Orange Pi5 kernel

Deprecated Linux kernel 5.10.110 for OrangePi 5/5B/5+ boards

3 Commits   0 Branches   0 Tags
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    1) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    2)  * Intel 5000(P/V/X) class Memory Controllers kernel module
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    3)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    4)  * This file may be distributed under the terms of the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    5)  * GNU General Public License.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    6)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    7)  * Written by Douglas Thompson Linux Networx (http://lnxi.com)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    8)  *	norsk5@xmission.com
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300    9)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   10)  * This module is based on the following document:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   11)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   12)  * Intel 5000X Chipset Memory Controller Hub (MCH) - Datasheet
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   13)  * 	http://developer.intel.com/design/chipsets/datashts/313070.htm
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   14)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   15)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   16) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   17) #include <linux/module.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   18) #include <linux/init.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   19) #include <linux/pci.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   20) #include <linux/pci_ids.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   21) #include <linux/slab.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   22) #include <linux/edac.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   23) #include <asm/mmzone.h>
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   24) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   25) #include "edac_module.h"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   26) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   27) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   28)  * Alter this version for the I5000 module when modifications are made
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   29)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   30) #define I5000_REVISION    " Ver: 2.0.12"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   31) #define EDAC_MOD_STR      "i5000_edac"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   32) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   33) #define i5000_printk(level, fmt, arg...) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   34)         edac_printk(level, "i5000", fmt, ##arg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   35) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   36) #define i5000_mc_printk(mci, level, fmt, arg...) \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   37)         edac_mc_chipset_printk(mci, level, "i5000", fmt, ##arg)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   38) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   39) #ifndef PCI_DEVICE_ID_INTEL_FBD_0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   40) #define PCI_DEVICE_ID_INTEL_FBD_0	0x25F5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   41) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   42) #ifndef PCI_DEVICE_ID_INTEL_FBD_1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   43) #define PCI_DEVICE_ID_INTEL_FBD_1	0x25F6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   44) #endif
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   45) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   46) /* Device 16,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   47)  * Function 0: System Address
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   48)  * Function 1: Memory Branch Map, Control, Errors Register
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   49)  * Function 2: FSB Error Registers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   50)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   51)  * All 3 functions of Device 16 (0,1,2) share the SAME DID
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   52)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   53) #define	PCI_DEVICE_ID_INTEL_I5000_DEV16	0x25F0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   54) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   55) /* OFFSETS for Function 0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   56) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   57) /* OFFSETS for Function 1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   58) #define		AMBASE			0x48
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   59) #define		MAXCH			0x56
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   60) #define		MAXDIMMPERCH		0x57
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   61) #define		TOLM			0x6C
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   62) #define		REDMEMB			0x7C
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   63) #define			RED_ECC_LOCATOR(x)	((x) & 0x3FFFF)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   64) #define			REC_ECC_LOCATOR_EVEN(x)	((x) & 0x001FF)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   65) #define			REC_ECC_LOCATOR_ODD(x)	((x) & 0x3FE00)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   66) #define		MIR0			0x80
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   67) #define		MIR1			0x84
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   68) #define		MIR2			0x88
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   69) #define		AMIR0			0x8C
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   70) #define		AMIR1			0x90
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   71) #define		AMIR2			0x94
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   72) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   73) #define		FERR_FAT_FBD		0x98
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   74) #define		NERR_FAT_FBD		0x9C
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   75) #define			EXTRACT_FBDCHAN_INDX(x)	(((x)>>28) & 0x3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   76) #define			FERR_FAT_FBDCHAN 0x30000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   77) #define			FERR_FAT_M3ERR	0x00000004
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   78) #define			FERR_FAT_M2ERR	0x00000002
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   79) #define			FERR_FAT_M1ERR	0x00000001
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   80) #define			FERR_FAT_MASK	(FERR_FAT_M1ERR | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   81) 						FERR_FAT_M2ERR | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   82) 						FERR_FAT_M3ERR)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   83) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   84) #define		FERR_NF_FBD		0xA0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   85) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   86) /* Thermal and SPD or BFD errors */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   87) #define			FERR_NF_M28ERR	0x01000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   88) #define			FERR_NF_M27ERR	0x00800000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   89) #define			FERR_NF_M26ERR	0x00400000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   90) #define			FERR_NF_M25ERR	0x00200000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   91) #define			FERR_NF_M24ERR	0x00100000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   92) #define			FERR_NF_M23ERR	0x00080000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   93) #define			FERR_NF_M22ERR	0x00040000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   94) #define			FERR_NF_M21ERR	0x00020000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   95) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   96) /* Correctable errors */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   97) #define			FERR_NF_M20ERR	0x00010000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   98) #define			FERR_NF_M19ERR	0x00008000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300   99) #define			FERR_NF_M18ERR	0x00004000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  100) #define			FERR_NF_M17ERR	0x00002000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  101) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  102) /* Non-Retry or redundant Retry errors */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  103) #define			FERR_NF_M16ERR	0x00001000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  104) #define			FERR_NF_M15ERR	0x00000800
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  105) #define			FERR_NF_M14ERR	0x00000400
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  106) #define			FERR_NF_M13ERR	0x00000200
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  107) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  108) /* Uncorrectable errors */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  109) #define			FERR_NF_M12ERR	0x00000100
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  110) #define			FERR_NF_M11ERR	0x00000080
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  111) #define			FERR_NF_M10ERR	0x00000040
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  112) #define			FERR_NF_M9ERR	0x00000020
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  113) #define			FERR_NF_M8ERR	0x00000010
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  114) #define			FERR_NF_M7ERR	0x00000008
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  115) #define			FERR_NF_M6ERR	0x00000004
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  116) #define			FERR_NF_M5ERR	0x00000002
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  117) #define			FERR_NF_M4ERR	0x00000001
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  118) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  119) #define			FERR_NF_UNCORRECTABLE	(FERR_NF_M12ERR | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  120) 							FERR_NF_M11ERR | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  121) 							FERR_NF_M10ERR | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  122) 							FERR_NF_M9ERR | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  123) 							FERR_NF_M8ERR | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  124) 							FERR_NF_M7ERR | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  125) 							FERR_NF_M6ERR | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  126) 							FERR_NF_M5ERR | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  127) 							FERR_NF_M4ERR)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  128) #define			FERR_NF_CORRECTABLE	(FERR_NF_M20ERR | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  129) 							FERR_NF_M19ERR | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  130) 							FERR_NF_M18ERR | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  131) 							FERR_NF_M17ERR)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  132) #define			FERR_NF_DIMM_SPARE	(FERR_NF_M27ERR | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  133) 							FERR_NF_M28ERR)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  134) #define			FERR_NF_THERMAL		(FERR_NF_M26ERR | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  135) 							FERR_NF_M25ERR | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  136) 							FERR_NF_M24ERR | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  137) 							FERR_NF_M23ERR)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  138) #define			FERR_NF_SPD_PROTOCOL	(FERR_NF_M22ERR)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  139) #define			FERR_NF_NORTH_CRC	(FERR_NF_M21ERR)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  140) #define			FERR_NF_NON_RETRY	(FERR_NF_M13ERR | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  141) 							FERR_NF_M14ERR | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  142) 							FERR_NF_M15ERR)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  143) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  144) #define		NERR_NF_FBD		0xA4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  145) #define			FERR_NF_MASK		(FERR_NF_UNCORRECTABLE | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  146) 							FERR_NF_CORRECTABLE | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  147) 							FERR_NF_DIMM_SPARE | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  148) 							FERR_NF_THERMAL | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  149) 							FERR_NF_SPD_PROTOCOL | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  150) 							FERR_NF_NORTH_CRC | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  151) 							FERR_NF_NON_RETRY)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  152) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  153) #define		EMASK_FBD		0xA8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  154) #define			EMASK_FBD_M28ERR	0x08000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  155) #define			EMASK_FBD_M27ERR	0x04000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  156) #define			EMASK_FBD_M26ERR	0x02000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  157) #define			EMASK_FBD_M25ERR	0x01000000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  158) #define			EMASK_FBD_M24ERR	0x00800000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  159) #define			EMASK_FBD_M23ERR	0x00400000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  160) #define			EMASK_FBD_M22ERR	0x00200000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  161) #define			EMASK_FBD_M21ERR	0x00100000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  162) #define			EMASK_FBD_M20ERR	0x00080000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  163) #define			EMASK_FBD_M19ERR	0x00040000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  164) #define			EMASK_FBD_M18ERR	0x00020000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  165) #define			EMASK_FBD_M17ERR	0x00010000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  166) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  167) #define			EMASK_FBD_M15ERR	0x00004000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  168) #define			EMASK_FBD_M14ERR	0x00002000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  169) #define			EMASK_FBD_M13ERR	0x00001000
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  170) #define			EMASK_FBD_M12ERR	0x00000800
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  171) #define			EMASK_FBD_M11ERR	0x00000400
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  172) #define			EMASK_FBD_M10ERR	0x00000200
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  173) #define			EMASK_FBD_M9ERR		0x00000100
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  174) #define			EMASK_FBD_M8ERR		0x00000080
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  175) #define			EMASK_FBD_M7ERR		0x00000040
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  176) #define			EMASK_FBD_M6ERR		0x00000020
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  177) #define			EMASK_FBD_M5ERR		0x00000010
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  178) #define			EMASK_FBD_M4ERR		0x00000008
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  179) #define			EMASK_FBD_M3ERR		0x00000004
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  180) #define			EMASK_FBD_M2ERR		0x00000002
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  181) #define			EMASK_FBD_M1ERR		0x00000001
