ((pmiaddr >> (12 + shft)) ^ (pmiaddr >> (9 + shft))) & 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  907) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  908) 	case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  909) 		bhash ^= (((pmiaddr >> (10 + shft)) ^ (pmiaddr >> (8 + shft))) & 1) << 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  910) 		bhash ^= ((pmiaddr >> 22) & 1) << 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  911) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  912) 	case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  913) 		bhash ^= (((pmiaddr >> (13 + shft)) ^ (pmiaddr >> (11 + shft))) & 1) << 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  914) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  915) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  916) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  917) 	return bhash;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  918) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  919) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  920) static int rank_hash(u64 pmiaddr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  921) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  922) 	return ((pmiaddr >> 16) ^ (pmiaddr >> 10)) & 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  923) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  924) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  925) /* Second stage decode. Compute rank, bank, row & column. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  926) static int apl_pmi2mem(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  927) 		       struct dram_addr *daddr, char *msg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  928) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  929) 	struct d_cr_drp0 *cr_drp0 = &drp0[pmiidx];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  930) 	struct pnd2_pvt *pvt = mci->pvt_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  931) 	int g = pvt->dimm_geom[pmiidx];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  932) 	struct dimm_geometry *d = &dimms[g];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  933) 	int column = 0, bank = 0, row = 0, rank = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  934) 	int i, idx, type, skiprs = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  935) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  936) 	for (i = 0; i < PMI_ADDRESS_WIDTH; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  937) 		int	bit = (pmiaddr >> i) & 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  938) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  939) 		if (i + skiprs >= PMI_ADDRESS_WIDTH) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  940) 			snprintf(msg, PND2_MSG_SIZE, "Bad dimm_geometry[] table\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  941) 			return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  942) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  943) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  944) 		type = d->bits[i + skiprs] & ~0xf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  945) 		idx = d->bits[i + skiprs] & 0xf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  946) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  947) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  948) 		 * On single rank DIMMs ignore the rank select bit
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  949) 		 * and shift remainder of "bits[]" down one place.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  950) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  951) 		if (type == RS && (cr_drp0->rken0 + cr_drp0->rken1) == 1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  952) 			skiprs = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  953) 			type = d->bits[i + skiprs] & ~0xf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  954) 			idx = d->bits[i + skiprs] & 0xf;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  955) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  956) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  957) 		switch (type) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  958) 		case C(0):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  959) 			column |= (bit << idx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  960) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  961) 		case B(0):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  962) 			bank |= (bit << idx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  963) 			if (cr_drp0->bahen)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  964) 				bank ^= bank_hash(pmiaddr, idx, d->addrdec);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  965) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  966) 		case R(0):
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  967) 			row |= (bit << idx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  968) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  969) 		case RS:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  970) 			rank = bit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  971) 			if (cr_drp0->rsien)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  972) 				rank ^= rank_hash(pmiaddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  973) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  974) 		default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  975) 			if (bit) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  976) 				snprintf(msg, PND2_MSG_SIZE, "Bad translation\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  977) 				return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  978) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  979) 			goto done;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  980) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  981) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  982) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  983) done:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  984) 	daddr->col = column;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  985) 	daddr->bank = bank;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  986) 	daddr->row = row;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  987) 	daddr->rank = rank;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  988) 	daddr->dimm = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  989) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  990) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  991) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  992) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  993) /* Pluck bit "in" from pmiaddr and return value shifted to bit "out" */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  994) #define dnv_get_bit(pmi, in, out) ((int)(((pmi) >> (in)) & 1u) << (out))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  995) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  996) static int dnv_pmi2mem(struct mem_ctl_info *mci, u64 pmiaddr, u32 pmiidx,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  997) 					   struct dram_addr *daddr, char *msg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  998) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  999) 	/* Rank 0 or 1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) 	daddr->rank = dnv_get_bit(pmiaddr, dmap[pmiidx].rs0 + 13, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) 	/* Rank 2 or 3 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) 	daddr->rank |= dnv_get_bit(pmiaddr, dmap[pmiidx].rs1 + 13, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005) 	 * Normally ranks 0,1 are DIMM0, and 2,3 are DIMM1, but we