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  182) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  183) #define			ENABLE_EMASK_FBD_FATAL_ERRORS	(EMASK_FBD_M1ERR | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  184) 							EMASK_FBD_M2ERR | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  185) 							EMASK_FBD_M3ERR)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  186) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  187) #define 		ENABLE_EMASK_FBD_UNCORRECTABLE	(EMASK_FBD_M4ERR | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  188) 							EMASK_FBD_M5ERR | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  189) 							EMASK_FBD_M6ERR | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  190) 							EMASK_FBD_M7ERR | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  191) 							EMASK_FBD_M8ERR | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  192) 							EMASK_FBD_M9ERR | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  193) 							EMASK_FBD_M10ERR | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  194) 							EMASK_FBD_M11ERR | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  195) 							EMASK_FBD_M12ERR)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  196) #define 		ENABLE_EMASK_FBD_CORRECTABLE	(EMASK_FBD_M17ERR | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  197) 							EMASK_FBD_M18ERR | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  198) 							EMASK_FBD_M19ERR | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  199) 							EMASK_FBD_M20ERR)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  200) #define			ENABLE_EMASK_FBD_DIMM_SPARE	(EMASK_FBD_M27ERR | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  201) 							EMASK_FBD_M28ERR)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  202) #define			ENABLE_EMASK_FBD_THERMALS	(EMASK_FBD_M26ERR | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  203) 							EMASK_FBD_M25ERR | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  204) 							EMASK_FBD_M24ERR | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  205) 							EMASK_FBD_M23ERR)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  206) #define			ENABLE_EMASK_FBD_SPD_PROTOCOL	(EMASK_FBD_M22ERR)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  207) #define			ENABLE_EMASK_FBD_NORTH_CRC	(EMASK_FBD_M21ERR)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  208) #define			ENABLE_EMASK_FBD_NON_RETRY	(EMASK_FBD_M15ERR | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  209) 							EMASK_FBD_M14ERR | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  210) 							EMASK_FBD_M13ERR)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  211) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  212) #define		ENABLE_EMASK_ALL	(ENABLE_EMASK_FBD_NON_RETRY | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  213) 					ENABLE_EMASK_FBD_NORTH_CRC | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  214) 					ENABLE_EMASK_FBD_SPD_PROTOCOL | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  215) 					ENABLE_EMASK_FBD_THERMALS | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  216) 					ENABLE_EMASK_FBD_DIMM_SPARE | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  217) 					ENABLE_EMASK_FBD_FATAL_ERRORS | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  218) 					ENABLE_EMASK_FBD_CORRECTABLE | \
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  219) 					ENABLE_EMASK_FBD_UNCORRECTABLE)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  220) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  221) #define		ERR0_FBD		0xAC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  222) #define		ERR1_FBD		0xB0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  223) #define		ERR2_FBD		0xB4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  224) #define		MCERR_FBD		0xB8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  225) #define		NRECMEMA		0xBE
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  226) #define			NREC_BANK(x)		(((x)>>12) & 0x7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  227) #define			NREC_RDWR(x)		(((x)>>11) & 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  228) #define			NREC_RANK(x)		(((x)>>8) & 0x7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  229) #define		NRECMEMB		0xC0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  230) #define			NREC_CAS(x)		(((x)>>16) & 0xFFF)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  231) #define			NREC_RAS(x)		((x) & 0x7FFF)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  232) #define		NRECFGLOG		0xC4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  233) #define		NREEECFBDA		0xC8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  234) #define		NREEECFBDB		0xCC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  235) #define		NREEECFBDC		0xD0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  236) #define		NREEECFBDD		0xD4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  237) #define		NREEECFBDE		0xD8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  238) #define		REDMEMA			0xDC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  239) #define		RECMEMA			0xE2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  240) #define			REC_BANK(x)		(((x)>>12) & 0x7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  241) #define			REC_RDWR(x)		(((x)>>11) & 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  242) #define			REC_RANK(x)		(((x)>>8) & 0x7)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  243) #define		RECMEMB			0xE4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  244) #define			REC_CAS(x)		(((x)>>16) & 0xFFFFFF)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  245) #define			REC_RAS(x)		((x) & 0x7FFF)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  246) #define		RECFGLOG		0xE8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  247) #define		RECFBDA			0xEC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  248) #define		RECFBDB			0xF0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  249) #define		RECFBDC			0xF4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  250) #define		RECFBDD			0xF8
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  251) #define		RECFBDE			0xFC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  252) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  253) /* OFFSETS for Function 2 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  254) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  255) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  256)  * Device 21,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  257)  * Function 0: Memory Map Branch 0
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  258)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  259)  * Device 22,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  260)  * Function 0: Memory Map Branch 1
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  261)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  262) #define PCI_DEVICE_ID_I5000_BRANCH_0	0x25F5
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  263) #define PCI_DEVICE_ID_I5000_BRANCH_1	0x25F6
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  264) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  265) #define AMB_PRESENT_0	0x64
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  266) #define AMB_PRESENT_1	0x66
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  267) #define MTR0		0x80
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  268) #define MTR1		0x84
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  269) #define MTR2		0x88
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  270) #define MTR3		0x8C
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  271) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  272) #define NUM_MTRS		4
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  273) #define CHANNELS_PER_BRANCH	2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  274) #define MAX_BRANCHES		2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  275) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  276) /* Defines to extract the various fields from the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  277)  *	MTRx - Memory Technology Registers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  278)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  279) #define MTR_DIMMS_PRESENT(mtr)		((mtr) & (0x1 << 8))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  280) #define MTR_DRAM_WIDTH(mtr)		((((mtr) >> 6) & 0x1) ? 8 : 4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  281) #define MTR_DRAM_BANKS(mtr)		((((mtr) >> 5) & 0x1) ? 8 : 4)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  282) #define MTR_DRAM_BANKS_ADDR_BITS(mtr)	((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  283) #define MTR_DIMM_RANK(mtr)		(((mtr) >> 4) & 0x1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  284) #define MTR_DIMM_RANK_ADDR_BITS(mtr)	(MTR_DIMM_RANK(mtr) ? 2 : 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  285) #define MTR_DIMM_ROWS(mtr)		(((mtr) >> 2) & 0x3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  286) #define MTR_DIMM_ROWS_ADDR_BITS(mtr)	(MTR_DIMM_ROWS(mtr) + 13)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  287) #define MTR_DIMM_COLS(mtr)		((mtr) & 0x3)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  288) #define MTR_DIMM_COLS_ADDR_BITS(mtr)	(MTR_DIMM_COLS(mtr) + 10)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  289) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  290) /* enables the report of miscellaneous messages as CE errors - default off */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  291) static int misc_messages;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  292) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  293) /* Enumeration of supported devices */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  294) enum i5000_chips {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  295) 	I5000P = 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  296) 	I5000V = 1,		/* future */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  297) 	I5000X = 2		/* future */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  298) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  299) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  300) /* Device name and register DID (Device ID) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  301) struct i5000_dev_info {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  302) 	const char *ctl_name;	/* name for this device */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  303) 	u16 fsb_mapping_errors;	/* DID for the branchmap,control */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  304) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  305) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  306) /* Table of devices attributes supported by this driver */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  307) static const struct i5000_dev_info i5000_devs[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  308) 	[I5000P] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  309) 		.ctl_name = "I5000",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  310) 		.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I5000_DEV16,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  311) 	},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  312) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  313) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  314) struct i5000_dimm_info {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  315) 	int megabytes;		/* size, 0 means not present  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  316) 	int dual_rank;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  317) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  318) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  319) #define	MAX_CHANNELS	6	/* max possible channels */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  320) #define MAX_CSROWS	(8*2)	/* max possible csrows per channel */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  321) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  322) /* driver private data structure */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  323) struct i5000_pvt {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  324) 	struct pci_dev *system_address;	/* 16.0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  325) 	struct pci_dev *branchmap_werrors;	/* 16.1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  326) 	struct pci_dev *fsb_error_regs;	/* 16.2 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  327) 	struct pci_dev *branch_0;	/* 21.0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  328) 	struct pci_dev *branch_1;	/* 22.0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  329) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  330) 	u16 tolm;		/* top of low memory */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  331) 	union {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  332) 		u64 ambase;		/* AMB BAR */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  333) 		struct {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  334) 			u32 ambase_bottom;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  335) 			u32 ambase_top;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  336) 		} u __packed;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  337) 	};
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  338) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  339) 	u16 mir0, mir1, mir2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  340) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  341) 	u16 b0_mtr[NUM_MTRS];	/* Memory Technlogy Reg */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  342) 	u16 b0_ambpresent0;	/* Branch 0, Channel 0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  343) 	u16 b0_ambpresent1;	/* Brnach 0, Channel 1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  344) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  345) 	u16 b1_mtr[NUM_MTRS];	/* Memory Technlogy Reg */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  346) 	u16 b1_ambpresent0;	/* Branch 1, Channel 8 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  347) 	u16 b1_ambpresent1;	/* Branch 1, Channel 1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  348) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  349) 	/* DIMM information matrix, allocating architecture maximums */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  350) 	struct i5000_dimm_info dimm_info[MAX_CSROWS][MAX_CHANNELS];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  351) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  352) 	/* Actual values for this controller */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  353) 	int maxch;		/* Max channels */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  354) 	int maxdimmperch;	/* Max DIMMs per channel */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  355) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  356) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  357) /* I5000 MCH error information retrieved from Hardware */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  358) struct i5000_error_info {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  359) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  360) 	/* These registers are always read from the MC */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  361) 	u32 ferr_fat_fbd;	/* First Errors Fatal */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  362) 	u32 nerr_fat_fbd;	/* Next Errors Fatal */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  363) 	u32 ferr_nf_fbd;	/* First Errors Non-Fatal */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  364) 	u32 nerr_nf_fbd;	/* Next Errors Non-Fatal */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  365) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  366) 	/* These registers are input ONLY if there was a Recoverable  Error */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  367) 	u32 redmemb;		/* Recoverable Mem Data Error log B */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  368) 	u16 recmema;		/* Recoverable Mem Error log A */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  369) 	u32 recmemb;		/* Recoverable Mem Error log B */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  370) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  371) 	/* These registers are input ONLY if there was a
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  372) 	 * Non-Recoverable Error */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  373) 	u16 nrecmema;		/* Non-Recoverable Mem log A */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  374) 	u32 nrecmemb;		/* Non-Recoverable Mem log B */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  375) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  376) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  377) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  378) static struct edac_pci_ctl_info *i5000_pci;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  379) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  380) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  381)  *	i5000_get_error_info	Retrieve the hardware error information from
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  382)  *				the hardware and cache it in the 'info'
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  383)  *				structure
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  384)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  385) static void i5000_get_error_info(struct mem_ctl_info *mci,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  386) 				 struct i5000_error_info *info)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  387) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  388) 	struct i5000_pvt *pvt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  389) 	u32 value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  390) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  391) 	pvt = mci->pvt_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  392) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  393) 	/* read in the 1st FATAL error register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  394) 	pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  395) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  396) 	/* Mask only the bits that the doc says are valid
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  397) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  398) 	value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  399) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  400) 	/* If there is an error, then read in the */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  401) 	/* NEXT FATAL error register and the Memory Error Log Register A */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  402) 	if (value & FERR_FAT_MASK) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  403) 		info->ferr_fat_fbd = value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  404) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  405) 		/* harvest the various error data we need */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  406) 		pci_read_config_dword(pvt->branchmap_werrors,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  407) 				NERR_FAT_FBD, &info->nerr_fat_fbd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  408) 		pci_read_config_word(pvt->branchmap_werrors,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  409) 				NRECMEMA, &info->nrecmema);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  410) 		pci_read_config_dword(pvt->branchmap_werrors,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  411) 				NRECMEMB, &info->nrecmemb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  412) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  413) 		/* Clear the error bits, by writing them back */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  414) 		pci_write_config_dword(pvt->branchmap_werrors,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  415) 				FERR_FAT_FBD, value);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  416) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  417) 		info->ferr_fat_fbd = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  418) 		info->nerr_fat_fbd = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  419) 		info->nrecmema = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  420) 		info->nrecmemb = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  421) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  422) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  423) 	/* read in the 1st NON-FATAL error register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  424) 	pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  425) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  426) 	/* If there is an error, then read in the 1st NON-FATAL error
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  427) 	 * register as well */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  428) 	if (value & FERR_NF_MASK) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  429) 		info->ferr_nf_fbd = value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  430) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  431) 		/* harvest the various error data we need */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  432) 		pci_read_config_dword(pvt->branchmap_werrors,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  433) 				NERR_NF_FBD, &info->nerr_nf_fbd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  434) 		pci_read_config_word(pvt->branchmap_werrors,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  435) 				RECMEMA, &info->recmema);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  436) 		pci_read_config_dword(pvt->branchmap_werrors,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  437) 				RECMEMB, &info->recmemb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  438) 		pci_read_config_dword(pvt->branchmap_werrors,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  439) 				REDMEMB, &info->redmemb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  440) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  441) 		/* Clear the error bits, by writing them back */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  442) 		pci_write_config_dword(pvt->branchmap_werrors,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  443) 				FERR_NF_FBD, value);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  444) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  445) 		info->ferr_nf_fbd = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  446) 		info->nerr_nf_fbd = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  447) 		info->recmema = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  448) 		info->recmemb = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  449) 		info->redmemb = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  450) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  451) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  452) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  453) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  454)  * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  455)  * 					struct i5000_error_info *info,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  456)  * 					int handle_errors);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  457)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  458)  *	handle the Intel FATAL errors, if any
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  459)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  460) static void i5000_process_fatal_error_info(struct mem_ctl_info *mci,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  461) 					struct i5000_error_info *info,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  462) 					int handle_errors)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  463) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  464) 	char msg[EDAC_MC_LABEL_LEN + 1 + 160];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  465) 	char *specific = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  466) 	u32 allErrors;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  467) 	int channel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  468) 	int bank;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  469) 	int rank;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  470) 	int rdwr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  471) 	int ras, cas;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  472) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  473) 	/* mask off the Error bits that are possible */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  474) 	allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  475) 	if (!allErrors)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  476) 		return;		/* if no error, return now */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  477) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  478) 	channel = EXTRACT_FBDCHAN_INDX(info->ferr_fat_fbd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  479) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  480) 	/* Use the NON-Recoverable macros to extract data */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  481) 	bank = NREC_BANK(info->nrecmema);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  482) 	rank = NREC_RANK(info->nrecmema);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  483) 	rdwr = NREC_RDWR(info->nrecmema);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  484) 	ras = NREC_RAS(info->nrecmemb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  485) 	cas = NREC_CAS(info->nrecmemb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  486) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  487) 	edac_dbg(0, "\t\tCSROW= %d  Channel= %d (DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  488) 		 rank, channel, bank,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  489) 		 rdwr ? "Write" : "Read", ras, cas);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  490) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  491) 	/* Only 1 bit will be on */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  492) 	switch (allErrors) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  493) 	case FERR_FAT_M1ERR:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  494) 		specific = "Alert on non-redundant retry or fast "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  495) 				"reset timeout";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  496) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  497) 	case FERR_FAT_M2ERR:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  498) 		specific = "Northbound CRC error on non-redundant "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  499) 				"retry";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  500) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  501) 	case FERR_FAT_M3ERR:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  502) 		{
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  503) 		static int done;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  504) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  505) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  506) 		 * This error is generated to inform that the intelligent
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  507) 		 * throttling is disabled and the temperature passed the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  508) 		 * specified middle point. Since this is something the BIOS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  509) 		 * should take care of, we'll warn only once to avoid
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  510) 		 * worthlessly flooding the log.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  511) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  512) 		if (done)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  513) 			return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  514) 		done++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  515) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  516) 		specific = ">Tmid Thermal event with intelligent "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  517) 			   "throttling disabled";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  518) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  519) 		break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  520) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  521) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  522) 	/* Form out message */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  523) 	snprintf(msg, sizeof(msg),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  524) 		 "Bank=%d RAS=%d CAS=%d FATAL Err=0x%x (%s)",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  525) 		 bank, ras, cas, allErrors, specific);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  526) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  527) 	/* Call the helper to output message */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  528) 	edac_mc_handle_error(HW_EVENT_ERR_FATAL, mci, 1, 0, 0, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  529) 			     channel >> 1, channel & 1, rank,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  530) 			     rdwr ? "Write error" : "Read error",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  531) 			     msg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  532) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  533) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  534) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  535)  * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  536)  * 				struct i5000_error_info *info,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  537)  * 				int handle_errors);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  538)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  539)  *	handle the Intel NON-FATAL errors, if any
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  540)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  541) static void i5000_process_nonfatal_error_info(struct mem_ctl_info *mci,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  542) 					struct i5000_error_info *info,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  543) 					int handle_errors)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  544) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  545) 	char msg[EDAC_MC_LABEL_LEN + 1 + 170];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  546) 	char *specific = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  547) 	u32 allErrors;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  548) 	u32 ue_errors;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  549) 	u32 ce_errors;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  550) 	u32 misc_errors;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  551) 	int branch;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  552) 	int channel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  553) 	int bank;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  554) 	int rank;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  555) 	int rdwr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  556) 	int ras, cas;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  557) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  558) 	/* mask off the Error bits that are possible */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  559) 	allErrors = (info->ferr_nf_fbd & FERR_NF_MASK);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  560) 	if (!allErrors)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  561) 		return;		/* if no error, return now */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  562) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  563) 	/* ONLY ONE of the possible error bits will be set, as per the docs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  564) 	ue_errors = allErrors & FERR_NF_UNCORRECTABLE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  565) 	if (ue_errors) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  566) 		edac_dbg(0, "\tUncorrected bits= 0x%x\n", ue_errors);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  567) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  568) 		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  569) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  570) 		/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  571) 		 * According with i5000 datasheet, bit 28 has no significance