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) 	 * flip them if DIMM1 is larger than DIMM0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008) 	daddr->dimm = (daddr->rank >= 2) ^ drp[pmiidx].dimmflip;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) 	daddr->bank = dnv_get_bit(pmiaddr, dmap[pmiidx].ba0 + 6, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011) 	daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].ba1 + 6, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012) 	daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].bg0 + 6, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) 	if (dsch.ddr4en)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014) 		daddr->bank |= dnv_get_bit(pmiaddr, dmap[pmiidx].bg1 + 6, 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) 	if (dmap1[pmiidx].bxor) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016) 		if (dsch.ddr4en) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017) 			daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018) 			daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row7 + 6, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019) 			if (dsch.chan_width == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020) 				/* 64/72 bit dram channel width */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021) 				daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022) 			else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) 				/* 32/40 bit dram channel width */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) 				daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) 			daddr->bank ^= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027) 			daddr->bank ^= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) 			daddr->bank ^= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029) 			if (dsch.chan_width == 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030) 				daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031) 			else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032) 				daddr->bank ^= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036) 	daddr->row = dnv_get_bit(pmiaddr, dmap2[pmiidx].row0 + 6, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037) 	daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row1 + 6, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038) 	daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row2 + 6, 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039) 	daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row3 + 6, 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040) 	daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row4 + 6, 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041) 	daddr->row |= dnv_get_bit(pmiaddr, dmap2[pmiidx].row5 + 6, 5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042) 	daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row6 + 6, 6);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043) 	daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row7 + 6, 7);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044) 	daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row8 + 6, 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045) 	daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row9 + 6, 9);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046) 	daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row10 + 6, 10);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047) 	daddr->row |= dnv_get_bit(pmiaddr, dmap3[pmiidx].row11 + 6, 11);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048) 	daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row12 + 6, 12);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049) 	daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row13 + 6, 13);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050) 	if (dmap4[pmiidx].row14 != 31)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051) 		daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row14 + 6, 14);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052) 	if (dmap4[pmiidx].row15 != 31)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053) 		daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row15 + 6, 15);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054) 	if (dmap4[pmiidx].row16 != 31)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055) 		daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row16 + 6, 16);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056) 	if (dmap4[pmiidx].row17 != 31)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057) 		daddr->row |= dnv_get_bit(pmiaddr, dmap4[pmiidx].row17 + 6, 17);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) 	daddr->col = dnv_get_bit(pmiaddr, dmap5[pmiidx].ca3 + 6, 3);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060) 	daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca4 + 6, 4);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) 	daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca5 + 6, 5);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) 	daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca6 + 6, 6);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) 	daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca7 + 6, 7);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) 	daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca8 + 6, 8);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) 	daddr->col |= dnv_get_bit(pmiaddr, dmap5[pmiidx].ca9 + 6, 9);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) 	if (!dsch.ddr4en && dmap1[pmiidx].ca11 != 0x3f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) 		daddr->col |= dnv_get_bit(pmiaddr, dmap1[pmiidx].ca11 + 13, 11);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) static int check_channel(int ch)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) 	if (drp0[ch].dramtype != 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) 		pnd2_printk(KERN_INFO, "Unsupported DIMM in channel %d\n", ch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) 		return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) 	} else if (drp0[ch].eccen == 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078) 		pnd2_printk(KERN_INFO, "ECC disabled on channel %d\n", ch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) 		return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) static int apl_check_ecc_active(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086) 	int	i, ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088) 	/* Check dramtype and ECC mode for each present DIMM */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) 	for (i = 0; i < APL_NUM_CHANNELS; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090) 		if (chan_mask & BIT(i))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) 			ret += check_channel(i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) 	return ret ? -EINVAL : 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) #define DIMMS_PRESENT(d) ((d)->rken0 + (d)->rken1 + (d)->rken2 + (d)->rken3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097) static int check_unit(int ch)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099) 	struct d_cr_drp *d = &drp[ch];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101) 	if (DIMMS_PRESENT(d) && !ecc_ctrl[ch].eccen) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102) 		pnd2_printk(KERN_INFO, "ECC disabled on channel %d\n", ch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103) 		return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108) static int