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  572) 		 * for errors M4Err-M12Err and M17Err-M21Err, on FERR_NF_FBD
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  573) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  574) 		channel = branch & 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  575) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  576) 		bank = NREC_BANK(info->nrecmema);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  577) 		rank = NREC_RANK(info->nrecmema);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  578) 		rdwr = NREC_RDWR(info->nrecmema);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  579) 		ras = NREC_RAS(info->nrecmemb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  580) 		cas = NREC_CAS(info->nrecmemb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  581) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  582) 		edac_dbg(0, "\t\tCSROW= %d  Channels= %d,%d  (Branch= %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  583) 			 rank, channel, channel + 1, branch >> 1, bank,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  584) 			 rdwr ? "Write" : "Read", ras, cas);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  585) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  586) 		switch (ue_errors) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  587) 		case FERR_NF_M12ERR:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  588) 			specific = "Non-Aliased Uncorrectable Patrol Data ECC";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  589) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  590) 		case FERR_NF_M11ERR:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  591) 			specific = "Non-Aliased Uncorrectable Spare-Copy "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  592) 					"Data ECC";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  593) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  594) 		case FERR_NF_M10ERR:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  595) 			specific = "Non-Aliased Uncorrectable Mirrored Demand "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  596) 					"Data ECC";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  597) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  598) 		case FERR_NF_M9ERR:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  599) 			specific = "Non-Aliased Uncorrectable Non-Mirrored "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  600) 					"Demand Data ECC";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  601) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  602) 		case FERR_NF_M8ERR:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  603) 			specific = "Aliased Uncorrectable Patrol Data ECC";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  604) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  605) 		case FERR_NF_M7ERR:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  606) 			specific = "Aliased Uncorrectable Spare-Copy Data ECC";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  607) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  608) 		case FERR_NF_M6ERR:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  609) 			specific = "Aliased Uncorrectable Mirrored Demand "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  610) 					"Data ECC";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  611) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  612) 		case FERR_NF_M5ERR:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  613) 			specific = "Aliased Uncorrectable Non-Mirrored Demand "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  614) 					"Data ECC";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  615) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  616) 		case FERR_NF_M4ERR:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  617) 			specific = "Uncorrectable Data ECC on Replay";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  618) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  619) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  620) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  621) 		/* Form out message */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  622) 		snprintf(msg, sizeof(msg),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  623) 			 "Rank=%d Bank=%d RAS=%d CAS=%d, UE Err=0x%x (%s)",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  624) 			 rank, bank, ras, cas, ue_errors, specific);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  625) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  626) 		/* Call the helper to output message */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  627) 		edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  628) 				channel >> 1, -1, rank,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  629) 				rdwr ? "Write error" : "Read error",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  630) 				msg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  631) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  632) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  633) 	/* Check correctable errors */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  634) 	ce_errors = allErrors & FERR_NF_CORRECTABLE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  635) 	if (ce_errors) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  636) 		edac_dbg(0, "\tCorrected bits= 0x%x\n", ce_errors);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  637) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  638) 		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  639) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  640) 		channel = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  641) 		if (REC_ECC_LOCATOR_ODD(info->redmemb))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  642) 			channel = 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  643) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  644) 		/* Convert channel to be based from zero, instead of
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  645) 		 * from branch base of 0 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  646) 		channel += branch;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  647) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  648) 		bank = REC_BANK(info->recmema);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  649) 		rank = REC_RANK(info->recmema);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  650) 		rdwr = REC_RDWR(info->recmema);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  651) 		ras = REC_RAS(info->recmemb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  652) 		cas = REC_CAS(info->recmemb);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  653) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  654) 		edac_dbg(0, "\t\tCSROW= %d Channel= %d  (Branch %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  655) 			 rank, channel, branch >> 1, bank,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  656) 			 rdwr ? "Write" : "Read", ras, cas);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  657) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  658) 		switch (ce_errors) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  659) 		case FERR_NF_M17ERR:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  660) 			specific = "Correctable Non-Mirrored Demand Data ECC";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  661) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  662) 		case FERR_NF_M18ERR:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  663) 			specific = "Correctable Mirrored Demand Data ECC";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  664) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  665) 		case FERR_NF_M19ERR:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  666) 			specific = "Correctable Spare-Copy Data ECC";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  667) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  668) 		case FERR_NF_M20ERR:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  669) 			specific = "Correctable Patrol Data ECC";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  670) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  671) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  672) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  673) 		/* Form out message */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  674) 		snprintf(msg, sizeof(msg),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  675) 			 "Rank=%d Bank=%d RDWR=%s RAS=%d "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  676) 			 "CAS=%d, CE Err=0x%x (%s))", branch >> 1, bank,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  677) 			 rdwr ? "Write" : "Read", ras, cas, ce_errors,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  678) 			 specific);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  679) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  680) 		/* Call the helper to output message */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  681) 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  682) 				channel >> 1, channel % 2, rank,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  683) 				rdwr ? "Write error" : "Read error",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  684) 				msg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  685) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  686) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  687) 	if (!misc_messages)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  688) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  689) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  690) 	misc_errors = allErrors & (FERR_NF_NON_RETRY | FERR_NF_NORTH_CRC |
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  691) 				   FERR_NF_SPD_PROTOCOL | FERR_NF_DIMM_SPARE);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  692) 	if (misc_errors) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  693) 		switch (misc_errors) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  694) 		case FERR_NF_M13ERR:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  695) 			specific = "Non-Retry or Redundant Retry FBD Memory "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  696) 					"Alert or Redundant Fast Reset Timeout";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  697) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  698) 		case FERR_NF_M14ERR:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  699) 			specific = "Non-Retry or Redundant Retry FBD "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  700) 					"Configuration Alert";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  701) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  702) 		case FERR_NF_M15ERR:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  703) 			specific = "Non-Retry or Redundant Retry FBD "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  704) 					"Northbound CRC error on read data";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  705) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  706) 		case FERR_NF_M21ERR:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  707) 			specific = "FBD Northbound CRC error on "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  708) 					"FBD Sync Status";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  709) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  710) 		case FERR_NF_M22ERR:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  711) 			specific = "SPD protocol error";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  712) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  713) 		case FERR_NF_M27ERR:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  714) 			specific = "DIMM-spare copy started";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  715) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  716) 		case FERR_NF_M28ERR:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  717) 			specific = "DIMM-spare copy completed";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  718) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  719) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  720) 		branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  721) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  722) 		/* Form out message */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  723) 		snprintf(msg, sizeof(msg),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  724) 			 "Err=%#x (%s)", misc_errors, specific);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  725) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  726) 		/* Call the helper to output message */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  727) 		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  728) 				branch >> 1, -1, -1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  729) 				"Misc error", msg);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  730) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  731) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  732) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  733) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  734)  *	i5000_process_error_info	Process the error info that is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  735)  *	in the 'info' structure, previously retrieved from hardware
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  736)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  737) static void i5000_process_error_info(struct mem_ctl_info *mci,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  738) 				struct i5000_error_info *info,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  739) 				int handle_errors)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  740) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  741) 	/* First handle any fatal errors that occurred */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  742) 	i5000_process_fatal_error_info(mci, info, handle_errors);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  743) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  744) 	/* now handle any non-fatal errors that occurred */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  745) 	i5000_process_nonfatal_error_info(mci, info, handle_errors);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  746) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  747) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  748) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  749)  *	i5000_clear_error	Retrieve any error from the hardware
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  750)  *				but do NOT process that error.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  751)  *				Used for 'clearing' out of previous errors
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  752)  *				Called by the Core module.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  753)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  754) static void i5000_clear_error(struct mem_ctl_info *mci)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  755) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  756) 	struct i5000_error_info info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  757) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  758) 	i5000_get_error_info(mci, &info);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  759) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  760) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  761) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  762)  *	i5000_check_error	Retrieve and process errors reported by the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  763)  *				hardware. Called by the Core module.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  764)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  765) static void i5000_check_error(struct mem_ctl_info *mci)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  766) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  767) 	struct i5000_error_info info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  768) 	edac_dbg(4, "MC%d\n", mci->mc_idx);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  769) 	i5000_get_error_info(mci, &info);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  770) 	i5000_process_error_info(mci, &info, 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  771) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  772) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  773) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  774)  *	i5000_get_devices	Find and perform 'get' operation on the MCH's
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  775)  *			device/functions we want to reference for this driver
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  776)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  777)  *			Need to 'get' device 16 func 1 and func 2
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  778)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  779) static int i5000_get_devices(struct mem_ctl_info *mci, int dev_idx)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  780) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  781) 	//const struct i5000_dev_info *i5000_dev = &i5000_devs[dev_idx];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  782) 	struct i5000_pvt *pvt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  783) 	struct pci_dev *pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  784) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  785) 	pvt = mci->pvt_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  786) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  787) 	/* Attempt to 'get' the MCH register we want */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  788) 	pdev = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  789) 	while (1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  790) 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  791) 				PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  792) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  793) 		/* End of list, leave */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  794) 		if (pdev == NULL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  795) 			i5000_printk(KERN_ERR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  796) 				"'system address,Process Bus' "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  797) 				"device not found:"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  798) 				"vendor 0x%x device 0x%x FUNC 1 "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  799) 				"(broken BIOS?)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  800) 				PCI_VENDOR_ID_INTEL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  801) 				PCI_DEVICE_ID_INTEL_I5000_DEV16);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  802) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  803) 			return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  804) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  805) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  806) 		/* Scan for device 16 func 1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  807) 		if (PCI_FUNC(pdev->devfn) == 1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  808) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  809) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  810) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  811) 	pvt->branchmap_werrors = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  812) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  813) 	/* Attempt to 'get' the MCH register we want */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  814) 	pdev = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  815) 	while (1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  816) 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  817) 				PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  818) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  819) 		if (pdev == NULL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  820) 			i5000_printk(KERN_ERR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  821) 				"MC: 'branchmap,control,errors' "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  822) 				"device not found:"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  823) 				"vendor 0x%x device 0x%x Func 2 "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  824) 				"(broken BIOS?)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  825) 				PCI_VENDOR_ID_INTEL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  826) 				PCI_DEVICE_ID_INTEL_I5000_DEV16);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  827) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  828) 			pci_dev_put(pvt->branchmap_werrors);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  829) 			return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  830) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  831) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  832) 		/* Scan for device 16 func 1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  833) 		if (PCI_FUNC(pdev->devfn) == 2)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  834) 			break;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  835) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  836) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  837) 	pvt->fsb_error_regs = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  838) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  839) 	edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s  %x:%x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  840) 		 pci_name(pvt->system_address),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  841) 		 pvt->system_address->vendor, pvt->system_address->device);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  842) 	edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s  %x:%x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  843) 		 pci_name(pvt->branchmap_werrors),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  844) 		 pvt->branchmap_werrors->vendor,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  845) 		 pvt->branchmap_werrors->device);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  846) 	edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s  %x:%x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  847) 		 pci_name(pvt->fsb_error_regs),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  848) 		 pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  849) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  850) 	pdev = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  851) 	pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  852) 			PCI_DEVICE_ID_I5000_BRANCH_0, pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  853) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  854) 	if (pdev == NULL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  855) 		i5000_printk(KERN_ERR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  856) 			"MC: 'BRANCH 0' device not found:"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  857) 			"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  858) 			PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_I5000_BRANCH_0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  859) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  860) 		pci_dev_put(pvt->branchmap_werrors);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  861) 		pci_dev_put(pvt->fsb_error_regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  862) 		return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  863) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  864) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  865) 	pvt->branch_0 = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  866) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  867) 	/* If this device claims to have more than 2 channels then
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  868) 	 * fetch Branch 1's information
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  869) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  870) 	if (pvt->maxch >= CHANNELS_PER_BRANCH) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  871) 		pdev = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  872) 		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  873) 				PCI_DEVICE_ID_I5000_BRANCH_1, pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  874) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  875) 		if (pdev == NULL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  876) 			i5000_printk(KERN_ERR,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  877) 				"MC: 'BRANCH 1' device not found:"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  878) 				"vendor 0x%x device 0x%x Func 0 "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  879) 				"(broken BIOS?)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  880) 				PCI_VENDOR_ID_INTEL,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  881) 				PCI_DEVICE_ID_I5000_BRANCH_1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  882) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  883) 			pci_dev_put(pvt->branchmap_werrors);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  884) 			pci_dev_put(pvt->fsb_error_regs);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  885) 			pci_dev_put(pvt->branch_0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  886) 			return 1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  887) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  888) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  889) 		pvt->branch_1 = pdev;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  890) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  891) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  892) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  893) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  894) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  895) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  896)  *	i5000_put_devices	'put' all the devices that we have
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  897)  *				reserved via 'get'
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  898)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  899) static void i5000_put_devices(struct mem_ctl_info *mci)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  900) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  901) 	struct i5000_pvt *pvt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  902) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  903) 	pvt = mci->pvt_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  904) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  905) 	pci_dev_put(pvt->branchmap_werrors);	/* FUNC 1 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  906) 	pci_dev_put(pvt->fsb_error_regs);	/* FUNC 2 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  907) 	pci_dev_put(pvt->branch_0);	/* DEV 21 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  908) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  909) 	/* Only if more than 2 channels do we release the second branch */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  910) 	if (pvt->maxch >= CHANNELS_PER_BRANCH)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  911) 		pci_dev_put(pvt->branch_1);	/* DEV 22 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  912) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  913) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  914) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  915)  *	determine_amb_resent
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  916)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  917)  *		the information is contained in NUM_MTRS different registers
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  918)  *		determineing which of the NUM_MTRS requires knowing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  919)  *		which channel is in question
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  920)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  921)  *	2 branches, each with 2 channels
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  922)  *		b0_ambpresent0 for channel '0'
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  923)  *		b0_ambpresent1 for channel '1'
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  924)  *		b1_ambpresent0 for channel '2'
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  925)  *		b1_ambpresent1 for channel '3'
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  926)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  927) static int determine_amb_present_reg(struct i5000_pvt *pvt, int channel)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  928) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  929) 	int amb_present;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  930) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  931) 	if (channel < CHANNELS_PER_BRANCH) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  932) 		if (channel & 0x1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  933) 			amb_present = pvt->b0_ambpresent1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  934) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  935) 			amb_present = pvt->b0_ambpresent0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  936) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  937) 		if (channel & 0x1)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  938) 			amb_present = pvt->b1_ambpresent1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  939) 		else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  940) 			amb_present = pvt->b1_ambpresent0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  941) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  942) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  943) 	return amb_present;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  944) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  945) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  946) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  947)  * determine_mtr(pvt, csrow, channel)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  948)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  949)  *	return the proper MTR register as determine by the csrow and channel desired
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  950)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  951) static int determine_mtr(struct i5000_pvt *pvt, int slot, int channel)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  952) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  953) 	int mtr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  954) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  955) 	if (channel < CHANNELS_PER_BRANCH)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  956) 		mtr = pvt->b0_mtr[slot];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  957) 	else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  958) 		mtr = pvt->b1_mtr[slot];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  959) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  960) 	return mtr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  961) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  962) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  963) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  964)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  965) static void decode_mtr(int slot_row, u16 mtr)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  966) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  967) 	int ans;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  968) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  969) 	ans = MTR_DIMMS_PRESENT(mtr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  970) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  971) 	edac_dbg(2, "\tMTR%d=0x%x:  DIMMs are %sPresent\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  972) 		 slot_row, mtr, ans ? "" : "NOT ");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  973) 	if (!ans)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  974) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  975) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  976) 	edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  977) 	edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  978) 	edac_dbg(2, "\t\tNUMRANK: %s\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  979) 		 MTR_DIMM_RANK(mtr) ? "double" : "single");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  980) 	edac_dbg(2, "\t\tNUMROW: %s\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  981) 		 MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  982) 		 MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  983) 		 MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  984) 		 "reserved");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  985) 	edac_dbg(2, "\t\tNUMCOL: %s\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  986) 		 MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  987) 		 MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  988) 		 MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" :