dnv_check_ecc_active(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110) 	int	i, ret = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112) 	for (i = 0; i < DNV_NUM_CHANNELS; i++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) 		ret += check_unit(i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114) 	return ret ? -EINVAL : 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) static int get_memory_error_data(struct mem_ctl_info *mci, u64 addr,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118) 								 struct dram_addr *daddr, char *msg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) 	u64	pmiaddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) 	u32	pmiidx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122) 	int	ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124) 	ret = sys2pmi(addr, &pmiidx, &pmiaddr, msg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128) 	pmiaddr >>= ops->pmiaddr_shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129) 	/* pmi channel idx to dimm channel idx */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130) 	pmiidx >>= ops->pmiidx_shift;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131) 	daddr->chan = pmiidx;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133) 	ret = ops->pmi2mem(mci, pmiaddr, pmiidx, daddr, msg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134) 	if (ret)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135) 		return ret;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137) 	edac_dbg(0, "SysAddr=%llx PmiAddr=%llx Channel=%d DIMM=%d Rank=%d Bank=%d Row=%d Column=%d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138) 			 addr, pmiaddr, daddr->chan, daddr->dimm, daddr->rank, daddr->bank, daddr->row, daddr->col);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143) static void pnd2_mce_output_error(struct mem_ctl_info *mci, const struct mce *m,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144) 				  struct dram_addr *daddr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146) 	enum hw_event_mc_err_type tp_event;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147) 	char *optype, msg[PND2_MSG_SIZE];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148) 	bool ripv = m->mcgstatus & MCG_STATUS_RIPV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149) 	bool overflow = m->status & MCI_STATUS_OVER;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150) 	bool uc_err = m->status & MCI_STATUS_UC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151) 	bool recov = m->status & MCI_STATUS_S;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152) 	u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153) 	u32 mscod = GET_BITFIELD(m->status, 16, 31);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154) 	u32 errcode = GET_BITFIELD(m->status, 0, 15);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155) 	u32 optypenum = GET_BITFIELD(m->status, 4, 6);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156) 	int rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158) 	tp_event = uc_err ? (ripv ? HW_EVENT_ERR_UNCORRECTED : HW_EVENT_ERR_FATAL) :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159) 						 HW_EVENT_ERR_CORRECTED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1162) 	 * According with Table 15-9 of the Intel Architecture spec vol 3A,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1163) 	 * memory errors should fit in this mask:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1164) 	 *	000f 0000 1mmm cccc (binary)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1165) 	 * where:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1166) 	 *	f = Correction Report Filtering Bit. If 1, subsequent errors
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1167) 	 *	    won't be shown
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1168) 	 *	mmm = error type
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1169) 	 *	cccc = channel
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1170) 	 * If the mask doesn't match, report an error to the parsing logic
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1171) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1172) 	if (!((errcode & 0xef80) == 0x80)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1173) 		optype = "Can't parse: it is not a mem";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1174) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1175) 		switch (optypenum) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1176) 		case 0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1177) 			optype = "generic undef request error";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1178) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1179) 		case 1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1180) 			optype = "memory read error";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1181) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1182) 		case 2:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1183) 			optype = "memory write error";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1184) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1185) 		case 3:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1186) 			optype = "addr/cmd error";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1187) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1188) 		case 4:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1189) 			optype = "memory scrubbing error";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1190) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1191) 		default:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1192) 			optype = "reserved";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1193) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1194) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1195) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1196) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1197) 	/* Only decode errors with an valid address (ADDRV) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1198) 	if (!(m->status & MCI_STATUS_ADDRV))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1199) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1200) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1201) 	rc = get_memory_error_data(mci, m->addr, daddr, msg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1202) 	if (rc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1203) 		goto address_error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1204) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1205) 	snprintf(msg, sizeof(msg),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1206) 		 "%s%s err_code:%04x:%04x channel:%d DIMM:%d rank:%d row:%d bank:%d col:%d",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1207) 		 overflow ? " OVERFLOW" : "", (uc_err && recov) ? " recoverable" : "", mscod,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1208) 		 errcode, daddr->chan, daddr->dimm, daddr->rank, daddr->row, daddr->bank, daddr->col);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1209) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1210) 	edac_dbg(0, "%s\n", msg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1211) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1212) 	/* Call the helper to output message */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1213) 	edac_mc_handle_error(tp_event, mci, core_err_cnt, m->addr >> PAGE_SHIFT,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1214) 						 m->addr & ~PAGE_MASK, 0, daddr->chan, daddr->dimm, -1, optype, msg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1215) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1216) 	return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1217) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1218) address_error:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1219) 	edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0, -1, -1, -1, msg, "");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1220) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1221) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1222) static void apl_get_dimm_config(struct mem_ctl_info *mci)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1223) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1224) 	struct pnd2_pvt	*pvt = mci->pvt_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1225) 	struct dimm_info *dimm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1226) 	struct d_cr_drp0 *d;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1227) 	u64	capacity;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1228) 	int	i, g;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1229) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1230) 	for (i = 0; i < APL_NUM_CHANNELS; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1231) 		if (!(chan_mask & BIT(i)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1232) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1233) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1234) 		dimm = edac_get_dimm(mci, i, 0, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1235) 		if (!dimm) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1236) 			edac_dbg(0, "No allocated DIMM for channel %d\n", i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1237) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1238) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1239) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1240) 		d = &drp0[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1241) 		for (g = 0; g < ARRAY_SIZE(dimms); g++)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1242) 			if (dimms[g].addrdec == d->addrdec &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1243) 			    dimms[g].dden == d->dden &&
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1244) 			    dimms[g].dwid == d->dwid)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1245) 				break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1246) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1247) 		if (g == ARRAY_SIZE(dimms)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1248) 			edac_dbg(0, "Channel %d: unrecognized DIMM\n", i);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1249) 			continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1250) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1251) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1252) 		pvt->dimm_geom[i] = g;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1253) 		capacity = (d->rken0 + d->rken1) * 8 * (1ul << dimms[g].rowbits) *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1254) 				   (1ul << dimms[g].colbits);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1255) 		edac_dbg(0, "Channel %d: %lld MByte DIMM\n", i, capacity >> (20 - 3));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1256) 		dimm->nr_pages = MiB_TO_PAGES(capacity >> (20 - 3));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1257) 		dimm->grain = 32;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1258) 		dimm->dtype = (d->dwid == 0) ? DEV_X8 : DEV_X16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1259) 		dimm->mtype = MEM_DDR3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1260) 		dimm->edac_mode = EDAC_SECDED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1261) 		snprintf(dimm->label, sizeof(dimm->label), "Slice#%d_Chan#%d", i / 2, i % 2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1262) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1263) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1264) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1265) static const int dnv_dtypes[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1266) 	DEV_X8, DEV_X4, DEV_X16, DEV_UNKNOWN
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1267) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1268) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1269) static void dnv_get_dimm_config(struct mem_ctl_info *mci)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1270) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1271) 	int	i, j, ranks_of_dimm[DNV_MAX_DIMMS], banks, rowbits, colbits, memtype;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1272) 	struct dimm_info *dimm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1273) 	struct d_cr_drp *d;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1274) 	u64	capacity;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1275) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1276) 	if (dsch.ddr4en) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1277) 		memtype = MEM_DDR4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1278) 		banks = 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1279) 		colbits = 10;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1280) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1281) 		memtype = MEM_DDR3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1282) 		banks = 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1283) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1284) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1285) 	for (i = 0; i < DNV_NUM_CHANNELS; i++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1286) 		if (dmap4[i].row14 == 31)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1287) 			rowbits = 14;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1288) 		else if (dmap4[i].row15 == 31)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1289) 			rowbits = 15;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1290) 		else if (dmap4[i].row16 == 31)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1291) 			rowbits = 16;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1292) 		else if (dmap4[i].row17 == 31)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1293) 			rowbits = 17;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1294) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1295) 			rowbits = 18;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1296) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1297) 		if (memtype == MEM_DDR3) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1298) 			if (dmap1[i].ca11 != 0x3f)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1299) 				colbits = 12;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1300) 			else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1301) 				colbits = 10;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1302) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1303) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1304) 		d = &drp[i];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1305) 		/* DIMM0 is present if rank0 and/or rank1 is enabled */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1306) 		ranks_of_dimm[0] = d->rken0 + d->rken1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1307) 		/* DIMM1 is present if rank2 and/or rank3 is enabled */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1308) 		ranks_of_dimm[1] = d->rken2 + d->rken3;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1309) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1310) 		for (j = 0; j < DNV_MAX_DIMMS; j++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1311) 			if (!ranks_of_dimm[j])