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  989) 		 "reserved");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  990) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  991) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  992) static void handle_channel(struct i5000_pvt *pvt, int slot, int channel,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  993) 			struct i5000_dimm_info *dinfo)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  994) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  995) 	int mtr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  996) 	int amb_present_reg;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  997) 	int addrBits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  998) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300  999) 	mtr = determine_mtr(pvt, slot, channel);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1000) 	if (MTR_DIMMS_PRESENT(mtr)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1001) 		amb_present_reg = determine_amb_present_reg(pvt, channel);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1002) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1003) 		/* Determine if there is a DIMM present in this DIMM slot */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1004) 		if (amb_present_reg) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1005) 			dinfo->dual_rank = MTR_DIMM_RANK(mtr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1006) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1007) 			/* Start with the number of bits for a Bank
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1008) 				* on the DRAM */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1009) 			addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1010) 			/* Add the number of ROW bits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1011) 			addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1012) 			/* add the number of COLUMN bits */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1013) 			addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1014) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1015) 			/* Dual-rank memories have twice the size */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1016) 			if (dinfo->dual_rank)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1017) 				addrBits++;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1018) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1019) 			addrBits += 6;	/* add 64 bits per DIMM */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1020) 			addrBits -= 20;	/* divide by 2^^20 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1021) 			addrBits -= 3;	/* 8 bits per bytes */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1022) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1023) 			dinfo->megabytes = 1 << addrBits;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1024) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1025) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1026) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1027) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1028) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1029)  *	calculate_dimm_size
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1030)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1031)  *	also will output a DIMM matrix map, if debug is enabled, for viewing
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1032)  *	how the DIMMs are populated
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1033)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1034) static void calculate_dimm_size(struct i5000_pvt *pvt)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1035) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1036) 	struct i5000_dimm_info *dinfo;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1037) 	int slot, channel, branch;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1038) 	char *p, *mem_buffer;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1039) 	int space, n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1040) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1041) 	/* ================= Generate some debug output ================= */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1042) 	space = PAGE_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1043) 	mem_buffer = p = kmalloc(space, GFP_KERNEL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1044) 	if (p == NULL) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1045) 		i5000_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1046) 			__FILE__, __func__);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1047) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1048) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1049) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1050) 	/* Scan all the actual slots
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1051) 	 * and calculate the information for each DIMM
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1052) 	 * Start with the highest slot first, to display it first
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1053) 	 * and work toward the 0th slot
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1054) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1055) 	for (slot = pvt->maxdimmperch - 1; slot >= 0; slot--) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1056) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1057) 		/* on an odd slot, first output a 'boundary' marker,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1058) 		 * then reset the message buffer  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1059) 		if (slot & 0x1) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1060) 			n = snprintf(p, space, "--------------------------"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1061) 				"--------------------------------");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1062) 			p += n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1063) 			space -= n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1064) 			edac_dbg(2, "%s\n", mem_buffer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1065) 			p = mem_buffer;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1066) 			space = PAGE_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1067) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1068) 		n = snprintf(p, space, "slot %2d    ", slot);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1069) 		p += n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1070) 		space -= n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1071) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1072) 		for (channel = 0; channel < pvt->maxch; channel++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1073) 			dinfo = &pvt->dimm_info[slot][channel];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1074) 			handle_channel(pvt, slot, channel, dinfo);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1075) 			if (dinfo->megabytes)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1076) 				n = snprintf(p, space, "%4d MB %dR| ",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1077) 					     dinfo->megabytes, dinfo->dual_rank + 1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1078) 			else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1079) 				n = snprintf(p, space, "%4d MB   | ", 0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1080) 			p += n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1081) 			space -= n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1082) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1083) 		p += n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1084) 		space -= n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1085) 		edac_dbg(2, "%s\n", mem_buffer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1086) 		p = mem_buffer;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1087) 		space = PAGE_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1088) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1089) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1090) 	/* Output the last bottom 'boundary' marker */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1091) 	n = snprintf(p, space, "--------------------------"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1092) 		"--------------------------------");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1093) 	p += n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1094) 	space -= n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1095) 	edac_dbg(2, "%s\n", mem_buffer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1096) 	p = mem_buffer;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1097) 	space = PAGE_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1098) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1099) 	/* now output the 'channel' labels */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1100) 	n = snprintf(p, space, "           ");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1101) 	p += n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1102) 	space -= n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1103) 	for (channel = 0; channel < pvt->maxch; channel++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1104) 		n = snprintf(p, space, "channel %d | ", channel);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1105) 		p += n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1106) 		space -= n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1107) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1108) 	edac_dbg(2, "%s\n", mem_buffer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1109) 	p = mem_buffer;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1110) 	space = PAGE_SIZE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1111) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1112) 	n = snprintf(p, space, "           ");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1113) 	p += n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1114) 	for (branch = 0; branch < MAX_BRANCHES; branch++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1115) 		n = snprintf(p, space, "       branch %d       | ", branch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1116) 		p += n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1117) 		space -= n;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1118) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1119) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1120) 	/* output the last message and free buffer */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1121) 	edac_dbg(2, "%s\n", mem_buffer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1122) 	kfree(mem_buffer);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1123) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1124) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1125) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1126)  *	i5000_get_mc_regs	read in the necessary registers and
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1127)  *				cache locally
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1128)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1129)  *			Fills in the private data members
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1130)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1131) static void i5000_get_mc_regs(struct mem_ctl_info *mci)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1132) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1133) 	struct i5000_pvt *pvt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1134) 	u32 actual_tolm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1135) 	u16 limit;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1136) 	int slot_row;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1137) 	int way0, way1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1138) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1139) 	pvt = mci->pvt_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1140) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1141) 	pci_read_config_dword(pvt->system_address, AMBASE,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1142) 			&pvt->u.ambase_bottom);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1143) 	pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1144) 			&pvt->u.ambase_top);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1145) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1146) 	edac_dbg(2, "AMBASE= 0x%lx  MAXCH= %d  MAX-DIMM-Per-CH= %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1147) 		 (long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1148) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1149) 	/* Get the Branch Map regs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1150) 	pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1151) 	pvt->tolm >>= 12;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1152) 	edac_dbg(2, "TOLM (number of 256M regions) =%u (0x%x)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1153) 		 pvt->tolm, pvt->tolm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1154) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1155) 	actual_tolm = pvt->tolm << 28;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1156) 	edac_dbg(2, "Actual TOLM byte addr=%u (0x%x)\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1157) 		 actual_tolm, actual_tolm);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1158) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1159) 	pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1160) 	pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1161) 	pci_read_config_word(pvt->branchmap_werrors, MIR2, &pvt->mir2);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1162) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1163) 	/* Get the MIR[0-2] regs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1164) 	limit = (pvt->mir0 >> 4) & 0x0FFF;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1165) 	way0 = pvt->mir0 & 0x1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1166) 	way1 = pvt->mir0 & 0x2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1167) 	edac_dbg(2, "MIR0: limit= 0x%x  WAY1= %u  WAY0= %x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1168) 		 limit, way1, way0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1169) 	limit = (pvt->mir1 >> 4) & 0x0FFF;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1170) 	way0 = pvt->mir1 & 0x1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1171) 	way1 = pvt->mir1 & 0x2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1172) 	edac_dbg(2, "MIR1: limit= 0x%x  WAY1= %u  WAY0= %x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1173) 		 limit, way1, way0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1174) 	limit = (pvt->mir2 >> 4) & 0x0FFF;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1175) 	way0 = pvt->mir2 & 0x1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1176) 	way1 = pvt->mir2 & 0x2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1177) 	edac_dbg(2, "MIR2: limit= 0x%x  WAY1= %u  WAY0= %x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1178) 		 