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1312) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1313) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1314) 			dimm = edac_get_dimm(mci, i, j, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1315) 			if (!dimm) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1316) 				edac_dbg(0, "No allocated DIMM for channel %d DIMM %d\n", i, j);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1317) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1318) 			}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1319) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1320) 			capacity = ranks_of_dimm[j] * banks * (1ul << rowbits) * (1ul << colbits);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1321) 			edac_dbg(0, "Channel %d DIMM %d: %lld MByte DIMM\n", i, j, capacity >> (20 - 3));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1322) 			dimm->nr_pages = MiB_TO_PAGES(capacity >> (20 - 3));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1323) 			dimm->grain = 32;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1324) 			dimm->dtype = dnv_dtypes[j ? d->dimmdwid0 : d->dimmdwid1];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1325) 			dimm->mtype = memtype;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1326) 			dimm->edac_mode = EDAC_SECDED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1327) 			snprintf(dimm->label, sizeof(dimm->label), "Chan#%d_DIMM#%d", i, j);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1328) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1329) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1330) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1331) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1332) static int pnd2_register_mci(struct mem_ctl_info **ppmci)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1333) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1334) 	struct edac_mc_layer layers[2];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1335) 	struct mem_ctl_info *mci;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1336) 	struct pnd2_pvt *pvt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1337) 	int rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1338) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1339) 	rc = ops->check_ecc();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1340) 	if (rc < 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1341) 		return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1342) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1343) 	/* Allocate a new MC control structure */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1344) 	layers[0].type = EDAC_MC_LAYER_CHANNEL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1345) 	layers[0].size = ops->channels;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1346) 	layers[0].is_virt_csrow = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1347) 	layers[1].type = EDAC_MC_LAYER_SLOT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1348) 	layers[1].size = ops->dimms_per_channel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1349) 	layers[1].is_virt_csrow = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1350) 	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1351) 	if (!mci)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1352) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1353) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1354) 	pvt = mci->pvt_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1355) 	memset(pvt, 0, sizeof(*pvt));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1356) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1357) 	mci->mod_name = EDAC_MOD_STR;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1358) 	mci->dev_name = ops->name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1359) 	mci->ctl_name = "Pondicherry2";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1360) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1361) 	/* Get dimm basic config and the memory layout */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1362) 	ops->get_dimm_config(mci);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1363) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1364) 	if (edac_mc_add_mc(mci)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1365) 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1366) 		edac_mc_free(mci);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1367) 		return -EINVAL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1368) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1369) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1370) 	*ppmci = mci;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1371) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1372) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1373) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1374) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1375) static void pnd2_unregister_mci(struct mem_ctl_info *mci)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1376) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1377) 	if (unlikely(!mci || !mci->pvt_info)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1378) 		pnd2_printk(KERN_ERR, "Couldn't find mci handler\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1379) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1380) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1381) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1382) 	/* Remove MC sysfs nodes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1383) 	edac_mc_del_mc(NULL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1384) 	edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1385) 	edac_mc_free(mci);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1386) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1387) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1388) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1389)  * Callback function registered with core kernel mce code.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1390)  * Called once for each logged error.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1391)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1392) static int pnd2_mce_check_error(struct notifier_block *nb, unsigned long val, void *data)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1393) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1394) 	struct mce *mce = (struct mce *)data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1395) 	struct mem_ctl_info *mci;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1396) 	struct dram_addr daddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1397) 	char *type;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1398) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1399) 	mci = pnd2_mci;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1400) 	if (!mci || (mce->kflags & MCE_HANDLED_CEC))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1401) 		return NOTIFY_DONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1402) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1403) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1404) 	 * Just let mcelog handle it if the error is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1405) 	 * outside the memory controller. A memory error