limit, way1, way0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1179) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1180) 	/* Get the MTR[0-3] regs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1181) 	for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1182) 		int where = MTR0 + (slot_row * sizeof(u32));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1183) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1184) 		pci_read_config_word(pvt->branch_0, where,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1185) 				&pvt->b0_mtr[slot_row]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1186) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1187) 		edac_dbg(2, "MTR%d where=0x%x B0 value=0x%x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1188) 			 slot_row, where, pvt->b0_mtr[slot_row]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1189) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1190) 		if (pvt->maxch >= CHANNELS_PER_BRANCH) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1191) 			pci_read_config_word(pvt->branch_1, where,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1192) 					&pvt->b1_mtr[slot_row]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1193) 			edac_dbg(2, "MTR%d where=0x%x B1 value=0x%x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1194) 				 slot_row, where, pvt->b1_mtr[slot_row]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1195) 		} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1196) 			pvt->b1_mtr[slot_row] = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1197) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1198) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1199) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1200) 	/* Read and dump branch 0's MTRs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1201) 	edac_dbg(2, "Memory Technology Registers:\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1202) 	edac_dbg(2, "   Branch 0:\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1203) 	for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1204) 		decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1205) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1206) 	pci_read_config_word(pvt->branch_0, AMB_PRESENT_0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1207) 			&pvt->b0_ambpresent0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1208) 	edac_dbg(2, "\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1209) 	pci_read_config_word(pvt->branch_0, AMB_PRESENT_1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1210) 			&pvt->b0_ambpresent1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1211) 	edac_dbg(2, "\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1212) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1213) 	/* Only if we have 2 branchs (4 channels) */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1214) 	if (pvt->maxch < CHANNELS_PER_BRANCH) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1215) 		pvt->b1_ambpresent0 = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1216) 		pvt->b1_ambpresent1 = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1217) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1218) 		/* Read and dump  branch 1's MTRs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1219) 		edac_dbg(2, "   Branch 1:\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1220) 		for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1221) 			decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1222) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1223) 		pci_read_config_word(pvt->branch_1, AMB_PRESENT_0,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1224) 				&pvt->b1_ambpresent0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1225) 		edac_dbg(2, "\t\tAMB-Branch 1-present0 0x%x:\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1226) 			 pvt->b1_ambpresent0);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1227) 		pci_read_config_word(pvt->branch_1, AMB_PRESENT_1,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1228) 				&pvt->b1_ambpresent1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1229) 		edac_dbg(2, "\t\tAMB-Branch 1-present1 0x%x:\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1230) 			 pvt->b1_ambpresent1);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1231) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1232) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1233) 	/* Go and determine the size of each DIMM and place in an
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1234) 	 * orderly matrix */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1235) 	calculate_dimm_size(pvt);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1236) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1237) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1238) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1239)  *	i5000_init_csrows	Initialize the 'csrows' table within
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1240)  *				the mci control	structure with the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1241)  *				addressing of memory.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1242)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1243)  *	return:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1244)  *		0	success
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1245)  *		1	no actual memory found on this MC
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1246)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1247) static int i5000_init_csrows(struct mem_ctl_info *mci)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1248) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1249) 	struct i5000_pvt *pvt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1250) 	struct dimm_info *dimm;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1251) 	int empty;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1252) 	int max_csrows;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1253) 	int mtr;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1254) 	int csrow_megs;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1255) 	int channel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1256) 	int slot;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1257) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1258) 	pvt = mci->pvt_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1259) 	max_csrows = pvt->maxdimmperch * 2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1260) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1261) 	empty = 1;		/* Assume NO memory */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1262) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1263) 	/*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1264) 	 * FIXME: The memory layout used to map slot/channel into the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1265) 	 * real memory architecture is weird: branch+slot are "csrows"
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1266) 	 * and channel is channel. That required an extra array (dimm_info)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1267) 	 * to map the dimms. A good cleanup would be to remove this array,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1268) 	 * and do a loop here with branch, channel, slot
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1269) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1270) 	for (slot = 0; slot < max_csrows; slot++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1271) 		for (channel = 0; channel < pvt->maxch; channel++) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1272) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1273) 			mtr = determine_mtr(pvt, slot, channel);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1274) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1275) 			if (!MTR_DIMMS_PRESENT(mtr))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1276) 				continue;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1277) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1278) 			dimm = edac_get_dimm(mci, channel / MAX_BRANCHES,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1279) 					     channel % MAX_BRANCHES, slot);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1280) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1281) 			csrow_megs = pvt->dimm_info[slot][channel].megabytes;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1282) 			dimm->grain = 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1283) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1284) 			/* Assume DDR2 for now */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1285) 			dimm->mtype = MEM_FB_DDR2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1286) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1287) 			/* ask what device type on this row */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1288) 			if (MTR_DRAM_WIDTH(mtr) == 8)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1289) 				dimm->dtype = DEV_X8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1290) 			else
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1291) 				dimm->dtype = DEV_X4;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1292) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1293) 			dimm->edac_mode = EDAC_S8ECD8ED;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1294) 			dimm->nr_pages = csrow_megs << 8;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1295) 		}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1296) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1297) 		empty = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1298) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1299) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1300) 	return empty;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1301) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1302) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1303) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1304)  *	i5000_enable_error_reporting
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1305)  *			Turn on the memory reporting features of the hardware
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1306)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1307) static void i5000_enable_error_reporting(struct mem_ctl_info *mci)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1308) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1309) 	struct i5000_pvt *pvt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1310) 	u32 fbd_error_mask;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1311) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1312) 	pvt = mci->pvt_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1313) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1314) 	/* Read the FBD Error Mask Register */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1315) 	pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1316) 			&fbd_error_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1317) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1318) 	/* Enable with a '0' */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1319) 	fbd_error_mask &= ~(ENABLE_EMASK_ALL);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1320) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1321) 	pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1322) 			fbd_error_mask);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1323) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1324) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1325) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1326)  * i5000_get_dimm_and_channel_counts(pdev, &nr_csrows, &num_channels)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1327)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1328)  *	ask the device how many channels are present and how many CSROWS
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1329)  *	 as well
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1330)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1331) static void i5000_get_dimm_and_channel_counts(struct pci_dev *pdev,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1332) 					int *num_dimms_per_channel,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1333) 					int *num_channels)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1334) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1335) 	u8 value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1336) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1337) 	/* Need to retrieve just how many channels and dimms per channel are
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1338) 	 * supported on this memory controller
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1339) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1340) 	pci_read_config_byte(pdev, MAXDIMMPERCH, &value);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1341) 	*num_dimms_per_channel = (int)value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1342) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1343) 	pci_read_config_byte(pdev, MAXCH, &value);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1344) 	*num_channels = (int)value;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1345) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1346) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1347) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1348)  *	i5000_probe1	Probe for ONE instance of device to see if it is
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1349)  *			present.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1350)  *	return:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1351)  *		0 for FOUND a device
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1352)  *		< 0 for error code
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1353)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1354) static int i5000_probe1(struct pci_dev *pdev, int dev_idx)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1355) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1356) 	struct mem_ctl_info *mci;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1357) 	struct edac_mc_layer layers[3];
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1358) 	struct i5000_pvt *pvt;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1359) 	int num_channels;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1360) 	int num_dimms_per_channel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1361) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1362) 	edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1363) 		 pdev->bus->number,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1364) 		 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1365) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1366) 	/* We only are looking for func 0 of the set */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1367) 	if (PCI_FUNC(pdev->devfn) != 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1368) 		return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1369) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1370) 	/* Ask the devices for the number of CSROWS and CHANNELS so
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1371) 	 * that we can calculate the memory resources, etc
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1372) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1373) 	 * The Chipset will report what it can handle which will be greater
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1374) 	 * or equal to what the motherboard manufacturer will implement.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1375) 	 *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1376) 	 * As we don't have a motherboard identification routine to determine
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1377) 	 * actual number of slots/dimms per channel, we thus utilize the
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1378) 	 * resource as specified by the chipset. Thus, we might have
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1379) 	 * have more DIMMs per channel than actually on the mobo, but this
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1380) 	 * allows the driver to support up to the chipset max, without
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1381) 	 * some fancy mobo determination.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1382) 	 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1383) 	i5000_get_dimm_and_channel_counts(pdev, &num_dimms_per_channel,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1384) 					&num_channels);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1385) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1386) 	edac_dbg(0, "MC: Number of Branches=2 Channels= %d  DIMMS= %d\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1387) 		 num_channels, num_dimms_per_channel);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1388) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1389) 	/* allocate a new MC control structure */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1390) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1391) 	layers[0].type = EDAC_MC_LAYER_BRANCH;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1392) 	layers[0].size = MAX_BRANCHES;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1393) 	layers[0].is_virt_csrow = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1394) 	layers[1].type = EDAC_MC_LAYER_CHANNEL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1395) 	layers[1].size = num_channels / MAX_BRANCHES;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1396) 	layers[1].is_virt_csrow = false;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1397) 	layers[2].type = EDAC_MC_LAYER_SLOT;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1398) 	layers[2].size = num_dimms_per_channel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1399) 	layers[2].is_virt_csrow = true;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1400) 	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1401) 	if (mci == NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1402) 		return -ENOMEM;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1403) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1404) 	edac_dbg(0, "MC: mci = %p\n", mci);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1405) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1406) 	mci->pdev = &pdev->dev;	/* record ptr  to the generic device */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1407) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1408) 	pvt = mci->pvt_info;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1409) 	pvt->system_address = pdev;	/* Record this device in our private */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1410) 	pvt->maxch = num_channels;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1411) 	pvt->maxdimmperch = num_dimms_per_channel;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1412) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1413) 	/* 'get' the pci devices we want to reserve for our use */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1414) 	if (i5000_get_devices(mci, dev_idx))
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1415) 		goto fail0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1416) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1417) 	/* Time to get serious */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1418) 	i5000_get_mc_regs(mci);	/* retrieve the hardware registers */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1419) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1420) 	mci->mc_idx = 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1421) 	mci->mtype_cap = MEM_FLAG_FB_DDR2;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1422) 	mci->edac_ctl_cap = EDAC_FLAG_NONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1423) 	mci->edac_cap = EDAC_FLAG_NONE;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1424) 	mci->mod_name = "i5000_edac.c";
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1425) 	mci->ctl_name = i5000_devs[dev_idx].ctl_name;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1426) 	mci->dev_name = pci_name(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1427) 	mci->ctl_page_to_phys = NULL;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1428) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1429) 	/* Set the function pointer to an actual operation function */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1430) 	mci->edac_check = i5000_check_error;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1431) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1432) 	/* initialize the MC control structure 'csrows' table
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1433) 	 * with the mapping and control information */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1434) 	if (i5000_init_csrows(mci)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1435) 		edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i5000_init_csrows() returned nonzero value\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1436) 		mci->edac_cap = EDAC_FLAG_NONE;	/* no csrows found */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1437) 	} else {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1438) 		edac_dbg(1, "MC: Enable error reporting now\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1439) 		i5000_enable_error_reporting(mci);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1440) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1441) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1442) 	/* add this new MC control structure to EDAC's list of MCs */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1443) 	if (edac_mc_add_mc(mci)) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1444) 		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1445) 		/* FIXME: perhaps some code should go here that disables error
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1446) 		 * reporting if we just enabled it
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1447) 		 */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1448) 		goto fail1;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1449) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1450) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1451) 	i5000_clear_error(mci);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1452) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1453) 	/* allocating generic PCI control info */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1454) 	i5000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1455) 	if (!i5000_pci) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1456) 		printk(KERN_WARNING
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1457) 			"%s(): Unable to create PCI control\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1458) 			__func__);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1459) 		printk(KERN_WARNING
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1460) 			"%s(): PCI error report via EDAC not setup\n",
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1461) 			__func__);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1462) 	}
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1463) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1464) 	return 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1465) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1466) 	/* Error exit unwinding stack */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1467) fail1:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1468) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1469) 	i5000_put_devices(mci);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1470) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1471) fail0:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1472) 	edac_mc_free(mci);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1473) 	return -ENODEV;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1474) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1475) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1476) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1477)  *	i5000_init_one	constructor for one instance of device
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1478)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1479)  * 	returns:
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1480)  *		negative on error
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1481)  *		count (>= 0)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1482)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1483) static int i5000_init_one(struct pci_dev *pdev, const struct pci_device_id *id)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1484) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1485) 	int rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1486) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1487) 	edac_dbg(0, "MC:\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1488) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1489) 	/* wake up device */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1490) 	rc = pci_enable_device(pdev);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1491) 	if (rc)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1492) 		return rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1493) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1494) 	/* now probe and enable the device */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1495) 	return i5000_probe1(pdev, id->driver_data);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1496) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1497) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1498) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1499)  *	i5000_remove_one	destructor for one instance of device
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1500)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1501)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1502) static void i5000_remove_one(struct pci_dev *pdev)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1503) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1504) 	struct mem_ctl_info *mci;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1505) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1506) 	edac_dbg(0, "\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1507) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1508) 	if (i5000_pci)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1509) 		edac_pci_release_generic_ctl(i5000_pci);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1510) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1511) 	if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1512) 		return;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1513) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1514) 	/* retrieve references to resources, and free those resources */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1515) 	i5000_put_devices(mci);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1516) 	edac_mc_free(mci);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1517) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1518) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1519) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1520)  *	pci_device_id	table for which devices we are looking for
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1521)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1522)  *	The "E500P" device is the first device supported.
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1523)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1524) static const struct pci_device_id i5000_pci_tbl[] = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1525) 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I5000_DEV16),
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1526) 	 .driver_data = I5000P},
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1527) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1528) 	{0,}			/* 0 terminated list. */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1529) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1530) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1531) MODULE_DEVICE_TABLE(pci, i5000_pci_tbl);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1532) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1533) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1534)  *	i5000_driver	pci_driver structure for this module
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1535)  *
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1536)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1537) static struct pci_driver i5000_driver = {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1538) 	.name = KBUILD_BASENAME,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1539) 	.probe = i5000_init_one,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1540) 	.remove = i5000_remove_one,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1541) 	.id_table = i5000_pci_tbl,
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1542) };
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1543) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1544) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1545)  *	i5000_init		Module entry function
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1546)  *			Try to initialize this module for its devices
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1547)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1548) static int __init i5000_init(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1549) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1550) 	int pci_rc;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1551) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1552) 	edac_dbg(2, "MC:\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1553) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1554) 	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1555) 	opstate_init();
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1556) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1557) 	pci_rc = pci_register_driver(&i5000_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1558) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1559) 	return (pci_rc < 0) ? pci_rc : 0;
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1560) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1561) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1562) /*
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1563)  *	i5000_exit()	Module exit function
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1564)  *			Unregister the driver
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1565)  */
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1566) static void __exit i5000_exit(void)
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1567) {
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1568) 	edac_dbg(2, "MC:\n");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1569) 	pci_unregister_driver(&i5000_driver);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1570) }
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1571) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1572) module_init(i5000_init);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1573) module_exit(i5000_exit);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1574) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1575) MODULE_LICENSE("GPL");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1576) MODULE_AUTHOR
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1577)     ("Linux Networx (http://lnxi.com) Doug Thompson <norsk5@xmission.com>");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1578) MODULE_DESCRIPTION("MC Driver for Intel I5000 memory controllers - "
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1579) 		I5000_REVISION);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1580) 
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1581) module_param(edac_op_state, int, 0444);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1582) MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1583) module_param(misc_messages, int, 0444);
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1584) MODULE_PARM_DESC(misc_messages, "Log miscellaneous non fatal messages");
^8f3ce5b39 (kx 2023-10-28 12:00:06 +0300 1585)