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1406) 	 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1407) 	 * bit 12 has an special meaning.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1408) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1409) 	if ((mce->status & 0xefff) >> 7 != 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1410) 		return NOTIFY_DONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1411) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1412) 	if (mce->mcgstatus & MCG_STATUS_MCIP)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1413) 		type = "Exception";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1414) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1415) 		type = "Event";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1416) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1417) 	pnd2_mc_printk(mci, KERN_INFO, "HANDLING MCE MEMORY ERROR\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1418) 	pnd2_mc_printk(mci, KERN_INFO, "CPU %u: Machine Check %s: %llx Bank %u: %llx\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1419) 				   mce->extcpu, type, mce->mcgstatus, mce->bank, mce->status);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1420) 	pnd2_mc_printk(mci, KERN_INFO, "TSC %llx ", mce->tsc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1421) 	pnd2_mc_printk(mci, KERN_INFO, "ADDR %llx ", mce->addr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1422) 	pnd2_mc_printk(mci, KERN_INFO, "MISC %llx ", mce->misc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1423) 	pnd2_mc_printk(mci, KERN_INFO, "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1424) 				   mce->cpuvendor, mce->cpuid, mce->time, mce->socketid, mce->apicid);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1425) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1426) 	pnd2_mce_output_error(mci, mce, &daddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1427) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1428) 	/* Advice mcelog that the error were handled */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1429) 	mce->kflags |= MCE_HANDLED_EDAC;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1430) 	return NOTIFY_OK;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1431) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1432) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1433) static struct notifier_block pnd2_mce_dec = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1434) 	.notifier_call	= pnd2_mce_check_error,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1435) 	.priority	= MCE_PRIO_EDAC,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1436) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1437) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1438) #ifdef CONFIG_EDAC_DEBUG
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1439) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1440)  * Write an address to this file to exercise the address decode
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1441)  * logic in this driver.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1442)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1443) static u64 pnd2_fake_addr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1444) #define PND2_BLOB_SIZE 1024
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1445) static char pnd2_result[PND2_BLOB_SIZE];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1446) static struct dentry *pnd2_test;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1447) static struct debugfs_blob_wrapper pnd2_blob = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1448) 	.data = pnd2_result,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1449) 	.size = 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1450) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1451) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1452) static int debugfs_u64_set(void *data, u64 val)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1453) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1454) 	struct dram_addr daddr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1455) 	struct mce m;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1456) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1457) 	*(u64 *)data = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1458) 	m.mcgstatus = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1459) 	/* ADDRV + MemRd + Unknown channel */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1460) 	m.status = MCI_STATUS_ADDRV + 0x9f;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1461) 	m.addr = val;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1462) 	pnd2_mce_output_error(pnd2_mci, &m, &daddr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1463) 	snprintf(pnd2_blob.data, PND2_BLOB_SIZE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1464) 			 "SysAddr=%llx Channel=%d DIMM=%d Rank=%d Bank=%d Row=%d Column=%d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1465) 			 m.addr, daddr.chan, daddr.dimm, daddr.rank, daddr.bank, daddr.row, daddr.col);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1466) 	pnd2_blob.size = strlen(pnd2_blob.data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1467) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1468) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1469) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1470) DEFINE_DEBUGFS_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1471) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1472) static void setup_pnd2_debug(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1473) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1474) 	pnd2_test = edac_debugfs_create_dir("pnd2_test");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1475) 	edac_debugfs_create_file("pnd2_debug_addr", 0200, pnd2_test,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1476) 							 &pnd2_fake_addr, &fops_u64_wo);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1477) 	debugfs_create_blob("pnd2_debug_results", 0400, pnd2_test, &pnd2_blob);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1478) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1479) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1480) static void teardown_pnd2_debug(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1481) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1482) 	debugfs_remove_recursive(pnd2_test);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1483) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1484) #else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1485) static void setup_pnd2_debug(void)	{}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1486) static void teardown_pnd2_debug(void)	{}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1487) #endif /* CONFIG_EDAC_DEBUG */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1488) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1489) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1490) static int pnd2_probe(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1491) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1492) 	int rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1493) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1494) 	edac_dbg(2, "\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1495) 	rc = get_registers();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1496) 	if (rc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1497) 		return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1498) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1499) 	return pnd2_register_mci(&pnd2_mci);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1500) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1501) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1502) static void pnd2_remove(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1503) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1504) 	edac_dbg(0, "\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1505) 	pnd2_unregister_mci(pnd2_mci);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1506) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1507) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1508) static struct dunit_ops apl_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1509) 		.name			= "pnd2/apl",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1510) 		.type			= APL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1511) 		.pmiaddr_shift		= LOG2_PMI_ADDR_GRANULARITY,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1512) 		.pmiidx_shift		= 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1513) 		.channels		= APL_NUM_CHANNELS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1514) 		.dimms_per_channel	= 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1515) 		.rd_reg			= apl_rd_reg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1516) 		.get_registers		= apl_get_registers,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1517) 		.check_ecc		= apl_check_ecc_active,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1518) 		.mk_region		= apl_mk_region,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1519) 		.get_dimm_config	= apl_get_dimm_config,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1520) 		.pmi2mem		= apl_pmi2mem,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1521) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1522) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1523) static struct dunit_ops dnv_ops = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1524) 		.name			= "pnd2/dnv",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1525) 		.type			= DNV,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1526) 		.pmiaddr_shift		= 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1527) 		.pmiidx_shift		= 1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1528) 		.channels		= DNV_NUM_CHANNELS,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1529) 		.dimms_per_channel	= 2,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1530) 		.rd_reg			= dnv_rd_reg,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1531) 		.get_registers		= dnv_get_registers,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1532) 		.check_ecc		= dnv_check_ecc_active,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1533) 		.mk_region		= dnv_mk_region,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1534) 		.get_dimm_config	= dnv_get_dimm_config,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1535) 		.pmi2mem		= dnv_pmi2mem,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1536) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1537) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1538) static const struct x86_cpu_id pnd2_cpuids[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1539) 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT,	&apl_ops),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1540) 	X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_D,	&dnv_ops),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1541) 	{ }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1542) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1543) MODULE_DEVICE_TABLE(x86cpu, pnd2_cpuids);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1544) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1545) static int __init pnd2_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1546) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1547) 	const struct x86_cpu_id *id;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1548) 	const char *owner;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1549) 	int rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1550) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1551) 	edac_dbg(2, "\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1552) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1553) 	owner = edac_get_owner();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1554) 	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1555) 		return -EBUSY;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1556) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1557) 	if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1558) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1559) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1560) 	id = x86_match_cpu(pnd2_cpuids);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1561) 	if (!id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1562) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1563) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1564) 	ops = (struct dunit_ops *)id->driver_data;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1565) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1566) 	if (ops->type == APL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1567) 		p2sb_bus = pci_find_bus(0, 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1568) 		if (!p2sb_bus)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1569) 			return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1570) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1571) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1572) 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1573) 	opstate_init();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1574) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1575) 	rc = pnd2_probe();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1576) 	if (rc < 0) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1577) 		pnd2_printk(KERN_ERR, "Failed to register device with error %d.\n", rc);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1578) 		return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1579) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1580) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1581) 	if (!pnd2_mci)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1582) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1583) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1584) 	mce_register_decode_chain(&pnd2_mce_dec);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1585) 	setup_pnd2_debug();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1586) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1587) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1588) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1589) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1590) static void __exit pnd2_exit(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1591) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1592) 	edac_dbg(2, "\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1593) 	teardown_pnd2_debug();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1594) 	mce_unregister_decode_chain(&pnd2_mce_dec);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1595) 	pnd2_remove();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1596) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1597) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1598) module_init(pnd2_init);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1599) module_exit(pnd2_exit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1600) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1601) module_param(edac_op_state, int, 0444);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1602) MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1603) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1604) MODULE_LICENSE("GPL v2");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1605) MODULE_AUTHOR("Tony Luck");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1606) MODULE_DESCRIPTION("MC Driver for Intel SoC using Pondicherry memory controller");